Search results for: pore water pressure.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3532

Search results for: pore water pressure.

322 A Prospective Study on Alkali Activated Bottom Ash-GGBS Blend in Paver Blocks

Authors: V. Revathi, J. Thaarrini, M. Venkob Rao

Abstract:

This paper presents a study on use of alkali activated bottom ash (BA) and ground granulated blast furnace slag (GGBS) blend in paver blocks. A preliminary effort on alkali-activated bottom ash, blast furnace slag based geopolymer (BA-GGBS-GP) mortar with river sand was carried out to identify the suitable mix for paver block. Several mixes were proposed based on the combination of BA-GGBS. The percentage ratio of BA: GGBS was selected as 100:0, 75:25, 50:50, 25:75 and 0:100 for the source material. Sodium based alkaline activators were used for activation. The molarity of NaOH was considered as 8M. The molar ratio of SiO2 to Na2O was varied from 1 to 4. Two curing mode such as ambient and steam curing 60°C for 24 hours were selected. The properties of paver block such as compressive strength split tensile strength, flexural strength and water absorption were evaluated as per IS15658:2006. Based on the preliminary study on BA-GGBS-GP mortar, the combinations of 25% BA with 75% GGBS mix for M30 and 75% BA with 25% GGBS mix for M35 grade were identified for paver block. Test results shows that the combination of BA-GGBS geopolymer paver blocks attained remarkable compressive strength under steam curing as well as in ambient mode at 3 days. It is noteworthy to know BA-GGBS-GP has promising future in the construction industry.

Keywords: Bottom ash, GGBS, alkali activation, paver block.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4014
321 Numerical Simulation of Three-Dimensional Cavitating Turbulent Flow in Francis Turbines with ANSYS

Authors: Raza Abdulla Saeed

Abstract:

In this study, the three-dimensional cavitating turbulent flow in a complete Francis turbine is simulated using mixture model for cavity/liquid two-phase flows. Numerical analysis is carried out using ANSYS CFX software release 12, and standard k-ε turbulence model is adopted for this analysis. The computational fluid domain consist of spiral casing, stay vanes, guide vanes, runner and draft tube. The computational domain is discretized with a threedimensional mesh system of unstructured tetrahedron mesh. The finite volume method (FVM) is used to solve the governing equations of the mixture model. Results of cavitation on the runner’s blades under three different boundary conditions are presented and discussed. From the numerical results it has been found that the numerical method was successfully applied to simulate the cavitating two-phase turbulent flow through a Francis turbine, and also cavitation is clearly predicted in the form of water vapor formation inside the turbine. By comparison the numerical prediction results with a real runner; it’s shown that the region of higher volume fraction obtained by simulation is consistent with the region of runner cavitation damage.

Keywords: Computational Fluid Dynamics, Hydraulic Francis Turbine, Numerical Simulation, Two-Phase Mixture Cavitation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3196
320 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI

Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi

Abstract:

This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.

Keywords: Ungauged Basin, Catchment Characteristics Model, Synthetic data, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
319 Advanced Compound Coating for Delaying Corrosion of Fast-Dissolving Alloy in High Temperature and Corrosive Environment

Authors: Lei Zhao, Yi Song, Tim Dunne, Jiaxiang (Jason) Ren, Wenhan Yue, Lei Yang, Li Wen, Yu Liu

Abstract:

Fasting dissolving magnesium (DM) alloy technology has contributed significantly to the “Shale Revolution” in oil and gas industry. This application requires DM downhole tools dissolving initially at a slow rate, rapidly accelerating to a high rate after certain period of operation time (typically 8 h to 2 days), a contradicting requirement that can hardly be addressed by traditional Mg alloying or processing itself. Premature disintegration has been broadly reported in downhole DM tool from field trials. To address this issue, “temporary” thin polymers of various formulations are currently coated onto DM surface to delay its initial dissolving. Due to conveying parts, harsh downhole condition, and high dissolving rate of the base material, the current delay coatings relying on pure polymers are found to perform well only at low temperature (typical < 100 ℃) and parts without sharp edges or corners, as severe geometries prevent high quality thin film coatings from forming effectively. In this study, a coating technology combining Plasma Electrolytic Oxide (PEO) coatings with advanced thin film deposition has been developed, which can delay DM complex parts (with sharp corners) in corrosive fluid at 150 ℃ for over 2 days. Synergistic effects between porous hard PEO coating and chemical inert elastic-polymer sealing leads to its delaying dissolution improvement, and strong chemical/physical bonding between these two layers has been found to play essential role. Microstructure of this advanced coating and compatibility between PEO and various polymer selections has been thoroughly investigated and a model is also proposed to explain its delaying performance. This study could not only benefit oil and gas industry to unplug their High Temperature High Pressure (HTHP) unconventional resources inaccessible before, but also potentially provides a technical route for other industries (e.g., bio-medical, automobile, aerospace) where primer anti-corrosive protection on light Mg alloy is highly demanded.

Keywords: Dissolvable magnesium, coating, plasma electrolytic oxide, sealer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 530
318 Energy Policy in Nigeria: Prospects and Challenges

Authors: N. Garba, A. Adamu, A. I. Augie

Abstract:

Energy is the major force that drives any country`s socio-economic development. Without electricity, the country could be at risk of losing many potential investors. As such, good policy implementation could play a significant role in harnessing all the available energy resources. Nigeria has the prospects of meeting its energy demand and supply if there are good policies and proper implementation of them. The current energy supply needs to improve in order to meet the present and future demand. Sustainable energy development is the way forward. Renewable energy plays a significant role in socio-economic development of any country. Nigeria is a country blessed with abundant natural resources such as, solar radiation for solar power, water for hydropower, wind for wind power, and biomass from both plants and animal’s waste. Both conventional energy (fossil fuel) and unconventional energy (renewable) could be harmonized like in the case of energy mix or biofuels. Biofuels like biodiesel could be produced from biomass and combined with petro-diesel in different ratios. All these can be achieved if good policy is in place. The challenges could be well overcome with good policy, masses awareness, technological knowledge and other incentives that can attract investors in Nigerian energy sector.

Keywords: Nigeria, renewable energy, Renewable Energy and Efficiency Partnership, Rural Electrification Agency, International Renewable Energy Agency, ECOWAS, Energy Commission of Nigeria

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
317 Removal of Boron from Waste Waters by Ion- Exchange in a Batch System

Authors: Pelin Demirçivi, Gülhayat Nasün-Saygılı

Abstract:

Boron minerals are very useful for various industrial activities, such as glass industry and detergent industry, due to its mechanical and chemical properties. During the production of boron compounds, many of these are introduced into the environment in the form of waste. Boron is also an important micro nutrient for the plants to vegetate but if it exists in high concentrations, it could have toxic effects. The maximum boron level in drinking water for human health is given as 0.3 mg/L in World Health Organization (WHO) standards. The toxic effects of boron should be noted especially for dry regions, thus, in recent years, increasing attention has been paid to remove the boron from waste waters. In this study, boron removal is implemented by ion exchange process using Amberlite IRA-743 resin. Amberlite IRA-743 resin is a boron specific resin and it belongs to the polymerizate sorbent group within the aminopolyol functional group. Batch studies were performed to investigate the effects of various experimental parameters, such as adsorbent dose, initial concentration and pH, on the removal of boron. It is found that, when the adsorbent dose increases removal of boron from the liquid phase increases. However, an increase in the initial concentration decreases the removal of boron. The effective pH values for removal of boron are determined between 8.5 and 9. Equilibrium isotherms were also analyzed by Langmuir and Freundlich isotherm models. The Langmuir isotherm is obeyed better than the Freundlich isotherm.

Keywords: Amberlite resin, boron removal, ion exchange, isotherm models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385
316 Correlation of Microstructure and Corrosion Behavior of Martensitic Stainless Steel Surgical Grade AISI 420A Exposed to 980-1035oC

Authors: Taqi Zahid Butt, Tanveer Ahmad Tabish

Abstract:

Martensitic stainless steels have been extensively used for their good corrosion resistance and better mechanical properties. Heat treatment was suggested as one of the most excellent ways to this regard; hence, it affects the microstructure, mechanical and corrosion properties of the steel. In the current research work the microstructural changes and corrosion behavior in an AISI 420A stainless steel exposed to temperatures in the 980-1035oC range were investigated. The heat treatment is carried out in vacuum furnace within the said temperature range. The quenching of the samples was carried out in oil, brine and water media. The formation and stability of passive film was studied by Open Circuit Potential, Potentiodynamic polarization and Electrochemical Scratch Tests. The Electrochemical Impedance Spectroscopy results simulated with Equivalent Electrical Circuit suggested bilayer structure of outer porous and inner barrier oxide films. The quantitative data showed thick inner barrier oxide film retarded electrochemical reactions. Micrographs of the quenched samples showed sigma and chromium carbide phases which prove the corrosion resistance of steel alloy.

Keywords: Martensitic stainless steel corrosion, microstructure, vacuum furnace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2618
315 Strategic Mine Planning: A SWOT Analysis Applied to KOV Open Pit Mine in the Democratic Republic of Congo

Authors: Patrick May Mukonki

Abstract:

KOV pit (Kamoto Oliveira Virgule) is located 10 km from Kolwezi town, one of the mineral rich town in the Lualaba province of the Democratic Republic of Congo. The KOV pit is currently operating under the Katanga Mining Limited (KML), a Glencore-Gecamines (a State Owned Company) join venture. Recently, the mine optimization process provided a life of mine of approximately 10 years withnice pushbacks using the Datamine NPV Scheduler software. In previous KOV pit studies, we recently outlined the impact of the accuracy of the geological information on a long-term mine plan for a big copper mine such as KOV pit. The approach taken, discussed three main scenarios and outlined some weaknesses on the geological information side, and now, in this paper that we are going to develop here, we are going to highlight, as an overview, those weaknesses, strengths and opportunities, in a global SWOT analysis. The approach we are taking here is essentially descriptive in terms of steps taken to optimize KOV pit and, at every step, we categorized the challenges we faced to have a better tradeoff between what we called strengths and what we called weaknesses. The same logic is applied in terms of the opportunities and threats. The SWOT analysis conducted in this paper demonstrates that, despite a general poor ore body definition, and very rude ground water conditions, there is room for improvement for such high grade ore body.

Keywords: Mine planning, mine optimization, mine scheduling, SWOT analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
314 SNC Based Network Layer Design for Underwater Wireless Communication Used in Coral Farms

Authors: T. T. Manikandan, Rajeev Sukumaran

Abstract:

For maintaining the biodiversity of many ecosystems the existence of coral reefs play a vital role. But due to many factors such as pollution and coral mining, coral reefs are dying day by day. One way to protect the coral reefs is to farm them in a carefully monitored underwater environment and restore it in place of dead corals. For successful farming of corals in coral farms, different parameters of the water in the farming area need to be monitored and maintained at optimal level. Sensing underwater parameters using wireless sensor nodes is an effective way for precise and continuous monitoring in a highly dynamic environment like oceans. Here the sensed information is of varying importance and it needs to be provided with desired Quality of Service(QoS) guarantees in delivering the information to offshore monitoring centers. The main interest of this research is Stochastic Network Calculus (SNC) based modeling of network layer design for underwater wireless sensor communication. The model proposed in this research enforces differentiation of service in underwater wireless sensor communication with the help of buffer sizing and link scheduling. The delay and backlog bounds for such differentiated services are analytically derived using stochastic network calculus.

Keywords: Underwater Coral Farms, SNC, differentiated service, delay bound, backlog bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 319
313 Kinetic Energy Recovery System Using Spring

Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe

Abstract:

New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion.

The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.

Keywords: Electric control unit, Energy, Mechanical KERS, Planetary Gear system, Power, Smart braking, Spiral Spring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8716
312 Estimation of Individual Power of Noise Sources Operating Simultaneously

Authors: Pankaj Chandna, Surinder Deswal, Arunesh Chandra, SK Sharma

Abstract:

Noise has adverse effect on human health and comfort. Noise not only cause hearing impairment, but it also acts as a causal factor for stress and raising systolic pressure. Additionally it can be a causal factor in work accidents, both by marking hazards and warning signals and by impeding concentration. Industry workers also suffer psychological and physical stress as well as hearing loss due to industrial noise. This paper proposes an approach to enable engineers to point out quantitatively the noisiest source for modification, while multiple machines are operating simultaneously. The model with the point source and spherical radiation in a free field was adopted to formulate the problem. The procedure works very well in ideal cases (point source and free field). However, most of the industrial noise problems are complicated by the fact that the noise is confined in a room. Reflections from the walls, floor, ceiling, and equipment in a room create a reverberant sound field that alters the sound wave characteristics from those for the free field. So the model was validated for relatively low absorption room at NIT Kurukshetra Central Workshop. The results of validation pointed out that the estimated sound power of noise sources under simultaneous conditions were on lower side, within the error limits 3.56 - 6.35 %. Thus suggesting the use of this methodology for practical implementation in industry. To demonstrate the application of the above analytical procedure for estimating the sound power of noise sources under simultaneous operating conditions, a manufacturing facility (Railway Workshop at Yamunanagar, India) having five sound sources (machines) on its workshop floor is considered in this study. The findings of the case study had identified the two most effective candidates (noise sources) for noise control in the Railway Workshop Yamunanagar, India. The study suggests that the modification in the design and/or replacement of these two identified noisiest sources (machine) would be necessary so as to achieve an effective reduction in noise levels. Further, the estimated data allows engineers to better understand the noise situations of the workplace and to revise the map when changes occur in noise level due to a workplace re-layout.

Keywords: Industrial noise, sound power level, multiple noise sources, sources contribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
311 Numerical Solution of Transient Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates

Authors: Djalal Hamed

Abstract:

The aim of this paper is to perform, by mean of the finite volume method, a numerical solution of the transient natural convection in a narrow rectangular channel between two vertical parallel Material Testing Reactor (MTR)-type fuel plates, imposed under a heat flux with a cosine shape to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not reach a specific safety limits (90 °C). For this purpose, a computer program is developed to determine the principal parameters related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor core power. Throughout the obtained results, we noticed that the core power should not reach 400 kW, to ensure a safe passive residual heat removing from the nuclear core by the upward natural convection cooling mode.

Keywords: Buoyancy force, friction force, friction factor, finite volume method, transient natural convection, thermal hydraulic analysis, vertical heated rectangular channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716
310 Study of Landslide Behavior with Topographic Monitoring and Numerical Modeling

Authors: ZerarkaHizia, Akchiche Mustapha, Prunier Florent

Abstract:

Landslide of Ain El Hammam (AEH) has been an old slip since 1969; it was reactivated after an intense rainfall period in 2008 where it presents a complex shape and affects broad areas. The schist of AEH is more or less altered; the alteration is facilitated by the fracturing of the rock in its upper part, the presence of flowing water as well as physical and chemical mechanisms of desegregation in joint of altered schist. The factors following these instabilities are mostly related to the geological formation, the hydro-climatic conditions and the topography of the region. The city of AEH is located on the top of a steep slope at 50 km from the city of TiziOuzou (Algeria). AEH’s topographic monitoring of unstable slope allows analyzing the structure and the different deformation mechanism and the gradual change in the geometry, the direction of change of slip. It also allows us to delimit the area affected by the movement. This work aims to study the behavior of AEH landslide with topographic monitoring and to validate the results with numerical modeling of the slip site, when the hydraulic factors are identified as the most important factors for the reactivation of this landslide. With the help of the numerical code PLAXIS 2D and PlaxFlow, the precipitations and the steady state flow are modeled. To identify the mechanism of deformation and to predict the spread of the AEH landslide numerically, we used the equivalent deviatory strain, and these results were visualized by MATLAB software.

Keywords: Equivalent deviatory strain, landslide, numerical modeling, topographic monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
309 Colour Stability of Wild Cactus Pear Juice

Authors: Kgatla T.E, Howard S.S., Hiss D.C.

Abstract:

Prickly pear (Opuntia spp) fruit has received renewed interest since it contains a betalain pigment that has an attractive purple colour for the production of juice. Prickly pear juice was prepared by homogenizing the fruit and treating the pulp with 48 g of pectinase from Aspergillus niger. Titratable acidity was determined by diluting 10 ml prickly pear juice with 90 ml deionized water and titrating to pH 8.2 with 0.1 N NaOH. Brix was measured using a refractometer and ascorbic acid content assayed spectrophotometrically. Colour variation was determined colorimetrically (Hunter L.a.b.). Hunter L.a.b. analysis showed that the red purple colour of prickly pear juice had been affected by juice treatments. This was indicated by low light values of colour difference meter (CDML*), hue, CDMa* and CDMb* values. It was observed that non-treated prickly pear juice had a high (colour difference meter of light) CDML* of 3.9 compared to juice treatments (range 3.29 to 2.14). The CDML* significantly (p<0.05) decreased as the juice was preserved. Spectrophotometric colour analysis showed that browning was low in all treated prickly juice samples as indicated by high values at 540 nm and low values at 476 nm (browning index). The brightness of prickly pear had been affected by acidification compared to other juice treatments. This study presents evidence that processing has a positive effect on the colour quality attribute that offers a clear advantage for the production of red-purple prickly pear juice.

Keywords: Colour, Hunter L.a.b, Prickly pear juice, processing, physicochemical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798
308 GCM Based Fuzzy Clustering to Identify Homogeneous Climatic Regions of North-East India

Authors: Arup K. Sarma, Jayshree Hazarika

Abstract:

The North-eastern part of India, which receives heavier rainfall than other parts of the subcontinent, is of great concern now-a-days with regard to climate change. High intensity rainfall for short duration and longer dry spell, occurring due to impact of climate change, affects river morphology too. In the present study, an attempt is made to delineate the North-eastern region of India into some homogeneous clusters based on the Fuzzy Clustering concept and to compare the resulting clusters obtained by using conventional methods and nonconventional methods of clustering. The concept of clustering is adapted in view of the fact that, impact of climate change can be studied in a homogeneous region without much variation, which can be helpful in studies related to water resources planning and management. 10 IMD (Indian Meteorological Department) stations, situated in various regions of the North-east, have been selected for making the clusters. The results of the Fuzzy C-Means (FCM) analysis show different clustering patterns for different conditions. From the analysis and comparison it can be concluded that nonconventional method of using GCM data is somehow giving better results than the others. However, further analysis can be done by taking daily data instead of monthly means to reduce the effect of standardization.

Keywords: Climate change, conventional and nonconventional methods of clustering, FCM analysis, homogeneous regions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
307 Structure and Magnetic Properties of Nanocomposite Fe2O3/TiO2 Catalysts Fabricated by Heterogeneous Precipitation

Authors: Jana P. Vejpravova, Daniel Niznansky, Vaclav Vales, Barbara Bittova, Vaclav Tyrpekl, Stanislav Danis, Vaclav Holy, Stephen Doyle

Abstract:

The aim of our work is to study phase composition, particle size and magnetic response of Fe2O3/TiO2 nanocomposites with respect to the final annealing temperature. Those nanomaterials are considered as smart catalysts, separable from a liquid/gaseous phase by applied magnetic field. The starting product was obtained by an ecologically acceptable route, based on heterogeneous precipitation of the TiO2 on modified g-Fe2O3 nanocrystals dispersed in water. The precursor was subsequently annealed on air at temperatures ranging from 200 oC to 900 oC. The samples were investigated by synchrotron X-ray powder diffraction (S-PXRD), magnetic measurements and Mössbauer spectroscopy. As evidenced by S-PXRD and Mössbauer spectroscopy, increasing the annealing temperature causes evolution of the phase composition from anatase/maghemite to rutile/hematite, finally above 700 oC the pseudobrookite (Fe2TiO5) also forms. The apparent particle size of the various Fe2O3/TiO2 phases has been determined from the highquality S-PXRD data by using two different approaches: the Rietveld refinement and the Debye method. Magnetic response of the samples is discussed in considering the phase composition and the particle size.

Keywords: X-ray diffraction, profile analysis, Mössbauer spectroscopy, magnetic properties, TiO2, Fe2O3, Fe2TiO5

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
306 A Bibliometric Assessment on Sustainability and Clustering

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner, David Gabriel F. de Barros

Abstract:

Review researches are useful in terms of analysis of research problems. Between the types of review documents, we commonly find bibliometric studies. This type of application often helps the global visualization of a research problem and helps academics worldwide to understand the context of a research area better. In this document, a bibliometric view surrounding clustering techniques and sustainability problems is presented. The authors aimed at which issues mostly use clustering techniques and even which sustainability issue would be more impactful on today’s moment of research. During the bibliometric analysis, we found 10 different groups of research in clustering applications for sustainability issues: Energy; Environmental; Non-urban Planning; Sustainable Development; Sustainable Supply Chain; Transport; Urban Planning; Water; Waste Disposal; and, Others. Moreover, by analyzing the citations of each group, it was discovered that the Environmental group could be classified as the most impactful research cluster in the area mentioned. After the content analysis of each paper classified in the environmental group, it was found that the k-means technique is preferred for solving sustainability problems with clustering methods since it appeared the most amongst the documents. The authors finally conclude that a bibliometric assessment could help indicate a gap of researches on waste disposal – which was the group with the least amount of publications – and the most impactful research on environmental problems.

Keywords: Bibliometric assessment, clustering, sustainability, territorial partitioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 345
305 The Risk Assessment of Nano-particles and Investigation of Their Environmental Impact

Authors: Nader Nabhani, Amir Tofighi

Abstract:

Nanotechnology is the science of creating, using and manipulating objects which have at least one dimension in range of 0.1 to 100 nanometers. In other words, nanotechnology is reconstructing a substance using its individual atoms and arranging them in a way that is desirable for our purpose. The main reason that nanotechnology has been attracting attentions is the unique properties that objects show when they are formed at nano-scale. These differing characteristics that nano-scale materials show compared to their nature-existing form is both useful in creating high quality products and dangerous when being in contact with body or spread in environment. In order to control and lower the risk of such nano-scale particles, the main following three topics should be considered: 1) First of all, these materials would cause long term diseases that may show their effects on body years after being penetrated in human organs and since this science has become recently developed in industrial scale not enough information is available about their hazards on body. 2) The second is that these particles can easily spread out in environment and remain in air, soil or water for very long time, besides their high ability to penetrate body skin and causing new kinds of diseases. 3) The third one is that to protect body and environment against the danger of these particles, the protective barriers must be finer than these small objects and such defenses are hard to accomplish. This paper will review, discuss and assess the risks that human and environment face as this new science develops at a high rate.

Keywords: Nanotechnology, risk assessment, environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
304 Image Classification and Accuracy Assessment Using the Confusion Matrix, Contingency Matrix, and Kappa Coefficient

Authors: F. F. Howard, C. B. Boye, I. Yakubu, J. S. Y. Kuma

Abstract:

One of the ways that could be used for the production of land use and land cover maps by a procedure known as image classification is the use of the remote sensing technique. Numerous elements ought to be taken into consideration, including the availability of highly satisfactory Landsat imagery, secondary data and a precise classification process. The goal of this study was to classify and map the land use and land cover of the study area using remote sensing and Geospatial Information System (GIS) analysis. The classification was done using Landsat 8 satellite images acquired in December 2020 covering the study area. The Landsat image was downloaded from the USGS. The Landsat image with 30 m resolution was geo-referenced to the WGS_84 datum and Universal Transverse Mercator (UTM) Zone 30N coordinate projection system. A radiometric correction was applied to the image to reduce the noise in the image. This study consists of two sections: the Land Use/Land Cover (LULC) and Accuracy Assessments using the confusion and contingency matrix and the Kappa coefficient. The LULC classifications were vegetation (agriculture) (67.87%), water bodies (0.01%), mining areas (5.24%), forest (26.02%), and settlement (0.88%). The overall accuracy of 97.87% and the kappa coefficient (K) of 97.3% were obtained for the confusion matrix. While an overall accuracy of 95.7% and a Kappa coefficient of 0.947 were obtained for the contingency matrix, the kappa coefficients were rated as substantial; hence, the classified image is fit for further research.

Keywords: Confusion Matrix, contingency matrix, kappa coefficient, land used/ land cover, accuracy assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181
303 Parametric and Analysis Study of the Melting in Slabs Heated by a Laminar Heat Transfer Fluid in Downward and Upward Flows

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

The present work aims to investigate numerically the thermal and flow characteristics of a rectangular latent heat storage unit (LHSU) during the melting process of a phase change material (PCM). The LHSU consists of a number of vertical and identical plates of PCM separated by rectangular channels. The melting process is initiated when the LHSU is heated by a heat transfer fluid (HTF: water) flowing in channels in a downward or upward direction. The proposed study is motivated by the need to optimize the thermal performance of the LHSU by accelerating the charging process. A mathematical model is developed and a fixed-grid enthalpy formulation is adopted for modeling the melting process coupling with convection-conduction heat transfer. The finite volume method was used for discretization. The obtained numerical results are compared with experimental, analytical and numerical ones found in the literature and reasonable agreement is obtained. Thereafter, the numerical investigations were carried out to highlight the effects of the HTF flow direction and the aspect ratio of the PCM slabs on the heat transfer characteristics and thermal performance enhancement of the LHSU.

Keywords: Phase change material, thermal energy storage, latent heat storage unit, melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870
302 New Chinese Landscapes in the Works of the Chinese Photographer Yao Lu

Authors: Xiaoling Dai

Abstract:

Many Chinese artists have used digital photography to create works with features of Chinese landscape paintings since the 20th century. The ‘New Mountains and Water’ works created by digital techniques reflect the fusion of photographic techniques and traditional Chinese aesthetic thoughts. Borrowing from Chinese landscape paintings in the Song Dynasty, the Chinese photographer Yao Lu uses digital photography to reflect contemporary environmental construction in his series New Landscapes. By portraying a variety of natural environments brought by urbanization in the contemporary period, Lu deconstructs traditional Chinese paintings and reconstructs contemporary photographic practices. The primary object of this study is to investigate how Chinese photographer Yao Lu redefines and re-interprets the relationship between tradition and contemporaneity. In this study, Yao Lu’s series work New Landscapes is used for photo elicitation, which seeks to broaden understanding of the development of Chinese landscape photography. Furthermore, discourse analysis will be used to evaluate how Chinese social developments influence the creation of photographic practices. Through the visual and discourse analysis, this study aims to excavate the relationship between tradition and contemporaneity in Lu’s works. According to New Landscapes, the study argues that in Lu’s interpretations of landscapes, tradition and contemporaneity are seen to establish a new relationship. Traditional approaches to creation do not become obsolete over time. On the contrary, traditional notions and styles of creation can shed new light on contemporary issues or techniques.

Keywords: Chinese aesthetics, contemporaneity, New Landscapes, tradition, Yao Lu.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136
301 Factors in a Sustainability Assessment of New Types of Closed Cavity Façades

Authors: Zoran Veršić, Josip Galić, Marin Binički, Lucija Stepinac

Abstract:

With the current increase in CO2 emissions and global warming, the sustainability of both existing and new solutions must be assessed on a wide scale. As the implementation of closed cavity façades (CCF) is on the rise, various factors must be included in the analysis of new types of CCF. This paper aims to cover the relevant factors included in the sustainability assessment of new types of CCF. Several mathematical models are being used to describe the physical behavior of CCF. Depending on the type of CCF, they cover the main factors which affect the durability of the façade: thermal behavior of various elements in the façade, stress and deflection of the glass panels, pressure and the moisture control in the cavity. CCF itself represents a complex system in which all mentioned factors must be considered mutually. Still, the façade is only an envelope of a more complex system, the building. Choice of the façade dictates the heat loss and the heat gain, thermal comfort of inner space, natural lighting, and ventilation. Annual energy consumption for heating, cooling, lighting, and maintenance costs will present the operational advantages or disadvantages of the chosen façade system in economic and environmental aspects. Still, the only operational viewpoint is not all-inclusive. As the building codes constantly demand higher energy efficiency as well as transfer to renewable energy sources, the ratio of embodied and lifetime operational energy footprint of buildings is changing. With the drop in operational energy CO2 emissions, embodied energy emissions present a larger and larger share in the lifecycle emissions of the building. Taking all into account, the sustainability assessment of a façade, as well as other major building elements, should include all mentioned factors during the lifecycle of an element. The challenge of such an approach is a timescale. Depending on the climatic conditions on the building site, the expected lifetime of a glazed façade can exceed 25 years. In such a timespan, some of the factors can be estimated more precisely than the others. However, the ones depending on the socio-economic conditions are more likely to be harder to predict than the natural ones like the climatic load. This work recognizes and summarizes the relevant factors needed for the assessment of a new type of CCF, considering the entire lifetime of a façade element in an environmental aspect.

Keywords: Assessment, closed cavity façade, life cycle, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 387
300 Obese and Overweight Women and Public Health Issues in Hillah City, Iraq

Authors: Amean A. Yasir, Zainab Kh. A. Al-Mahdi Al-Amean

Abstract:

In both developed and developing countries, obesity among women is increasing, but in different patterns and at very different speeds. It may have a negative effect on health, leading to reduced life expectancy and/or increased health problems. This research studied the age distribution among obese women, the types of overweight and obesity, and the extent of the problem of overweight/obesity and the obesity etiological factors among women in Hillah city in central Iraq. A total of 322 overweight and obese women were included in the study, those women were randomly selected. The Body Mass Index was used as indicator for overweight/ obesity. The incidence of overweight/obesity among age groups were estimated, the etiology factors included genetic, environmental, genetic/environmental and endocrine disease. The overweight and obese women were screened for incidence of infection and/or diseases. The study found that the prevalence of 322 overweight and obese women in Hillah city in central Iraq was 19.25% and 80.78%, respectively. The obese women types were recorded based on BMI and WHO classification as class-1 obesity (29.81%), class-2 obesity (24.22%) and class-3 obesity (26.70%), the result was discrepancy non-significant, P value < 0.05. The incidence of overweight in women was high among those aged 20-29 years (90.32%), 6.45% aged 30-39 years old and 3.22% among ≥ 60 years old, while the incidence of obesity was 20.38% for those in the age group 20-29 years, 17.30% were 30-39 years, 23.84% were 40-49 years, 16.92% were 50-59 years group and 21.53% were ≥ 60 years age group. These results confirm that the age can be considered as a significant factor for obesity types (P value < 0.0001). The result also showed that the both genetic factors and environmental factors were responsible for incidents of overweight or obesity (84.78%) p value < 0.0001. The results also recorded cases of different repeated infections (skin infection, recurrent UTI and influenza), cancer, gallstones, high blood pressure, type 2 diabetes, and infertility. Weight stigma and bias generally refers to negative attitudes; Obesity can affect quality of life, and the results of this study recorded depression among overweight or obese women. This can lead to sexual problems, shame and guilt, social isolation and reduced work performance. Overweight and Obesity are real problems among women of all age groups and is associated with the risk of diseases and infection and negatively affects quality of life. This result warrants further studies into the prevalence of obesity among women in Hillah City in central Iraq and the immune response of obese women.

Keywords: Obesity, overweight, Iraq, body mass index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248
299 Plant Supporting Units (Ekobox) Application Project for Increasing Planting Success in Arid and Semi-Arid Areas

Authors: Gürcan D. Baysal, Ali Tanış

Abstract:

In this study, samples of plant types including rose hip (Rosa canina L.), jujube (Ziziphus jujube), sea buckthorn (Hippophae rhamnoides), elderberry (Sambucus nigra), apricot (Prunus armeniaca), scots pine (Pinus sylvestris), and cedar of Lebanon (Cedrus libani) were grown using plant supporting units called Ekobox and drip irrigation systems in the Karapınar, Konya region of Turkey to reveal the efficiency of Ekobox and drip irrigation compared against a control with no irrigation. The plant diameter, height, and survival rates were determined, compared with each other, and statistically analyzed. According to the statistical analysis of the results, Ekobox applications resulted in the highest values for survival rate, diameter, and height measurements whereas the lowest values were determined in the control groups. These results indicate that the cultivation of plants with Ekobox may help protect against the loss of fertile soils as an effective mechanism for combating erosion and desertification. These advantages may also lead to a lasting economic effect on the cultivation of plants by locals of the Karapınar, Konya province who suffer from an ever-decreasing underground water level as a result of agricultural consumption.

Keywords: Drip irrigation, Ekobox, plant diameter, plant height, plant survival rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
298 Development and in vitro Characterization of Self-nanoemulsifying Drug Delivery Systems of Valsartan

Authors: P. S. Rajinikanth, Yeoh Suyu, Sanjay Garg

Abstract:

The present study is aim to prepare and evaluate the selfnanoemulsifying drug delivery (SNEDDS) system of a poorly water soluble drug valsartan in order to achieve a better dissolution rate which would further help in enhancing oral bioavailability. The present research work describes a SNEDDS of valsartan using labrafil M 1944 CS, Tween 80 and Transcutol HP. The pseudoternary phase diagrams with presence and absence of drug were plotted to check for the emulsification range and also to evaluate the effect of valsartan on the emulsification behavior of the phases. The mixtures consisting of oil (labrafil M 1944 CS) with surfactant (tween 80), co-surfactant (Transcutol HP) were found to be optimum formulations. Prepared formulations were evaluated for its particle size distribution, nanoemulsifying properties, robustness to dilution, self emulsication time, turbidity measurement, drug content and invitro dissolution. The optimized formulations are further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential were carried out to confirm the stability of the formed SNEDDS formulations. The prepared formulation revealed t a significant improvement in terms of the drug solubility as compared with marketed tablet and pure drug.

Keywords: Self Emulsifying Drug Delivery System, Valsartan, Bioavailability, poorly soluble drug.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2651
297 Importance of the Green Belts to Reduce Noise Pollution and Determination of Roadside Noise Reduction Effectiveness of Bushes in Konya, Turkey

Authors: S. Onder, Z. Kocbeker

Abstract:

The impact of noise upon live quality has become an important aspect to make both urban and environmental policythroughout Europe and in Turkey. Concern over the quality of urban environments, including noise levels and declining quality of green space, is over the past decade with increasing emphasis on designing livable and sustainable communities. According to the World Health Organization, noise pollution is the third most hazardous environmental type of pollution which proceeded by only air (gas emission) and water pollution. The research carried out in two phases, the first stage of the research noise and plant types providing the suction of noise was evaluated through literature study and at the second stage, definite types (Juniperus horizontalis L., Spirea vanhouetti Briot., Cotoneaster dammerii C.K., Berberis thunbergii D.C., Pyracantha coccinea M. etc.) were selected for the city of Konya. Trials were conducted on the highway of Konya. The biggest value of noise reduction was 6.3 dB(A), 4.9 dB(A), 6.2 dB(A) value with compared to the control which includes the group that formed by the bushes at the distance of 7m, 11m, 20m from the source and 5m, 9m, 20m of plant width, respectively. In this paper, definitions regarding to noise and its sources were made and the precautions were taken against to noise that mentioned earlier with the adverse effects of noise. Plantation design approaches and suggestions concerning to the diversity to be used, which are peculiar to roadside, were developed to discuss the role and the function of plant material to reduce the noise of the traffic.

Keywords: Bushes, noise, road, Konya

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5796
296 A New Model for Economic Optimization of Water Diversion System during Dam Construction using PSO Algorithm

Authors: Saeed Sedighizadeh, Abbas Mansoori, Mohammad Reza Pirestani, Davoud Sedighizadeh

Abstract:

The usual method of river flow diversion involves construction of tunnels and cofferdams. Given the fact that the cost of diversion works could be as high as 10-20% of the total dam construction cost, due attention should be paid to optimum design of the diversion works. The cost of diversion works depends, on factors, such as: the tunnel dimensions and the intended tunneling support measures during and after excavation; quality and characterizes of the rock through which the tunnel should be excavated; the dimensions of the upstream (and downstream) cofferdams; and the magnitude of river flood the system is designed to divert. In this paper by use of the cost of unit prices for tunnel excavation, tunnel lining, tunnel support (rock bolt + shotcrete) and cofferdam fill the cost function was determined. The function is then minimized by the aid of PSO Algorithm (particle swarm optimization). It is found that the optimum diameter and the total diversion cost are directly related to the river flood discharge (Q). It has also shown that in addition to optimum diameter design discharge (Q), river length, tunnel length, is mainly a function of the ratios (not the absolute values) of the unit prices and does not depend on the overall price levels in the respective country. The results of optimization use in some of the case study lead us to significant changes in the cost.

Keywords: Diversion Tunnel, Optimization, PSO Algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2691
295 Continuous Plug Flow and Discrete Particle Phase Coupling Using Triangular Parcels

Authors: Anders Schou Simonsen, Thomas Condra, Kim Sørensen

Abstract:

Various processes are modelled using a discrete phase, where particles are seeded from a source. Such particles can represent liquid water droplets, which are affecting the continuous phase by exchanging thermal energy, momentum, species etc. Discrete phases are typically modelled using parcel, which represents a collection of particles, which share properties such as temperature, velocity etc. When coupling the phases, the exchange rates are integrated over the cell, in which the parcel is located. This can cause spikes and fluctuating exchange rates. This paper presents an alternative method of coupling a discrete and a continuous plug flow phase. This is done using triangular parcels, which span between nodes following the dynamics of single droplets. Thus, the triangular parcels are propagated using the corner nodes. At each time step, the exchange rates are spatially integrated over the surface of the triangular parcels, which yields a smooth continuous exchange rate to the continuous phase. The results shows that the method is more stable, converges slightly faster and yields smooth exchange rates compared with the steam tube approach. However, the computational requirements are about five times greater, so the applicability of the alternative method should be limited to processes, where the exchange rates are important. The overall balances of the exchanged properties did not change significantly using the new approach.

Keywords: CFD, coupling, discrete phase, parcel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582
294 Correlation to Predict Thermal Performance According to Working Fluids of Vertical Closed-Loop Pulsating Heat Pipe

Authors: Niti Kammuang-lue, Kritsada On-ai, Phrut Sakulchangsatjatai, Pradit Terdtoon

Abstract:

The objectives of this paper are to investigate effects of dimensionless numbers on thermal performance of the vertical closed-loop pulsating heat pipe (VCLPHP) and to establish a correlation to predict the thermal performance of the VCLPHP. The CLPHPs were made of long copper capillary tubes with inner diameters of 1.50, 1.78, and 2.16mm and bent into 26 turns. Then, both ends were connected together to form a loop. The evaporator, adiabatic, and condenser sections length were equal to 50 and 150 mm. R123, R141b, acetone, ethanol, and water were chosen as variable working fluids with constant filling ratio of 50% by total volume. Inlet temperature of heating medium and adiabatic section temperature was constantly controlled at 80 and 50oC, respectively. Thermal performance was represented in a term of Kutateladze number (Ku). It can be concluded that when Prandtl number of liquid working fluid (Prl), and Karman number (Ka) increases, thermal performance increases. On contrary, when Bond number (Bo), Jacob number (Ja), and Aspect ratio (Le/Di) increases, thermal performance decreases. Moreover, the correlation to predict more precise thermal performance has been successfully established by analyzing on all dimensionless numbers that have effect on the thermal performance of the VCLPHP.

Keywords: Vertical closed-loop pulsating heat pipe, working fluid, thermal performance, dimensionless parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306
293 Taguchi-Based Optimization of Surface Roughness and Dimensional Accuracy in Wire EDM Process with S7 Heat Treated Steel

Authors: Joseph C. Chen, Joshua Cox

Abstract:

This research focuses on the use of the Taguchi method to reduce the surface roughness and improve dimensional accuracy of parts machined by Wire Electrical Discharge Machining (EDM) with S7 heat treated steel material. Due to its high impact toughness, the material is a candidate for a wide variety of tooling applications which require high precision in dimension and desired surface roughness. This paper demonstrates that Taguchi Parameter Design methodology is able to optimize both dimensioning and surface roughness successfully by investigating seven wire-EDM controllable parameters: pulse on time (ON), pulse off time (OFF), servo voltage (SV), voltage (V), servo feed (SF), wire tension (WT), and wire speed (WS). The temperature of the water in the Wire EDM process is investigated as the noise factor in this research. Experimental design and analysis based on L18 Taguchi orthogonal arrays are conducted. This paper demonstrates that the Taguchi-based system enables the wire EDM process to produce (1) high precision parts with an average of 0.6601 inches dimension, while the desired dimension is 0.6600 inches; and (2) surface roughness of 1.7322 microns which is significantly improved from 2.8160 microns.

Keywords: Taguchi parameter design, surface roughness, dimensional accuracy, Wire EDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055