Search results for: Adaptive algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3919

Search results for: Adaptive algorithm

829 Using Historical Data for Stock Prediction of a Tech Company

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices over the past five years of 10 major tech companies: Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We implemented and tested three models – a linear regressor model, a k-nearest neighbor model (KNN), and a sequential neural network – and two algorithms – Multiplicative Weight Update and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: Finance, machine learning, opening price, stock market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769
828 Low-Complexity Channel Estimation Algorithm for MIMO-OFDM Systems

Authors: Ali Beydoun, Hamzé H. Alaeddine

Abstract:

One of the main challenges in MIMO-OFDM system to achieve the expected performances in terms of data rate and robustness against multi-path fading channels is the channel estimation. Several methods were proposed in the literature based on either least square (LS) or minimum mean squared error (MMSE) estimators. These methods present high implementation complexity as they require the inversion of large matrices. In order to overcome this problem and to reduce the complexity, this paper presents a solution that benefits from the use of the STBC encoder and transforms the channel estimation process into a set of simple linear operations. The proposed method is evaluated via simulation in AWGN-Rayleigh fading channel. Simulation results show a maximum reduction of 6.85% of the bit error rate (BER) compared to the one obtained with the ideal case where the receiver has a perfect knowledge of the channel.

Keywords: Channel estimation, MIMO, OFDM, STBC, CAZAC sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
827 Impact of the Decoder Connection Schemes on Iterative Decoding of GPCB Codes

Authors: Fouad Ayoub, Mohammed Lahmer, Mostafa Belkasmi, El Houssine Bouyakhf

Abstract:

In this paper we present a study of the impact of connection schemes on the performance of iterative decoding of Generalized Parallel Concatenated block (GPCB) constructed from one step majority logic decodable (OSMLD) codes and we propose a new connection scheme for decoding them. All iterative decoding connection schemes use a soft-input soft-output threshold decoding algorithm as a component decoder. Numerical result for GPCB codes transmitted over Additive White Gaussian Noise (AWGN) channel are provided. It will show that the proposed scheme is better than Hagenauer-s scheme and Lucas-s scheme [1] and slightly better than the Pyndiah-s scheme.

Keywords: Generalized parallel concatenated block codes, OSMLD codes, threshold decoding, iterative decoding scheme, and performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
826 Conditions for Model Matching of Switched Asynchronous Sequential Machines with Output Feedback

Authors: Jung–Min Yang

Abstract:

Solvability of the model matching problem for input/output switched asynchronous sequential machines is discussed in this paper. The control objective is to determine the existence condition and design algorithm for a corrective controller that can match the stable-state behavior of the closed-loop system to that of a reference model. Switching operations and correction procedures are incorporated using output feedback so that the controlled switched machine can show the desired input/output behavior. A matrix expression is presented to address reachability of switched asynchronous sequential machines with output equivalence with respect to a model. The presented reachability condition for the controller design is validated in a simple example.

Keywords: Asynchronous sequential machines, corrective control, model matching, input/output control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
825 A Method for Analysis of Industrial Distributed Embedded Systems

Authors: Dmitry A. Mikoyelov

Abstract:

The paper presents a set of guidelines for analysis of industrial embedded distributed systems and introduces a mathematical model derived from these guidelines. In this study, the author examines a set of modern communication technologies that are or possibly can be used to build communication links between the subsystems of a distributed embedded system. An investigation of these guidelines results in a algorithm for analysis of specific use cases of target technologies. A goal of the paper acts as an important base for ongoing research on comparison of communication technologies. The author describes the principles of the model and presents results of the test calculations. Practical implementation of target technologies and empirical experiment data are based on a practical experience during the design and test of specific distributed systems in Latvian market.

Keywords: Distributed embedded system, analytical model, communication technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
824 Deterministic Method to Assess Kalman Filter Passive Ranging Solution Reliability

Authors: Ronald M. Yannone

Abstract:

For decades, the defense business has been plagued by not having a reliable, deterministic method to know when the Kalman filter solution for passive ranging application is reliable for use by the fighter pilot. This has made it hard to accurately assess when the ranging solution can be used for situation awareness and weapons use. To date, we have used ad hoc rules-of-thumb to assess when we think the estimate of the Kalman filter standard deviation on range is reliable. A reliable algorithm has been developed at BAE Systems Electronics & Integrated Solutions that monitors the Kalman gain matrix elements – and a patent is pending. The “settling" of the gain matrix elements relates directly to when we can assess the time when the passive ranging solution is within the 10 percent-of-truth value. The focus of the paper is on surface-based passive ranging – but the method is applicable to airborne targets as well.

Keywords: Electronic warfare, extended Kalman filter (EKF), fighter aircraft, passive ranging, track convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
823 Model Predictive Control of Gantry Crane with Input Nonlinearity Compensation

Authors: Steven W. Su , Hung Nguyen, Rob Jarman, Joe Zhu, David Lowe, Peter McLean, Shoudong Huang, Nghia T. Nguyen, Russell Nicholson, Kaili Weng

Abstract:

This paper proposed a nonlinear model predictive control (MPC) method for the control of gantry crane. One of the main motivations to apply MPC to control gantry crane is based on its ability to handle control constraints for multivariable systems. A pre-compensator is constructed to compensate the input nonlinearity (nonsymmetric dead zone with saturation) by using its inverse function. By well tuning the weighting function matrices, the control system can properly compromise the control between crane position and swing angle. The proposed control algorithm was implemented for the control of gantry crane system in System Control Lab of University of Technology, Sydney (UTS), and achieved desired experimental results.

Keywords: Model Predictive Control, Control constraints, Input nonlinearity compensation, Overhead gantry crane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
822 Heuristic Set-Covering-Based Postprocessing for Improving the Quine-McCluskey Method

Authors: Miloš Šeda

Abstract:

Finding the minimal logical functions has important applications in the design of logical circuits. This task is solved by many different methods but, frequently, they are not suitable for a computer implementation. We briefly summarise the well-known Quine-McCluskey method, which gives a unique procedure of computing and thus can be simply implemented, but, even for simple examples, does not guarantee an optimal solution. Since the Petrick extension of the Quine-McCluskey method does not give a generally usable method for finding an optimum for logical functions with a high number of values, we focus on interpretation of the result of the Quine-McCluskey method and show that it represents a set covering problem that, unfortunately, is an NP-hard combinatorial problem. Therefore it must be solved by heuristic or approximation methods. We propose an approach based on genetic algorithms and show suitable parameter settings.

Keywords: Boolean algebra, Karnaugh map, Quine-McCluskey method, set covering problem, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2797
821 Coefficient of Parentage for Crop Hybridization

Authors: Manpreet Singh, Parvinder Singh Sandhu, Basant Raj Singh

Abstract:

Hybridization refers to the crossing breeding of two plants. Coefficient of Parentage (COP) is used by the plant breeders to determine the genetic diversity across various varieties so as to incorporate the useful characters of the two varieties to develop a new crop variety with particular useful characters. Genetic Diversity is the prerequisite for any cultivar development program. Genetic Diversity depends upon the pedigree information of the varieties based on particular levels. Pedigree refers to the parents of a particular variety at various levels. This paper discusses the searching and analyses of different possible pairs of varieties selected on the basis of morphological characters, Climatic conditions and Nutrients so as to obtain the most optimal pair that can produce the required crossbreed variety. An algorithm was developed to determine the coefficient of parentage (COP) between the selected wheat varieties. Dummy values were used wherever actual data was not available.

Keywords: Coefficient of Parentage, Morphological characters, Pedigree, Genetic Diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
820 Inter-frame Collusion Attack in SS-N Video Watermarking System

Authors: Yaser Mohammad Taheri, Alireza Zolghadr–asli, Mehran Yazdi

Abstract:

Video watermarking is usually considered as watermarking of a set of still images. In frame-by-frame watermarking approach, each video frame is seen as a single watermarked image, so collusion attack is more critical in video watermarking. If the same or redundant watermark is used for embedding in every frame of video, the watermark can be estimated and then removed by watermark estimate remodolulation (WER) attack. Also if uncorrelated watermarks are used for every frame, these watermarks can be washed out with frame temporal filtering (FTF). Switching watermark system or so-called SS-N system has better performance against WER and FTF attacks. In this system, for each frame, the watermark is randomly picked up from a finite pool of watermark patterns. At first SS-N system will be surveyed and then a new collusion attack for SS-N system will be proposed using a new algorithm for separating video frame based on watermark pattern. So N sets will be built in which every set contains frames carrying the same watermark. After that, using WER attack in every set, N different watermark patterns will be estimated and removed later.

Keywords: Watermark estimation remodulation (WER), Frame Temporal Averaging (FTF), switching watermark system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
819 Social, Group and Individual Mind extracted from Rule Bases of Multiple Agents

Authors: P. Cermak

Abstract:

This paper shows possibility of extraction Social, Group and Individual Mind from Multiple Agents Rule Bases. Types those Rule bases are selected as two fuzzy systems, namely Mambdani and Takagi-Sugeno fuzzy system. Their rule bases are describing (modeling) agent behavior. Modifying of agent behavior in the time varying environment will be provided by learning fuzzyneural networks and optimization of their parameters with using genetic algorithms in development system FUZNET. Finally, extraction Social, Group and Individual Mind from Multiple Agents Rule Bases are provided by Cognitive analysis and Matching criterion.

Keywords: Mind, Multi-agent system, Cognitive analysis, Fuzzy system, Neural network, Genetic algorithm, Rule base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
818 Design of an M-Channel Cosine Modulated Filter Bank by New Cosh Window Based FIR Filters

Authors: Jyotsna Ogale, Alok Jain

Abstract:

In this paper newly reported Cosh window function is used in the design of prototype filter for M-channel Near Perfect Reconstruction (NPR) Cosine Modulated Filter Bank (CMFB). Local search optimization algorithm is used for minimization of distortion parameters by optimizing the filter coefficients of prototype filter. Design examples are presented and comparison has been made with Kaiser window based filterbank design of recently reported work. The result shows that the proposed design approach provides lower distortion parameters and improved far-end suppression than the Kaiser window based design of recent reported work.

Keywords: Window function, Cosine modulated filterbank, Local search optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2608
817 Capacitor Placement in Distribution Systems Using Simulating Annealing (SA)

Authors: Esmail Limouzade, Mahmood.Joorabian, Najaf Hedayat

Abstract:

This paper undertakes the problem of optimal capacitor placement in a distribution system. The problem is how to optimally determine the locations to install capacitors, the types and sizes of capacitors to he installed and, during each load level,the control settings of these capacitors in order that a desired objective function is minimized while the load constraints,network constraints and operational constraints (e.g. voltage profile) at different load levels are satisfied. The problem is formulated as a combinatorial optimization problem with a nondifferentiable objective function. Four solution mythologies based on algorithms (GA),tabu search (TS), and hybrid GA-SA algorithms are presented.The solution methodologies are preceded by a sensitivity analysis to select the candidate capacitor installation locations.

Keywords: Genetic Algorithm (GA) , capacitor placement, voltage profile, network losses, Simulated Annealing, distribution network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
816 CFD of Oscillating Airfoil Pitch Cycle by using PISO Algorithm

Authors: Muhammad Amjad Sohail, Rizwan Ullah

Abstract:

This research paper presents the CFD analysis of oscillating airfoil during pitch cycle. Unsteady subsonic flow is simulated for pitching airfoil at Mach number 0.283 and Reynolds number 3.45 millions. Turbulent effects are also considered for this study by using K-ω SST turbulent model. Two-dimensional unsteady compressible Navier-Stokes code including two-equation turbulence model and PISO pressure velocity coupling is used. Pressure based implicit solver with first order implicit unsteady formulation is used. The simulated pitch cycle results are compared with the available experimental data. The results have a good agreement with the experimental data. Aerodynamic characteristics during pitch cycles have been studied and validated.

Keywords: Angle of attack, Centre of pressure, subsonic flow, pitching moment coefficient, turbulence mode

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2404
815 The Modified Eigenface Method using Two Thresholds

Authors: Yan Ma, ShunBao Li

Abstract:

A new approach is adopted in this paper based on Turk and Pentland-s eigenface method. It was found that the probability density function of the distance between the projection vector of the input face image and the average projection vector of the subject in the face database, follows Rayleigh distribution. In order to decrease the false acceptance rate and increase the recognition rate, the input face image has been recognized using two thresholds including the acceptance threshold and the rejection threshold. We also find out that the value of two thresholds will be close to each other as number of trials increases. During the training, in order to reduce the number of trials, the projection vectors for each subject has been averaged. The recognition experiments using the proposed algorithm show that the recognition rate achieves to 92.875% whilst the average number of judgment is only 2.56 times.

Keywords: Eigenface, Face Recognition, Threshold, Rayleigh Distribution, Feature Extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
814 An Optimization of Orbital Transfer for Spacecrafts with Finite-thrust Based on Legendre Pseudospectral Method

Authors: Yanan Yang, Zhigang Wang, Xiang Chen

Abstract:

This paper presents the use of Legendre pseudospectral method for the optimization of finite-thrust orbital transfer for spacecrafts. In order to get an accurate solution, the System-s dynamics equations were normalized through a dimensionless method. The Legendre pseudospectral method is based on interpolating functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes. This is used to transform the optimal control problem into a constrained parameter optimization problem. The developed novel optimization algorithm can be used to solve similar optimization problems of spacecraft finite-thrust orbital transfer. The results of a numerical simulation verified the validity of the proposed optimization method. The simulation results reveal that pseudospectral optimization method is a promising method for real-time trajectory optimization and provides good accuracy and fast convergence.

Keywords: Finite-thrust, Orbital transfer, Legendre pseudospectral method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
813 Walsh-Hadamard Transform for Facial Feature Extraction in Face Recognition

Authors: M. Hassan, I. Osman, M. Yahia

Abstract:

This Paper proposes a new facial feature extraction approach, Wash-Hadamard Transform (WHT). This approach is based on correlation between local pixels of the face image. Its primary advantage is the simplicity of its computation. The paper compares the proposed approach, WHT, which was traditionally used in data compression with two other known approaches: the Principal Component Analysis (PCA) and the Discrete Cosine Transform (DCT) using the face database of Olivetti Research Laboratory (ORL). In spite of its simple computation, the proposed algorithm (WHT) gave very close results to those obtained by the PCA and DCT. This paper initiates the research into WHT and the family of frequency transforms and examines their suitability for feature extraction in face recognition applications.

Keywords: Face Recognition, Facial Feature Extraction, Principal Component Analysis, and Discrete Cosine Transform, Wash-Hadamard Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574
812 Mobile to Server Face Recognition: A System Overview

Authors: Nurulhuda Ismail, Mas Idayu Md. Sabri

Abstract:

This paper presents a system overview of Mobile to Server Face Recognition, which is a face recognition application developed specifically for mobile phones. Images taken from mobile phone cameras lack of quality due to the low resolution of the cameras. Thus, a prototype is developed to experiment the chosen method. However, this paper shows a result of system backbone without the face recognition functionality. The result demonstrated in this paper indicates that the interaction between mobile phones and server is successfully working. The result shown before the database is completely ready. The system testing is currently going on using real images and a mock-up database to test the functionality of the face recognition algorithm used in this system. An overview of the whole system including screenshots and system flow-chart are presented in this paper. This paper also presents the inspiration or motivation and the justification in developing this system.

Keywords: Mobile to server, face recognition, system overview.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
811 Fast Facial Feature Extraction and Matching with Artificial Face Models

Authors: Y. H. Tsai, Y. W. Chen

Abstract:

Facial features are frequently used to represent local properties of a human face image in computer vision applications. In this paper, we present a fast algorithm that can extract the facial features online such that they can give a satisfying representation of a face image. It includes one step for a coarse detection of each facial feature by AdaBoost and another one to increase the accuracy of the found points by Active Shape Models (ASM) in the regions of interest. The resulted facial features are evaluated by matching with artificial face models in the applications of physiognomy. The distance measure between the features and those in the fate models from the database is carried out by means of the Hausdorff distance. In the experiment, the proposed method shows the efficient performance in facial feature extractions and online system of physiognomy.

Keywords: Facial feature extraction, AdaBoost, Active shapemodel, Hausdorff distance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
810 Parallel Discrete Fourier Transform for Fast FIR Filtering Based on Overlapped-save Block Structure

Authors: Ying-Wen Bai, Ju-Maw Chen

Abstract:

To successfully provide a fast FIR filter with FTT algorithms, overlapped-save algorithms can be used to lower the computational complexity and achieve the desired real-time processing. As the length of the input block increases in order to improve the efficiency, a larger volume of zero padding will greatly increase the computation length of the FFT. In this paper, we use the overlapped block digital filtering to construct a parallel structure. As long as the down-sampling (or up-sampling) factor is an exact multiple lengths of the impulse response of a FIR filter, we can process the input block by using a parallel structure and thus achieve a low-complex fast FIR filter with overlapped-save algorithms. With a long filter length, the performance and the throughput of the digital filtering system will also be greatly enhanced.

Keywords: FIR Filter, Overlapped-save Algorithm, ParallelStructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
809 Patient-Specific Modeling Algorithm for Medical Data Based on AUC

Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper

Abstract:

Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.

Keywords: Approach instance-based, area Under the ROC Curve, Patient-specific Decision Path, clinical predictions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
808 Optimization of Distributed Processors for Power System: Kalman Filters using Petri Net

Authors: Anant Oonsivilai, Kenedy A. Greyson

Abstract:

The growth and interconnection of power networks in many regions has invited complicated techniques for energy management services (EMS). State estimation techniques become a powerful tool in power system control centers, and that more information is required to achieve the objective of EMS. For the online state estimator, assuming the continuous time is equidistantly sampled with period Δt, processing events must be finished within this period. Advantage of Kalman Filtering (KF) algorithm in using system information to improve the estimation precision is utilized. Computational power is a major issue responsible for the achievement of the objective, i.e. estimators- solution at a small sampled period. This paper presents the optimum utilization of processors in a state estimator based on KF. The model used is presented using Petri net (PN) theory.

Keywords: Kalman filters, model, Petri Net, power system, sequential State estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
807 A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process

Authors: Salvatore L., Pires B., Campos M. C. M., De Souza Jr M. B.

Abstract:

It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.

Keywords: Fault detection, hydrotreatment, hybrid systems, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
806 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments

Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda

Abstract:

In the context of the handwriting recognition, we propose an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods. The Distribution parameters, the centered moments of the different projections of the different segments, the centered moments of the word image coding according to the directions of Freeman, and the Barr features applied binary image of the word and on its different segments. The classification is achieved by a multi layers perceptron. A detailed experiment is carried and satisfactory recognition results are reported.

Keywords: Handwritten word recognition, neural networks, image processing, pattern recognition, features extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
805 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients

Authors: Karina Zaccari, Ernesto Cordeiro Marujo

Abstract:

This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.

Keywords: Machine learning, medical diagnosis, meningitis detection, gradient boosting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1125
804 Distributed Motion Control Real-Time Contouring Algorithm Implementation and Performance Test

Authors: Francisco J. Lopez-Jaquez, Sandra E. Ramirez-Jara

Abstract:

This paper presents an implementation and performance test of a distributed motion control system based on a master-slave configuration used to move a plasma-cutting torch over a predefined trajectory. The master is a general-purpose computer running on an open source operating system platform and software developer. Software running in the master computer generates commands on real time and we measure performance based on a selected set of differences between expected and observed distances. We are testing the null hypothesis that the outcome trajectory is identical to the input against the alternative hypothesis that there is a shift to the right or left of the input one. We used the Wilcoxon signed ranks test method for the hypothesis test.

Keywords: Distributed, motion, control, real-time, contouring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
803 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology

Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi

Abstract:

This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.

Keywords: Virtual active power filter, V2G technology, model predictive control, electric vehicle, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1006
802 A Lifetime-Guaranteed Routing Scheme in Wireless Sensor Networks

Authors: Jae Keun Park, Sung Je Hong, Kyong Hoon Kim, Tae Heum Kang, Wan Yeon Lee

Abstract:

In this paper, we propose a routing scheme that guarantees the residual lifetime of wireless sensor networks where each sensor node operates with a limited budget of battery energy. The scheme maximizes the communications QoS while sustaining the residual battery lifetime of the network for a specified duration. Communication paths of wireless nodes are translated into a directed acyclic graph(DAG) and the maximum-flow algorithm is applied to the graph. The found maximum flow are assigned to sender nodes, so as to maximize their communication QoS. Based on assigned flows, the scheme determines the routing path and the transmission rate of data packet so that any sensor node on the path would not exhaust its battery energy before a specified duration.

Keywords: Sensor network, battery, residual lifetime, routingscheme, QoS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
801 OCR For Printed Urdu Script Using Feed Forward Neural Network

Authors: Inam Shamsher, Zaheer Ahmad, Jehanzeb Khan Orakzai, Awais Adnan

Abstract:

This paper deals with an Optical Character Recognition system for printed Urdu, a popular Pakistani/Indian script and is the third largest understandable language in the world, especially in the subcontinent but fewer efforts are made to make it understandable to computers. Lot of work has been done in the field of literature and Islamic studies in Urdu, which has to be computerized. In the proposed system individual characters are recognized using our own proposed method/ algorithms. The feature detection methods are simple and robust. Supervised learning is used to train the feed forward neural network. A prototype of the system has been tested on printed Urdu characters and currently achieves 98.3% character level accuracy on average .Although the system is script/ language independent but we have designed it for Urdu characters only.

Keywords: Algorithm, Feed Forward Neural Networks, Supervised learning, Pattern Matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3043
800 Clustering in WSN Based on Minimum Spanning Tree Using Divide and Conquer Approach

Authors: Uttam Vijay, Nitin Gupta

Abstract:

Due to heavy energy constraints in WSNs clustering is an efficient way to manage the energy in sensors. There are many methods already proposed in the area of clustering and research is still going on to make clustering more energy efficient. In our paper we are proposing a minimum spanning tree based clustering using divide and conquer approach. The MST based clustering was first proposed in 1970’s for large databases. Here we are taking divide and conquer approach and implementing it for wireless sensor networks with the constraints attached to the sensor networks. This Divide and conquer approach is implemented in a way that we don’t have to construct the whole MST before clustering but we just find the edge which will be the part of the MST to a corresponding graph and divide the graph in clusters there itself if that edge from the graph can be removed judging on certain constraints and hence saving lot of computation.

Keywords: Algorithm, Clustering, Edge-Weighted Graph, Weighted-LEACH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2486