Search results for: Binary segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 637

Search results for: Binary segmentation

337 An Efficient Pixel Based Cervical Disc Localization

Authors: J. Preetha, S. Selvarajan

Abstract:

When neck pain is associated with pain, numbness, or weakness in the arm, shoulder, or hand, further investigation is needed as these are symptoms indicating pressure on one or more nerve roots. Evaluation necessitates a neurologic examination and imaging using an MRI/CT scan. A degenerating disc loses some thickness and is less flexible, causing inter-vertebrae space to narrow. A radiologist diagnoses an Intervertebral Disc Degeneration (IDD) by localizing every inter-vertebral disc and identifying the pathology in a disc based on its geometry and appearance. Accurate localizing is necessary to diagnose IDD pathology. But, the underlying image signal is ambiguous: a disc’s intensity overlaps the spinal nerve fibres. Even the structure changes from case to case, with possible spinal column bending (scoliosis). The inter-vertebral disc pathology’s quantitative assessment needs accurate localization of the cervical region discs. In this work, the efficacy of multilevel set segmentation model, to segment cervical discs is investigated. The segmented images are annotated using a simple distance matrix.

Keywords: Intervertebral Disc Degeneration (IDD), Cervical Disc Localization, multilevel set segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
336 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, capsule network, capacity optimization, character recognition, data augmentation; semantic segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
335 Performance Analysis of High Speed Adder for DSP Applications

Authors: N. Mahendran, S. Vishwaja

Abstract:

The Carry Select Adder (CSLA) is a fast adder which improves the speed of addition. From the structure of the CSLA, it is clear that there is opportunity for reducing the area. The logic operations involved in conventional CSLA and binary to excess-1 converter (BEC) based CSLA are analyzed to make a study on the data dependence and to identify redundant logic operations. In the existing adder design, the carry select (CS) operation is scheduled before the final-sum, which is different from the conventional CSLA design. In the presented scheme, Kogge stone parallel adder approach is used instead of existing adder design it will generate fast carry for intermediate stages and also improves the speed of addition. When compared to existing adder design the delay is less in the proposed adder design.

Keywords: Binary to excess-1 converter, delay, carry select adder, Kogge stone adder, speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
334 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models

Authors: I. V. Pinto, M. R. Sooriyarachchi

Abstract:

It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.

Keywords: Goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, type-I error, penalized quasi-likelihood, power, quasi-likelihood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
333 The Relationship between Employability and Training

Authors: X. Mamaqi, J.Miguel, P. Olave

Abstract:

The aim of this paper is to provide an empirical evidence about the effects that the management of continuous training have on employability (or employment stability) in the Spanish labour market. With this purpose a binary logit model with interaction effect is been used. The dependent variable includes two situations of the active workers: continuous and discontinuous employability. To distinguish between them an Employability Index Stability (ESI) was calculated taking into account two factors: time worked and job security. Various aspects of the continuous training and personal workers data are used as independent variables. The data obtained from a survey of a sample of 918 employed have revealed a relationship between the likelihood of continuous employability and continuous training received. The empirical results support the positive and significant relationship between various aspects of the training provided by firms and employability likelihood of the workers, postulate alike from a theoretical point of view.

Keywords: training management, employability/employmentstability, binary logit model, interaction effect, Spanish marketlabour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
332 High-Resolution 12-Bit Segmented Capacitor DAC in Successive Approximation ADC

Authors: Wee Leong Son, Hasmayadi Abdul Majid, Rohana Musa

Abstract:

This paper study the segmented split capacitor Digital-to-Analog Converter (DAC) implemented in a differentialtype 12-bit Successive Approximation Analog-to-Digital Converter (SA-ADC). The series capacitance split array method employed as it reduced the total area of the capacitors required for high resolution DACs. A 12-bit regular binary array structure requires 2049 unit capacitors (Cs) while the split array needs 127 unit Cs. These results in the reduction of the total capacitance and power consumption of the series split array architectures as to regular binary-weighted structures. The paper will show the 12-bit DAC series split capacitor with 4-bit thermometer coded DAC architectures as well as the simulation and measured results.

Keywords: Successive Approximation Register Analog-to- Digital Converter, SAR ADC, Low voltage ADC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9561
331 Automatic Detection of Syllable Repetition in Read Speech for Objective Assessment of Stuttered Disfluencies

Authors: K. M. Ravikumar, Balakrishna Reddy, R. Rajagopal, H. C. Nagaraj

Abstract:

Automatic detection of syllable repetition is one of the important parameter in assessing the stuttered speech objectively. The existing method which uses artificial neural network (ANN) requires high levels of agreement as prerequisite before attempting to train and test ANNs to separate fluent and nonfluent. We propose automatic detection method for syllable repetition in read speech for objective assessment of stuttered disfluencies which uses a novel approach and has four stages comprising of segmentation, feature extraction, score matching and decision logic. Feature extraction is implemented using well know Mel frequency Cepstra coefficient (MFCC). Score matching is done using Dynamic Time Warping (DTW) between the syllables. The Decision logic is implemented by Perceptron based on the score given by score matching. Although many methods are available for segmentation, in this paper it is done manually. Here the assessment by human judges on the read speech of 10 adults who stutter are described using corresponding method and the result was 83%.

Keywords: Assessment, DTW, MFCC, Objective, Perceptron, Stuttering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2809
330 One-Class Support Vector Machines for Protein-Protein Interactions Prediction

Authors: Hany Alashwal, Safaai Deris, Razib M. Othman

Abstract:

Predicting protein-protein interactions represent a key step in understanding proteins functions. This is due to the fact that proteins usually work in context of other proteins and rarely function alone. Machine learning techniques have been applied to predict protein-protein interactions. However, most of these techniques address this problem as a binary classification problem. Although it is easy to get a dataset of interacting proteins as positive examples, there are no experimentally confirmed non-interacting proteins to be considered as negative examples. Therefore, in this paper we solve this problem as a one-class classification problem using one-class support vector machines (SVM). Using only positive examples (interacting protein pairs) in training phase, the one-class SVM achieves accuracy of about 80%. These results imply that protein-protein interaction can be predicted using one-class classifier with comparable accuracy to the binary classifiers that use artificially constructed negative examples.

Keywords: Bioinformatics, Protein-protein interactions, One-Class Support Vector Machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
329 Automated Thickness Measurement of Retinal Blood Vessels for Implementation of Clinical Decision Support Systems in Diagnostic Diabetic Retinopathy

Authors: S.Jerald Jeba Kumar, M.Madheswaran

Abstract:

The structure of retinal vessels is a prominent feature, that reveals information on the state of disease that are reflected in the form of measurable abnormalities in thickness and colour. Vascular structures of retina, for implementation of clinical diabetic retinopathy decision making system is presented in this paper. Retinal Vascular structure is with thin blood vessel, whose accuracy is highly dependent upon the vessel segmentation. In this paper the blood vessel thickness is automatically detected using preprocessing techniques and vessel segmentation algorithm. First the capture image is binarized to get the blood vessel structure clearly, then it is skeletonised to get the overall structure of all the terminal and branching nodes of the blood vessels. By identifying the terminal node and the branching points automatically, the main and branching blood vessel thickness is estimated. Results are presented and compared with those provided by clinical classification on 50 vessels collected from Bejan Singh Eye hospital..

Keywords: Diabetic retinopathy, Binarization, SegmentationClinical Decision Support Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
328 Human Facial Expression Recognition using MANFIS Model

Authors: V. Gomathi, Dr. K. Ramar, A. Santhiyaku Jeevakumar

Abstract:

Facial expression analysis plays a significant role for human computer interaction. Automatic analysis of human facial expression is still a challenging problem with many applications. In this paper, we propose neuro-fuzzy based automatic facial expression recognition system to recognize the human facial expressions like happy, fear, sad, angry, disgust and surprise. Initially facial image is segmented into three regions from which the uniform Local Binary Pattern (LBP) texture features distributions are extracted and represented as a histogram descriptor. The facial expressions are recognized using Multiple Adaptive Neuro Fuzzy Inference System (MANFIS). The proposed system designed and tested with JAFFE face database. The proposed model reports 94.29% of classification accuracy.

Keywords: Adaptive neuro-fuzzy inference system, Facialexpression, Local binary pattern, Uniform Histogram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
327 A Weighted Approach to Unconstrained Iris Recognition

Authors: Yao-Hong Tsai

Abstract:

This paper presents a weighted approach to unconstrained iris recognition. In nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.

Keywords: Authentication, iris recognition, Adaboost, local binary pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
326 An Effective Method of Head Lamp and Tail Lamp Recognition for Night Time Vehicle Detection

Authors: Hyun-Koo Kim, Sagong Kuk, MinKwan Kim, Ho-Youl Jung

Abstract:

This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, to effectively extract spotlight of interest, a segmentation process based on automatic multi-level threshold method is applied on the road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process based on light tracking and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with near infrared mono-camera and tested it in the urban and rural roads. Through the test, classification performances are above 97% of true positive rate evaluated on real-time environment. Our method also has good performance in the case of clear, fog and rain weather.

Keywords: Assistance Driving System, Multi-level Threshold Method, Near Infrared Mono Camera, Nighttime Vehicle Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2937
325 Efficient Feature Fusion for Noise Iris in Unconstrained Environment

Authors: Yao-Hong Tsai

Abstract:

This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.

Keywords: Image fusion, iris recognition, local binary pattern, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
324 A Robust Visual SLAM for Indoor Dynamic Environment

Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to gather information in unknown environments to achieve simultaneous localization and mapping of the environment. This technology has a wide range of applications in autonomous driving, virtual reality, and other related fields. Currently, the research advancements related to VSLAM can maintain high accuracy in static environments. But in dynamic environments, the presence of moving objects in the scene can reduce the stability of the VSLAM system, leading to inaccurate localization and mapping, or even system failure. In this paper, a robust VSLAM method was proposed to effectively address the challenges in dynamic environments. We proposed a dynamic region removal scheme based on a semantic segmentation neural network and geometric constraints. Firstly, a semantic segmentation neural network is used to extract the prior active motion region, prior static region, and prior passive motion region in the environment. Then, the lightweight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static regions and dynamic regions. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under a high dynamic environment.

Keywords: Dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179
323 Development of Low-cost OCDMA Encoder Based On Arrayed Waveguide Gratings(AWGs) and Optical Switches

Authors: Mohammad Syuhaimi Ab-Rahman, Boon Chuan Ng, Norshilawati Mohamad Ibrahim, Sahbudin Shaari

Abstract:

This paper describes the development of a 16-ports optical code division multiple access (OCDMA) encoder prototype based on Arrayed Waveguide Grating (AWG) and optical switches. It is potentially to provide a high security for data transmission due to all data will be transmitted in binary code form. The output signals from AWG are coded with a binary code that given to an optical switch before it signal modulate with the carrier and transmitted to the receiver. The 16-ports encoder used 16 double pole double throw (DPDT) toggle switches to control the polarization of voltage source from +5 V to -5 V for 16 optical switches. When +5 V is given, the optical switch will give code '1' and vice versa. The experimental results showed the insertion loss, crosstalk, uniformity, and optical signal-noise-ratio (OSNR) for the developed prototype are <12 dB, 9.77 dB, <1.63dB, and ≥20dB.

Keywords: AWG, encoder, OCDMA, optical switch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
322 Firing Angle Range Control For Minimising Harmonics in TCR Employed in SVC-s

Authors: D. R. Patil, U. Gudaru

Abstract:

Most electrical distribution systems are incurring large losses as the loads are wide spread, inadequate reactive power compensation facilities and their improper control. A typical static VAR compensator consists of capacitor bank in binary sequential steps operated in conjunction with a thyristor controlled reactor of the smallest step size. This SVC facilitates stepless control of reactive power closely matching with load requirements so as to maintain power factor nearer to unity. This type of SVC-s requiring a appropriately controlled TCR. This paper deals with an air cored reactor suitable for distribution transformer of 3phase, 50Hz, Dy11, 11KV/433V, 125 KVA capacity. Air cored reactors are designed, built, tested and operated in conjunction with capacitor bank in five binary sequential steps. It is established how the delta connected TCR minimizes the harmonic components and the operating range for various electrical quantities as a function of firing angle is investigated. In particular firing angle v/s line & phase currents, D.C. components, THD-s, active and reactive powers, odd and even triplen harmonics, dominant characteristic harmonics are all investigated and range of firing angle is fixed for satisfactory operation. The harmonic spectra for phase and line quantities at specified firing angles are given. In case the TCR is operated within the bound specified in this paper established through simulation studies are yielding the best possible operating condition particularly free from all dominant harmonics.

Keywords: Binary Sequential switched capacitor bank, TCR, Nontriplen harmonics, step less Q control, Active and Reactivepower, Simulink

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5994
321 Estimation of Skew Angle in Binary Document Images Using Hough Transform

Authors: Nandini N., Srikanta Murthy K., G. Hemantha Kumar

Abstract:

This paper includes two novel techniques for skew estimation of binary document images. These algorithms are based on connected component analysis and Hough transform. Both these methods focus on reducing the amount of input data provided to Hough transform. In the first method, referred as word centroid approach, the centroids of selected words are used for skew detection. In the second method, referred as dilate & thin approach, the selected characters are blocked and dilated to get word blocks and later thinning is applied. The final image fed to Hough transform has the thinned coordinates of word blocks in the image. The methods have been successful in reducing the computational complexity of Hough transform based skew estimation algorithms. Promising experimental results are also provided to prove the effectiveness of the proposed methods.

Keywords: Dilation, Document processing, Hough transform, Optical Character Recognition, Skew estimation, and Thinning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3265
320 Optimal Design of the Power Generation Network in California: Moving towards 100% Renewable Electricity by 2045

Authors: Wennan Long, Yuhao Nie, Yunan Li, Adam Brandt

Abstract:

To fight against climate change, California government issued the Senate Bill No. 100 (SB-100) in 2018 September, which aims at achieving a target of 100% renewable electricity by the end of 2045. A capacity expansion problem is solved in this case study using a binary quadratic programming model. The optimal locations and capacities of the potential renewable power plants (i.e., solar, wind, biomass, geothermal and hydropower), the phase-out schedule of existing fossil-based (nature gas) power plants and the transmission of electricity across the entire network are determined with the minimal total annualized cost measured by net present value (NPV). The results show that the renewable electricity contribution could increase to 85.9% by 2030 and reach 100% by 2035. Fossil-based power plants will be totally phased out around 2035 and solar and wind will finally become the most dominant renewable energy resource in California electricity mix.

Keywords: 100% renewable electricity, California, capacity expansion, binary quadratic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
319 Acute Coronary Syndrome Prediction Using Data Mining Techniques- An Application

Authors: Tahseen A. Jilani, Huda Yasin, Madiha Yasin, C. Ardil

Abstract:

In this paper we use data mining techniques to investigate factors that contribute significantly to enhancing the risk of acute coronary syndrome. We assume that the dependent variable is diagnosis – with dichotomous values showing presence or  absence of disease. We have applied binary regression to the factors affecting the dependent variable. The data set has been taken from two different cardiac hospitals of Karachi, Pakistan. We have total sixteen variables out of which one is assumed dependent and other 15 are independent variables. For better performance of the regression model in predicting acute coronary syndrome, data reduction techniques like principle component analysis is applied. Based on results of data reduction, we have considered only 14 out of sixteen factors.

Keywords: Acute coronary syndrome (ACS), binary logistic regression analyses, myocardial ischemia (MI), principle component analysis, unstable angina (U.A.).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
318 High Perfomance Communication Protocol for Wireless Ad-Hoc Sensor Networks

Authors: Toshihiko Sasama, Takahide Yanaka, Kazunori Sugahara, Hiroshi Masuyama

Abstract:

In order to monitor for traffic traversal, sensors can be deployed to perform collaborative target detection. Such a sensor network achieves a certain level of detection performance with the associated costs of deployment and routing protocol. This paper addresses these two points of sensor deployment and routing algorithm in the situation where the absolute quantity of sensors or total energy becomes insufficient. This discussion on the best deployment system concluded that two kinds of deployments; Normal and Power law distributions, show 6 and 3 times longer than Random distribution in the duration of coverage, respectively. The other discussion on routing algorithm to achieve good performance in each deployment system was also addressed. This discussion concluded that, in place of the traditional algorithm, a new algorithm can extend the time of coverage duration by 4 times in a Normal distribution, and in the circumstance where every deployed sensor operates as a binary model.

Keywords: binary sensor, coverage rate, power energy consumption, routing algorithm, sensor deployment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
317 A Method for Iris Recognition Based on 1D Coiflet Wavelet

Authors: Agus Harjoko, Sri Hartati, Henry Dwiyasa

Abstract:

There have been numerous implementations of security system using biometric, especially for identification and verification cases. An example of pattern used in biometric is the iris pattern in human eye. The iris pattern is considered unique for each person. The use of iris pattern poses problems in encoding the human iris. In this research, an efficient iris recognition method is proposed. In the proposed method the iris segmentation is based on the observation that the pupil has lower intensity than the iris, and the iris has lower intensity than the sclera. By detecting the boundary between the pupil and the iris and the boundary between the iris and the sclera, the iris area can be separated from pupil and sclera. A step is taken to reduce the effect of eyelashes and specular reflection of pupil. Then the four levels Coiflet wavelet transform is applied to the extracted iris image. The modified Hamming distance is employed to measure the similarity between two irises. This research yields the identification success rate of 84.25% for the CASIA version 1.0 database. The method gives an accuracy of 77.78% for the left eyes of MMU 1 database and 86.67% for the right eyes. The time required for the encoding process, from the segmentation until the iris code is generated, is 0.7096 seconds. These results show that the accuracy and speed of the method is better than many other methods.

Keywords: Biometric, iris recognition, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
316 Skew Detection Technique for Binary Document Images based on Hough Transform

Authors: Manjunath Aradhya V N, Hemantha Kumar G, Shivakumara P

Abstract:

Document image processing has become an increasingly important technology in the automation of office documentation tasks. During document scanning, skew is inevitably introduced into the incoming document image. Since the algorithm for layout analysis and character recognition are generally very sensitive to the page skew. Hence, skew detection and correction in document images are the critical steps before layout analysis. In this paper, a novel skew detection method is presented for binary document images. The method considered the some selected characters of the text which may be subjected to thinning and Hough transform to estimate skew angle accurately. Several experiments have been conducted on various types of documents such as documents containing English Documents, Journals, Text-Book, Different Languages and Document with different fonts, Documents with different resolutions, to reveal the robustness of the proposed method. The experimental results revealed that the proposed method is accurate compared to the results of well-known existing methods.

Keywords: Optical Character Recognition, Skew angle, Thinning, Hough transform, Document processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
315 Optic Disc Detection by Earth Mover's Distance Template Matching

Authors: Fernando C. Monteiro, Vasco Cadavez

Abstract:

This paper presents a method for the detection of OD in the retina which takes advantage of the powerful preprocessing techniques such as the contrast enhancement, Gabor wavelet transform for vessel segmentation, mathematical morphology and Earth Mover-s distance (EMD) as the matching process. The OD detection algorithm is based on matching the expected directional pattern of the retinal blood vessels. Vessel segmentation method produces segmentations by classifying each image pixel as vessel or nonvessel, based on the pixel-s feature vector. Feature vectors are composed of the pixel-s intensity and 2D Gabor wavelet transform responses taken at multiple scales. A simple matched filter is proposed to roughly match the direction of the vessels at the OD vicinity using the EMD. The minimum distance provides an estimate of the OD center coordinates. The method-s performance is evaluated on publicly available DRIVE and STARE databases. On the DRIVE database the OD center was detected correctly in all of the 40 images (100%) and on the STARE database the OD was detected correctly in 76 out of the 81 images, even in rather difficult pathological situations.

Keywords: Diabetic retinopathy, Earth Mover's distance, Gabor wavelets, optic disc detection, retinal images

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
314 Prediction of the Solubility of Benzoic Acid in Supercritical CO2 Using the PC-SAFT EoS

Authors: Hamidreza Bagheri, Alireza Shariati

Abstract:

There are many difficulties in the purification of raw components and products. However, researchers are seeking better ways for purification. One of the recent methods is extraction using supercritical fluids. In this study, the phase equilibria of benzoic acid -supercritical carbon dioxide system were investigated. Regarding the phase equilibria of this system, the modeling of solid-supercritical fluid behavior was performed using the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and Peng-Robinson equations of state (PR EoS). For this purpose, five PC-SAFT EoS parameters for pure benzoic acid were obtained using its experimental vapor pressure. Benzoic acid has association sites and the behavior of the benzoic acid-supercritical fluid system was well predicted using both equations of state, while the binary interaction parameter values for PR EoS were negative. Genetic algorithm, which is one of the most accurate global optimization algorithms, was also used to optimize the pure benzoic acid parameters and the binary interaction parameters. The AAD% value for the PC-SAFT EoS, were 0.22 for the carbon dioxide-benzoic acid system.

Keywords: Supercritical fluids, Solubility, Solid, PC-SAFT EoS, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
313 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: Color moments, visual thing recognition system, SIFT, color SIFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
312 Hand Gesture Recognition Based on Combined Features Extraction

Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Bernd Michaelis

Abstract:

Hand gesture is an active area of research in the vision community, mainly for the purpose of sign language recognition and Human Computer Interaction. In this paper, we propose a system to recognize alphabet characters (A-Z) and numbers (0-9) in real-time from stereo color image sequences using Hidden Markov Models (HMMs). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, color and 3D depth map are used to detect hands where the hand trajectory will take place in further step using Mean-shift algorithm and Kalman filter. In the feature extraction stage, 3D combined features of location, orientation and velocity with respected to Cartesian systems are used. And then, k-means clustering is employed for HMMs codeword. The final stage so-called classification, Baum- Welch algorithm is used to do a full train for HMMs parameters. The gesture of alphabets and numbers is recognized using Left-Right Banded model in conjunction with Viterbi algorithm. Experimental results demonstrate that, our system can successfully recognize hand gestures with 98.33% recognition rate.

Keywords: Gesture Recognition, Computer Vision & Image Processing, Pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4032
311 OCR for Script Identification of Hindi (Devnagari) Numerals using Error Diffusion Halftoning Algorithm with Neural Classifier

Authors: Banashree N. P., Andhe Dharani, R. Vasanta, P. S. Satyanarayana

Abstract:

The applications on numbers are across-the-board that there is much scope for study. The chic of writing numbers is diverse and comes in a variety of form, size and fonts. Identification of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], machine printed or handwritten characters/numerals are recognized. There are plentiful approaches that deal with problem of detection of numerals/character depending on the sort of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent our work focused on a technique in feature extraction i.e. Local-based approach, a method using 16-segment display concept, which is extracted from halftoned images & Binary images of isolated numerals. These feature vectors are fed to neural classifier model that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. Experimentation result shows that recognition rate of halftoned images is 98 % compared to binary images (95%).

Keywords: OCR, Halftoning, Neural classifier, 16-segmentdisplay concept.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
310 Piezoelectric Polarization Effect on Debye Frequency and Temperature in Nitride Wurtzites

Authors: Bijay Kumar Sahoo, Ashok Kumar Srivastav

Abstract:

We have investigated the effect of piezoelectric (PZ) polarization property in binary as well as in ternary wurtzite nitrides. It is found that with the presence of PZ polarization property, the phonon group velocity is modified. The change in phonon group velocity due to PZ polarization effect directly depends on piezoelectric tensor value. Using different piezoelectric tensor values recommended by different workers in the literature, percent change in group velocities of phonons has been estimated. The Debye temperatures and frequencies of binary nitrides GaN, AlN and InN are also calculated using the modified group velocities. For ternary nitrides AlxGa(1-x)N, InxGa(1-x)N and InxAl(1-x)N, the phonon group velocities have been calculated as a functions of composition. A small positive bowing is observed in phonon group velocities of ternary alloys. Percent variations in phonon group velocities are also calculated for a straightforward comparison among ternary nitrides. The results are expected to show a change in phonon relaxation rates and thermal conductivity of III-nitrides when piezoelectric polarization property is taken into consideration.

Keywords: Wirtzite nitrides, piezoelectric polarization, Phonon group velocity, Debye frequency and Debye temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
309 Mixed Micellization Study of Adiphenine Hydrochloride with 1-Decyl-3-Methylimidazolium Chloride

Authors: Abbul B. Khan, Neeraj Dohare, Rajan Patel

Abstract:

The mixed micellization of adiphenine hydrochloride (ADP) with 1-decyl-3-methylimidazolium chloride (C10mim.Cl), was investigated at different mole fractions and temperatures by surface tension measurements. The synergistic behavior (i.e., non-ideal behavior) for binary mixtures was explained by the deviation of critical micelle concentration (cmc) from ideal critical micelle concentration (cmc*), micellar mole fraction (Xim) from ideal micellar mole fraction (Xiideal), the values of interaction parameter (β) and activity coefficients (fi) (for both mixed micelles and mixed monolayer). The excess free energy (ΔGex) for the ADP- C10mim.Cl binary mixtures explain the stability of mixed micelles in comparison to micelles of pure ADP and C10mim.Cl. Interfacial parameters, i.e., Gibbs surface excess (Гmax), minimum head group area at air/ water interface (Amin), and free energy of micellization (ΔG0m) were also evaluated for the systems.

Keywords: Adiphenine hydrochloride, Critical micelle concentration, Interaction parameter, Activity coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
308 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, Fuzzy c means, Liver segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421