Synthesis and Physicochemical Characterization of Biomimetic Scaffold of Gelatin/Zn-Incorporated 58S Bioactive Glass
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Synthesis and Physicochemical Characterization of Biomimetic Scaffold of Gelatin/Zn-Incorporated 58S Bioactive Glass

Authors: Seyed Mohammad Hosseini, Amirhossein Moghanian

Abstract:

The main purpose of this research was to design a biomimetic system by freeze-drying method for evaluating the effect of adding 5 and 10 mol. % of zinc (Zn) in 58S bioactive glass and gelatin (5ZnBG/G and 10ZnBG/G) in terms of structural and biological changes. The structural analyses of samples were performed by X-Ray Diffraction (XRD), scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy. Also, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) activity tests were carried out for investigation of MC3T3-E1 cell behaviors. The SEM results demonstrated the spherical shape of the formed hydroxyapatite (HA) phases and also HA characteristic peaks were detected by XRD spectroscopy after 3 days of immersion in the simulated body fluid (SBF) solution. Meanwhile, FTIR spectra proved that the intensity of P–O peaks for 5ZnBG/G was more than 10ZnBG/G and control samples. Moreover, the results of ALP activity test illustrated that the optimal amount of Zn (5ZnBG/G) caused a considerable enhancement in bone cell growth. Taken together, the scaffold with 5 mol.% Zn was introduced as an optimal sample because of its higher biocompatibility, in vitro bioactivity and growth of MC3T3-E1 cells in comparison with other samples in bone tissue engineering.

Keywords: Scaffold, gelatin, modified bioactive glass, ALP, bone tissue engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 305

References:


[1] J.A. Gasser, M. Kneissel, Bone physiology and biology, 2 (2017) 27–94.
[2] A. Moghanian, M. Zohourfazeli, M.H.M. Tajer, The effect of zirconium content on in vitro bioactivity, biological behavior and antibacterial activity of sol-gel derived 58S bioactive glass, J. Non. Cryst. Solids. 546 (2020) 120262-120272.
[3] A. Moghanian, M.H. Mahdi Tajer, M. Zohourfazeli, Z. Miri, M. Saghafi Yazdi, Sol-gel derived silicate-based bioactive glass: Studies of synergetic effect of zirconium and magnesium on structural and biological characteristics, J. Non-Cryst. Solids. 554 (2020) 120613, https://doi.org/10.1016/j.jnoncrysol.2020.120613
[4] M. Rahmani, A. Moghanian, M. Saghafi Yazdi, The effect of Ag substitution on physicochemical and biological properties of sol-gel derived 60%SiO2–31%CaO–4%P2O5–5%Li2O (mol%) quaternary bioactive glass, Ceram. Int. 47 (2021) 15985-15994
[5] J.R. Jones, D.S. Brauer, L. Hupa, D.C. Greenspan, Bioglass and Bioactive Glasses and Their Impact on Healthcare, Int. J. Appl. Glas. Sci. 7 (2016) 423–434.
[6] L. Roseti, V. Parisi, M. Petretta, C. Cavallo, G. Desando, I. Bartolotti, B. Grigolo, Scaffolds for Bone Tissue Engineering: State of the art and new perspectives, J. Mater. Sci. Eng. C. 78 (2017) 1246–1262.
[7] M. Zohourfazeli, M. Haji, M. Tajer, A. Moghanian, Comprehensive investigation on multifunctional properties of zirconium and silver co-substituted 58S bioactive glass, J. Ceram. Int. 47 (2020) 2499-2507.
[8] M. Haji, A. Moghanian, M. Zohourfazeli, An investigation on structural and in vitro biological properties of silicate-based bioactive glass powder in SiO2–CaO–P2O5–ZrO2–Li2O quintuplet system, Materials Chemistry and Physics 285, 126010, https://doi.org/10.1016/j.matchemphys.2022.126010
[9] A. Moghanian, M Raz, Z. Miri, S. Nasiripour, L. Dehghan, M. Mohaghegh. M. Elsa, Synthesis and characterization of Mg and Sr-modified calcium phosphate/gelatin biomimetic scaffolds for bone tissue engineering, Ceram. Int. (2023), (https://doi.org/10.1016/j.ceramint.2023.02.197)
[10] A. Moghanian, A. Sedghi, A. Ghorbanoghli, E. Salari, The effect of magnesium content on in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass, J. Ceram. Int. 44 (2018) 9422–9432.
[11] A. Moghanian, A. Ghorbanoghli, M. Kazem-Rostami, A. Pazhouheshgar, E. Salari, M. Saghafi Yazdi, T. Alimardani, H. Jahani, F. Sharifian Jazi, M. Tahriri, Novel antibacterial Cu/Mg-substituted 58S-bioglass: Synthesis, characterization and investigation of in vitro bioactivity, Int. J. Appl. Glas. Sci. 11 (2020) 685–698.
[12] B. Thavornyutikarn, N. Chantarapanich, K. Sitthiseripratip, G.A. Thouas, Q. Chen, Bone tissue engineering scaffolding: computer-aided scaffolding techniques, J. Springer. 3 (2014) 61–102.
[13] D. Khorsandi, A. Moghanian, R. Nazari, G. Arabzadeh, S. Borhani, Personalized medicine: regulation of genes in human skin ageing, Allergy Ther. 7 (2016) 2-11.
[14] I.I. Bone, Optimization of Bone Scaffold Engineering for Load Bearing Applications, (n.d.) J. Ceram. Int. 46 (2020) 3443-3455.
[15] A. Arab, M. Elsa, A. Moghanian, Comparative Study on the Effect of Substitution of Li and Mg Instead of Ca on Structural and Biological Behaviors of Silicate Bioactive Glass, Int. J. Mater. Eng., 15 (2021) 92-102.
[16] R. Langer, J. Vacanti, Advances in tissue engineering, J. Pediatr. Surg. 51 (2016) 8–12.
[17] A. Pazhouheshgar, A. Moghanian, S.A. Sadough Vanini, The extended finite element method numerical and experimental analysis of mechanical behavior of polysulfone/58s bioactive glass synthesized through solvent casting method, Modares Mech. Eng. 20 (2020) 2061–2073, https://mme.modares.ac.ir/article -15-37532-en.html.
[18] A. Moghanian, M. Zohourfazeli, M.H. Mahdi Tajer, Z. Miri, S.M. Hosseini, A. Rashvand, Preparation, characterization and in vitro biological response of simultaneous co-substitution of Zr+4/Sr+2 58S bioactive glass powder, J. Ceram. Int. 47 (2020) 23762-23769.
[19] A. Moghanian, A. Pazhouheshgar, A. Ghorbanoghli, Nonlinear Viscoelastic Modeling of Synthesized Silicate-Based Bioactive Glass/Polysulfone Composite: Theory and Medical Applications, Silicon, (2020). https://doi.org/10.1007/s12633-020-00900-9
[20] M. Azami, M.J. Moosavifar, N. Baheiraei, F. Moztarzadeh, J. Ai, Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid, J. Biomed. Mater. Res. - Part A. 100 A (2012) 1347–1355.
[21] X. Luo, D. Barbieri, N. Davison, Y. Yan, J.D. De Bruijn, H. Yuan, Acta Biomaterialia Zinc in calcium phosphate mediates bone induction: In vitro and in vivo model, J. Acta Biomater. 10 (2014) 477–485.
[22] S. Kuttappan, D. Mathew, M.B. Nair, International Journal of Biological Macromolecules Biomimetic composite scaffolds containing bioceramics and collagen / gelatin for bone tissue engineering - A mini review, Int. J. Biol. Macromol. 93 (2016) 1390–1401.
[23] A. Saatchi, A.R. Arani, A. Moghanian, M. Mozafari, Synthesis and characterization of electrospun cerium-doped bioactive glass/chitosan/polyethylene oxide composite scaffolds for tissue engineering applications, J. Ceram. Int. 47 (2021) 260–271.
[24] G. Huang, L. Xu, J. Wu, S. Wang, Y. Dong, Gelatin/bioactive glass composite scaffold for promoting the migration and odontogenic differentiation of bone marrow mesenchymal stem cells, J. Polym. Test. 93 (2021) 106915.
[25] S. Panzavolta, P. Torricelli, L. Sturba, B. Bracci, R. Giardino, A. Bigi, Setting properties and in vitro bioactivity of strontium-enriched gelatin – calcium phosphate bone cements, J. Polym. Test. 29 (2007) 407-416.
[26] K.Y. Chen, C.H. Yao, Repair of bone defects with gelatin-based composites: A review, J. Biomed. 1 (2011) 29–32.
[27] L. Keller, A. Regiel-Futyra, M. Gimeno, S. Eap, G. Mendoza, V. Andreu, Q. Wagner, A. Kyzioł, V. Sebastian, G. Stochel, M. Arruebo, N. Benkirane-Jessel, Chitosan-based nanocomposites for the repair of bone defects, Nanomedicine Nanotechnology, J. Biol. Med. 13 (2017) 2231–2240.
[28] A. Pazhouheshgar, S.A.S. Vanini, A. Moghanian, The experimental and numerical study of fracture behavior of 58s bioactive glass/polysulfone composite using the extended finite elements method, Mater. Res. Express. 6 (2019), 095208. https://iopscience.iop.org/article/10.1088/2053-1591/ab3495/meta.
[29] Y. Honda, T. Anada, S. Morimoto, O. Suzuki, Labile Zn ions on octacalcium phosphate-derived Zn-containing hydroxyapatite surfaces, J. Appl. Surf. Sci. 273 (2013) 343–348.
[30] J. Kolmas, F. Velard, A. Jaguszewska, F. Lemaire, H. Kerdjoudj, S.C. Gangloff, A. Kaflak, Substitution of strontium and boron into hydroxyapatite crystals: Effect on physicochemical properties and biocompatibility with human Wharton-Jelly stem cells, J. Mater. Sci. Eng. C. 79 (2017) 638–646.
[31] M. Madaghiele, A. Sannino, I. V. Yannas, M. Spector, Collagen-based matrices with axially oriented pores, J. Biomed. Mater. Res. - Part A. 85 (2008) 757–767.
[32] Y.C. Wu, W.Y. Lin, C.Y. Yang, T.M. Lee, Fabrication of gelatin–strontium substituted calcium phosphate scaffolds with unidirectional pores for bone tissue engineering, J. Mater. Sci. Mater. Med. 26 (2015) 1–12.
[33] F.J. O’Brien, B.A. Harley, I. V. Yannas, L. Gibson, Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds, J. Biomaterials. 25 (2004) 1077–1086.
[34] A.S. Tiffany, D.L. Gray, T.J. Woods, K. Subedi, B.A.C. Harley, The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications, J. Acta Biomater. 93 (2019) 86–96.
[35] Z. Hajifathali, M. Amirhosseinian, The effect of substitution of CaO/MgO and CaO/ SrO on in vitro bioactivity of sol-gel derived bioactive glass, Int. J. Biomed. Biol. Eng. 13 (2019) 279–287.
[36] E.S. Thian, T. Konishi, Y. Kawanobe, P.N. Lim, C. Choong, B. Ho, M. Aizawa, Zinc-substituted hydroxyapatite: A biomaterial with enhanced bioactivity and antibacterial properties, J. Mater. Sci. Mater. Med. 24 (2013) 437–445.
[37] G. Sun, J. Ma, S. Zhang, Electrophoretic deposition of zinc-substituted hydroxyapatite coatings, J. Mater. Sci. Eng. C. 39 (2014) 67–72.
[38] M. Yamaguchi, Role of zinc in bone formation and bone resorption, J. Trace Elem. Exp. Med. 11 (1998) 119–135.
[39] A. Bigi, E. Foresti, M. Gandolfi, M. Gazzano, N. Roveri, Inhibiting effect of zinc on hydroxylapatite crystallization, J. Inorg. Biochem. 58 (1995) 49–58.
[40] F. Yang, F. He, Osteoblast response to porous titanium surfaces coated with zinc-substituted hydroxyapatite, J. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 113 (2012) 313–318.
[41] O. Kaygili, S. Keser, M. Kom, Y. Eroksuz, S. V. Dorozhkin, T. Ates, I.H. Ozercan, C. Tatar, F. Yakuphanoglu, Strontium substituted hydroxyapatites: Synthesis and determination of their structural properties, in vitro and in vivo performance, J. Mater. Sci. Eng. C. 55 (2015) 538–546.
[42] M.J. Olszta, X. Cheng, S.S. Jee, R. Kumar, Y.Y. Kim, M.J. Kaufman, E.P. Douglas, L.B. Gower, Bone structure and formation: A new perspective, J. Mater. Sci. Eng. R Reports. 58 (2007) 77–116.
[43] A. Moghanian, M. Zohourfazeli, Investigation the in vitro and bactericidal properties of magnesium and copper containing bioactive glasses, J. Adv. Mater. Technol. 9 (2020) 19–33, https://doi.org/10.30501/JAMT.2020.195763.1041.
[44] Z. Huang, F. Cui, Q. Feng, X. Guo, Incorporation of strontium into hydroxyapatite via biomineralization of collagen fibrils, J. Ceram. Int. 41 (2015) 8773–8778.
[45] M.C. Chang, C.C. Ko, W.H. Douglas, Preparation of hydroxyapatite-gelatin nanocomposite, J. Biomaterials. 24 (2003) 2853–2862.
[46] Yanovska, V. Kuznetsov, A. Stanislavov, Husak, Pogorielov, V. Starikov, S. Bolshanina, S. Danilchenko, Synthesis and characterization of hydroxyapatite-gelatine composite materials for orthopaedic application, J. Mater. Chem. Phys. 183 (2016) 93–100.
[47] M. Aminitabar, M. Amirhosseinian, M.J. Elsa, Synthesis and in vitro characterization of a gel-derived SiO2-CaO-P2O5-SrO-Li2O bioactive glass, Int. J. Civ. Mech. Eng. 13 (2019) 296–307. Doi.org/10.5281/zenodo.3299731.
[48] A. Moghanian, S. Nasiripour, A. Koohfar, M. Sajjadnejad, S. M. Hosseini, M. Taherkhani, Z. Miri, S. H. Hosseini, M. Aminitabar, A. Rashvand, Characterization, in vitro bioactivity and biological studies of sol‐gel‐derived TiO2 substituted 58S bioactive glass, International Journal of Applied Ceramic Technology, 18 (2021) 1430-1441, (https://doi.org/10.1111/ijac.13782).
[49] M. Elsa, A. Moghanian, Comparative study of calcium content on in vitro biological and antibacterial properties of silicon-based bioglass, Int. J. Civ. Mech. Eng. 13 (2019) 288–295.
[50] P.N. Lim, C. Choong, M. Aizawa, Zinc-substituted hydroxyapatite: A biomaterial with enhanced bioactivity and antibacterial properties, J. Springer. 24 (2013) 437–445.
[51] A. Cerovic, I. Miletic, S. Sobajic, D. Blagojevic, M. Radusinovic, A. El-Sohemy, Effects of zinc on the mineralization of bone nodules from human osteoblast-like cells, J. Biol. Trace Elem. Res. 116 (2007) 61–71.
[52] I. Uysal, F. Severcan, A. Tezcaner, Z. Evis, Co-doping of hydroxyapatite with zinc and fl uoride improves mechanical and biological properties of hydroxyapatite, J. Prog. Nat. Sci. Mater. Int. 24 (2014) 340–349.