Search results for: mobile online social networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4447

Search results for: mobile online social networks

1417 A Study on the Circumstances Affecting Elementary School Students in Their Familyand School Lives and Their Consequential Emotions

Authors: Osman Samancı, Ramazan Kaya

Abstract:

The purpose of this study is to determine the circumstances affecting elementary school students in their family and school lives and what kind of emotions children may feel because of these circumstances. The study was carried out according to the survey model. Four Turkish elementary schools provided 123 fourth grade students for participation in the study. The study-s data were collected by using worksheets for the activity titled “Important Days in Our Lives", which was part of the Elementary School Social Sciences Course 4th Grade Education Program. Data analysis was carried out according to the content analysis technique used in qualitative research. The study detected that circumstances of their family and school lives caused children to feel emotions such as happiness, sadness, anger, fear and jealousy. The circumstances and the emotions caused by these circumstances were analyzed according to gender and interpreted by presenting them with their frequencies.

Keywords: Elementary school students, emotional development, family and school, social development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
1416 On-line Lao Handwritten Recognition with Proportional Invariant Feature

Authors: Khampheth Bounnady, Boontee Kruatrachue, Somkiat Wangsiripitak

Abstract:

This paper proposed high level feature for online Lao handwritten recognition. This feature must be high level enough so that the feature is not change when characters are written by different persons at different speed and different proportion (shorter or longer stroke, head, tail, loop, curve). In this high level feature, a character is divided in to sequence of curve segments where a segment start where curve reverse rotation (counter clockwise and clockwise). In each segment, following features are gathered cumulative change in direction of curve (- for clockwise), cumulative curve length, cumulative length of left to right, right to left, top to bottom and bottom to top ( cumulative change in X and Y axis of segment). This feature is simple yet robust for high accuracy recognition. The feature can be gather from parsing the original time sampling sequence X, Y point of the pen location without re-sampling. We also experiment on other segmentation point such as the maximum curvature point which was widely used by other researcher. Experiments results show that the recognition rates are at 94.62% in comparing to using maximum curvature point 75.07%. This is due to a lot of variations of turning points in handwritten.

Keywords: Handwritten feature, chain code, Lao handwritten recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
1415 A Novel Framework for Abnormal Behaviour Identification and Detection for Wireless Sensor Networks

Authors: Muhammad R. Ahmed, Xu Huang, Dharmendra Sharma

Abstract:

Despite extensive study on wireless sensor network security, defending internal attacks and finding abnormal behaviour of the sensor are still difficult and unsolved task. The conventional cryptographic technique does not give the robust security or detection process to save the network from internal attacker that cause by abnormal behavior. The insider attacker or abnormally behaved sensor identificationand location detection framework using false massage detection and Time difference of Arrival (TDoA) is presented in this paper. It has been shown that the new framework can efficiently identify and detect the insider attacker location so that the attacker can be reprogrammed or subside from the network to save from internal attack.

Keywords: Insider Attaker identification, Abnormal Behaviour, Location detection, Time difference of Arrival (TDoA), Wireless sensor network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
1414 Ethereum Based Smart Contracts for Trade and Finance

Authors: Rishabh Garg

Abstract:

Traditionally, business parties build trust with a centralized operating mechanism, such as payment by letter of credit. However, the increase in cyber-attacks and malicious hacking has jeopardized business operations and finance practices. Emerging markets, due to their high banking risks and the large presence of digital financing, are looking for technology that enables transparency and traceability of any transaction in trade, finance or supply chain management. Blockchain systems, in the absence of any central authority, enable transactions across the globe with the help of decentralized applications. DApps consist of a front-end, a blockchain back-end, and middleware, that is, the code that connects the two. The front-end can be a sophisticated web app or mobile app, which is used to implement the functions/methods on the smart contract. Web apps can employ technologies such as HTML, CSS, React and Express. In this wake, fintech and blockchain products are popping up in brokerages, digital wallets, exchanges, post-trade clearance, settlement, middleware, infrastructure and base protocols. The present paper provides a technology driven solution, financial inclusion and innovative working paradigm for business and finance.

Keywords: Authentication, blockchain, channel, cryptography, DApps, data portability, Decentralized Public Key Infrastructure, Ethereum, hash function, Hashgraph, Privilege creep, Proof of Work algorithm, revocation, storage variables, Zero Knowledge Proof.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
1413 Reactive Neural Control for Phototaxis and Obstacle Avoidance Behavior of Walking Machines

Authors: Poramate Manoonpong, Frank Pasemann, Florentin Wörgötter

Abstract:

This paper describes reactive neural control used to generate phototaxis and obstacle avoidance behavior of walking machines. It utilizes discrete-time neurodynamics and consists of two main neural modules: neural preprocessing and modular neural control. The neural preprocessing network acts as a sensory fusion unit. It filters sensory noise and shapes sensory data to drive the corresponding reactive behavior. On the other hand, modular neural control based on a central pattern generator is applied for locomotion of walking machines. It coordinates leg movements and can generate omnidirectional walking. As a result, through a sensorimotor loop this reactive neural controller enables the machines to explore a dynamic environment by avoiding obstacles, turn toward a light source, and then stop near to it.

Keywords: Recurrent neural networks, Walking robots, Modular neural control, Phototaxis, Obstacle avoidance behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
1412 Connectionist Approach to Generic Text Summarization

Authors: Rajesh S.Prasad, U. V. Kulkarni, Jayashree.R.Prasad

Abstract:

As the enormous amount of on-line text grows on the World-Wide Web, the development of methods for automatically summarizing this text becomes more important. The primary goal of this research is to create an efficient tool that is able to summarize large documents automatically. We propose an Evolving connectionist System that is adaptive, incremental learning and knowledge representation system that evolves its structure and functionality. In this paper, we propose a novel approach for Part of Speech disambiguation using a recurrent neural network, a paradigm capable of dealing with sequential data. We observed that connectionist approach to text summarization has a natural way of learning grammatical structures through experience. Experimental results show that our approach achieves acceptable performance.

Keywords: Artificial Neural Networks (ANN); Computational Intelligence (CI); Connectionist Text Summarizer ECTS (ECTS); Evolving Connectionist systems; Evolving systems; Fuzzy systems (FS); Part of Speech (POS) disambiguation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
1411 Comparison of Artificial Neural Network Architectures in the Task of Tourism Time Series Forecast

Authors: João Paulo Teixeira, Paula Odete Fernandes

Abstract:

The authors have been developing several models based on artificial neural networks, linear regression models, Box- Jenkins methodology and ARIMA models to predict the time series of tourism. The time series consist in the “Monthly Number of Guest Nights in the Hotels" of one region. Several comparisons between the different type models have been experimented as well as the features used at the entrance of the models. The Artificial Neural Network (ANN) models have always had their performance at the top of the best models. Usually the feed-forward architecture was used due to their huge application and results. In this paper the author made a comparison between different architectures of the ANNs using simply the same input. Therefore, the traditional feed-forward architecture, the cascade forwards, a recurrent Elman architecture and a radial based architecture were discussed and compared based on the task of predicting the mentioned time series.

Keywords: Artificial Neural Network Architectures, time series forecast, tourism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
1410 ANN Models for Microstrip Line Synthesis and Analysis

Authors: Dr.K.Sri Rama Krishna, J.Lakshmi Narayana, Dr.L.Pratap Reddy

Abstract:

Microstrip lines, widely used for good reason, are broadband in frequency and provide circuits that are compact and light in weight. They are generally economical to produce since they are readily adaptable to hybrid and monolithic integrated circuit (IC) fabrication technologies at RF and microwave frequencies. Although, the existing EM simulation models used for the synthesis and analysis of microstrip lines are reasonably accurate, they are computationally intensive and time consuming. Neural networks recently gained attention as fast and flexible vehicles to microwave modeling, simulation and optimization. After learning and abstracting from microwave data, through a process called training, neural network models are used during microwave design to provide instant answers to the task learned.This paper presents simple and accurate ANN models for the synthesis and analysis of Microstrip lines to more accurately compute the characteristic parameters and the physical dimensions respectively for the required design specifications.

Keywords: Neural Models, Algorithms, Microstrip Lines, Analysis, Synthesis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
1409 Mathematical Modeling of Gas Turbine Blade Cooling

Authors: А. Pashayev, C. Ardil, D. Askerov, R. Sadiqov, A. Samedov

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Keywords: Mathematical Modeling, Gas Turbine Blade Cooling, Neural Networks, BIEM and FDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
1408 Comparison of Authentication Methods in Internet of Things Technology

Authors: Hafizah Che Hasan, Fateen Nazwa Yusof, Maslina Daud

Abstract:

Internet of Things (IoT) is a powerful industry system, which end-devices are interconnected and automated, allowing the devices to analyze data and execute actions based on the analysis. The IoT technology leverages the technology of Radio-Frequency Identification (RFID) and Wireless Sensor Network (WSN), including mobile and sensor. These technologies contribute to the evolution of IoT. However, due to more devices are connected each other in the Internet, and data from various sources exchanged between things, confidentiality of the data becomes a major concern. This paper focuses on one of the major challenges in IoT; authentication, in order to preserve data integrity and confidentiality are in place. A few solutions are reviewed based on papers from the last few years. One of the proposed solutions is securing the communication between IoT devices and cloud servers with Elliptic Curve Cryptograhpy (ECC) based mutual authentication protocol. This solution focuses on Hyper Text Transfer Protocol (HTTP) cookies as security parameter.  Next proposed solution is using keyed-hash scheme protocol to enable IoT devices to authenticate each other without the presence of a central control server. Another proposed solution uses Physical Unclonable Function (PUF) based mutual authentication protocol. It emphasizes on tamper resistant and resource-efficient technology, which equals a 3-way handshake security protocol.

Keywords: Internet of Things, authentication, PUF ECC, keyed hash scheme protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
1407 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: Data mining, textile production, decision trees, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
1406 Reducing the Need for Multi-Input Multi-Output in Multi-Beam Base Transceiver Station Antennas Using Orthogonally-Polarized Feeds with an Arbitrary Number of Ports

Authors: Mohamed Sanad, Noha Hassan

Abstract:

A multi-beam BTS (Base Transceiver Station) antenna has been developed using dual parabolic cylindrical reflectors. The ±45° polarization feeds are used in spatial diversity MIMO (Multi-Input Multi-Output). They can be replaced by single-port orthogonally polarized feeds. Then, with two sets of beams generated above each other, the ± 45° polarization ports of any conventional transceiver can be connected to two of these beam sets. Thus, with two-port transceivers, the system will be equivalent to 4x4 MIMO, instead of 2x2. Radio Frequency (RF) power combiners/splitters can also be used to combine the multiple beams into a single beam or any arbitrary number of beams/ports. The gain of the combined-beam will be more than 20-24 dBi instead of 17-18 dBi of conventional wide-beam antennas. Furthermore, the gain of the combined beam will be high over the whole beam angle. Moreover, the users will always be close to the peak gain value of the combined beam regardless of their location within the combined beam angle. The frequency bands of all the combined beams are adjusted such that they all have the same frequency band. Different configurations of RF power splitter/combiners can be used to provide any arbitrary number of beams/ports according to the requirements of any existing base station configuration.

Keywords: 5G mobile communications, BTS antennas, MIMO, orthogonally polarized antennas, multi-beam antennas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 722
1405 Knowledge Sharing Behavior in E-Communities: from the Perspective of Transaction Cost Theory

Authors: Teresa L. Ju, Szu-Yuan Sun, Pei-Ju Chao, Chang-Yao Wu

Abstract:

This study aims to examine the factors affecting knowledge sharing behavior in knowledge-based electronic communities (e-communities) because quantity and quality of knowledge shared among the members play a critical role in the community-s sustainability. Past research has suggested three perspectives that may affect the quantity and quality of knowledge shared: economics, social psychology, and social ecology. In this study, we strongly believe that an economic perspective may be suitable to validate factors influencing newly registered members- knowledge contribution at the beginning of relationship development. Accordingly, this study proposes a model to validate the factors influencing members- knowledge sharing based on Transaction Cost Theory. By doing so, we may empirically test our hypotheses in various types of e-communities to determine the generalizability of our research models.

Keywords: Electronic community, individual behavior, knowledge sharing, transaction cost theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
1404 Study of Influencing Factors of Shrinking Cities Based On Factor Analysis – The Example of Halle, Germany

Authors: Fang Yao, Minglei Chen

Abstract:

City shrinkage is one of the thorny problems that many European cities have to face with nowadays. It is mainly expressed as the decrease of population in these cities. Eastern Germany is one of the pioneers of European shrinking cities with long shrinking history. The paper selects one representative shrinking city Halle (Saale) in eastern Germany as research objective, collecting and investigating nearly 20 years (1993-2010) municipal data after the reunification of Germany. These data based on five dimensions, which are demographic, economic, social, spatial and environmental and total 16 eligible variables. Factor Analysis is used to deal with these variables in order to assess the most important factors affecting shrinking Halle. The results show that there are three main factors determine the shrinkage of Halle, respectively named “demographical and economical factor”, “social stability factor”, and “city vitality factor”. The three factors act at different time period of Halle’s shrinkage: from 1993 to 1997 the demographical and economical factor played an important role; from 1997 to 2004 the social stability factor is significant to city shrinkage; since 2005 city vitality factor determines the shrinkage of Halle. In recent years, the shrinkage in Halle mitigates that shows the sign of growing population. Thus the city Halle should focus on attaching more importance on the city vitality factor to prevent the city from shrinkage. Meanwhile, the city should possess a positive perspective to shift the growth-oriented development to tap the potential of shrinking cities. This method is expected to apply to further research and other shrinking cities

Keywords: Demography, Factor analysis, Halle, Shrinking cities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
1403 Prediction of Phenolic Compound Migration Process through Soil Media using Artificial Neural Network Approach

Authors: Supriya Pal, Kalyan Adhikari, Somnath Mukherjee, Sudipta Ghosh

Abstract:

This study presents the application of artificial neural network for modeling the phenolic compound migration through vertical soil column. A three layered feed forward neural network with back propagation training algorithm was developed using forty eight experimental data sets obtained from laboratory fixed bed vertical column tests. The input parameters used in the model were the influent concentration of phenol(mg/L) on the top end of the soil column, depth of the soil column (cm), elapsed time after phenol injection (hr), percentage of clay (%), percentage of silt (%) in soils. The output of the ANN was the effluent phenol concentration (mg/L) from the bottom end of the soil columns. The ANN predicted results were compared with the experimental results of the laboratory tests and the accuracy of the ANN model was evaluated.

Keywords: Modeling, Neural Networks, Phenol, Soil media

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
1402 Effects of Signaling on the Performance of Directed Diffusion Routing Protocol

Authors: Apidet Booranawong

Abstract:

In an original directed diffusion routing protocol, a sink requests sensing data from a source node by flooding interest messages to the network. Then, the source finds the sink by sending exploratory data messages to all nodes that generate incoming interest messages. This protocol signaling can cause heavy traffic in the network, an interference of the radio signal, collisions, great energy consumption of sensor nodes, etc. According to this research problem, this paper investigates the effect of sending interest and exploratory data messages on the performance of directed diffusion routing protocol. We demonstrate the research problem occurred from employing directed diffusion protocol in mobile wireless environments. For this purpose, we perform a set of experiments by using NS2 (network simulator 2). The radio propagation models; Two-ray ground reflection with and without shadow fading are included to investigate the effect of signaling. The simulation results show that the number of times of sent and received protocol signaling in the case of sending interest and exploratory data messages are larger than the case of sending other protocol signals, especially in the case of shadowing model. Additionally, the number of exploratory data message is largest in one round of the protocol procedure.

Keywords: Directed diffusion, Flooding, Interest message, Exploratory data message, Radio propagation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
1401 Motivation Factors to Influence the Decision to Choose Thai Fabric

Authors: Pisit Potjanajaruwit

Abstract:

The purpose of this research was to study the motivation factors to influence the decision to choose Thai Fabric. A multiple-stage sample was utilized to collect 400 samples from working women who had diverse occupations all over Thailand. This research was a quantitative analysis and questionnaire was used a tool to collect data. Descriptive statistics used in this research included percentage, average, and standard deviation and inferential statistics included hypothesis testing of one way ANOVA. The research findings revealed that demographic factors and social factors had an influence to the positive idea of wearing Thai fabric (F = 5.377, P value < 0.05). The respondents who had the age over 41 years old had a better positive idea of wearing Thai fabric than other groups. Moreover, the findings revealed that age had influenced the positive idea of wearing Thai fabric (F = 3.918, P value < 0.05). The respondents who had the age over 41 years old also had stronger believe that wearing Thai fabric to work and social gatherings are socially acceptable than other groups.

Keywords: Decision, Motivation, Influence, Thai Fabric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
1400 An Efficient Stud Krill Herd Framework for Solving Non-Convex Economic Dispatch Problem

Authors: Bachir Bentouati, Lakhdar Chaib, Saliha Chettih, Gai-Ge Wang

Abstract:

The problem of economic dispatch (ED) is the basic problem of power framework, its main goal is to find the most favorable generation dispatch to generate each unit, reduce the whole power generation cost, and meet all system limitations. A heuristic algorithm, recently developed called Stud Krill Herd (SKH), has been employed in this paper to treat non-convex ED problems. The proposed KH has been modified using Stud selection and crossover (SSC) operator, to enhance the solution quality and avoid local optima. We are demonstrated SKH effects in two case study systems composed of 13-unit and 40-unit test systems to verify its performance and applicability in solving the ED problems. In the above systems, SKH can successfully obtain the best fuel generator and distribute the load requirements for the online generators. The results showed that the use of the proposed SKH method could reduce the total cost of generation and optimize the fulfillment of the load requirements.

Keywords: Stud Krill Herd, economic dispatch, crossover, stud selection, valve-point effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
1399 Methodology for Developing an Intelligent Tutoring System Based on Marzano’s Taxonomy

Authors: Joaquin Navarro Perales, Ana Lidia Franzoni Velázquez, Francisco Cervantes Pérez

Abstract:

The Mexican educational system faces diverse challenges related with the quality and coverage of education. The development of Intelligent Tutoring Systems (ITS) may help to solve some of them by helping teachers to customize their classes according to the performance of the students in online courses. In this work, we propose the adaptation of a functional ITS based on Bloom’s taxonomy called Sistema de Apoyo Generalizado para la Enseñanza Individualizada (SAGE), to measure student’s metacognition and their emotional response based on Marzano’s taxonomy. The students and the system will share the control over the advance in the course, so they can improve their metacognitive skills. The system will not allow students to get access to subjects not mastered yet. The interaction between the system and the student will be implemented through Natural Language Processing techniques, thus avoiding the use of sensors to evaluate student’s response. The teacher will evaluate student’s knowledge utilization, which is equivalent to the last cognitive level in Marzano’s taxonomy.

Keywords: Intelligent tutoring systems, student modelling, metacognition, affective computing, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015
1398 Improving the Performance of Proxy Server by Using Data Mining Technique

Authors: P. Jomsri

Abstract:

Currently, web usage make a huge data from a lot of user attention. In general, proxy server is a system to support web usage from user and can manage system by using hit rates. This research tries to improve hit rates in proxy system by applying data mining technique. The data set are collected from proxy servers in the university and are investigated relationship based on several features. The model is used to predict the future access websites. Association rule technique is applied to get the relation among Date, Time, Main Group web, Sub Group web, and Domain name for created model. The results showed that this technique can predict web content for the next day, moreover the future accesses of websites increased from 38.15% to 85.57 %. This model can predict web page access which tends to increase the efficient of proxy servers as a result. In additional, the performance of internet access will be improved and help to reduce traffic in networks.

Keywords: Association rule, proxy server, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3064
1397 Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities

Authors: Peyman Sindareh Esfahani, Jeffery Kurt Pieper

Abstract:

In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the l2-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem.

Keywords: Linear fractional transformation, linear matrix inequality, robust model predictive control, state feedback control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
1396 Selective Forwarding Attack and Its Detection Algorithms: A Review

Authors: Sushil Sarwa, Rajeev Kumar

Abstract:

The wireless mesh networks (WMNs) are emerging technology in wireless networking as they can serve large scale high speed internet access. Due to its wireless multi-hop feature, wireless mesh network is prone to suffer from many attacks, such as denial of service attack (DoS). We consider a special case of DoS attack which is selective forwarding attack (a.k.a. gray hole attack). In such attack, a misbehaving mesh router selectively drops the packets it receives rom its predecessor mesh router. It is very hard to detect that packet loss is due to medium access collision, bad channel quality or because of selective forwarding attack. In this paper, we present a review of detection algorithms of selective forwarding attack and discuss their advantage & disadvantage. Finally we conclude this paper with open research issues and challenges.

Keywords: CAD algorithm, CHEMAS, selective forwarding attack, watchdog & pathrater, wireless mesh network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
1395 Disparity in Socio-Economic Development and Its Implications on Communal Conflicts: A Study on India's North-Eastern Region

Authors: Debasis Neogi

Abstract:

India-s North-Eastern part, comprising of seven states, is a lowly developed, tribal population dominated region in India. Inspite of the common Mongoloid origin and lifestyle of majority of the population residing here, sharp differences exist in the status of their socio-economic development. The present paper, through a state-wise analysis, makes an attempt to find out the extent of this disparity, especially on the socio-economic front. It illustrates the situations prevailing in health, education, economic and social cohesion sector. Discussion on the implications of such disparity on social stability finds that the causes of frequent insurgency activities, that have been penetrating the region for a long time, thereby creating communal conflicts, can be traced in the economic deprivation and disparity. In the last section, the paper makes policy prescription and suggests how by taking care of disparity and deprivation both poverty and the problem of communal conflicts can be controlled.

Keywords: Disparity, development, deprivation, communal conflicts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4741
1394 A Model to Study the Effect of Excess Buffers and Na+ Ions on Ca2+ Diffusion in Neuron Cell

Authors: Vikas Tewari, Shivendra Tewari, K. R. Pardasani

Abstract:

Calcium is a vital second messenger used in signal transduction. Calcium controls secretion, cell movement, muscular contraction, cell differentiation, ciliary beating and so on. Two theories have been used to simplify the system of reaction-diffusion equations of calcium into a single equation. One is excess buffer approximation (EBA) which assumes that mobile buffer is present in excess and cannot be saturated. The other is rapid buffer approximation (RBA), which assumes that calcium binding to buffer is rapid compared to calcium diffusion rate. In the present work, attempt has been made to develop a model for calcium diffusion under excess buffer approximation in neuron cells. This model incorporates the effect of [Na+] influx on [Ca2+] diffusion,variable calcium and sodium sources, sodium-calcium exchange protein, Sarcolemmal Calcium ATPase pump, sodium and calcium channels. The proposed mathematical model leads to a system of partial differential equations which have been solved numerically using Forward Time Centered Space (FTCS) approach. The numerical results have been used to study the relationships among different types of parameters such as buffer concentration, association rate, calcium permeability.

Keywords: Excess buffer approximation, Na+ influx, sodium calcium exchange protein, sarcolemmal calcium atpase pump, forward time centred space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
1393 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1067
1392 Adaptive Fuzzy Routing in Opportunistic Network (AFRON)

Authors: Payam Nabhani, Sima Radmanesh

Abstract:

Opportunistic network is a kind of Delay Tolerant Networks (DTN) where the nodes in this network come into contact with each other opportunistically and communicate wirelessly and, an end-to-end path between source and destination may have never existed, and disconnection and reconnection is common in the network. In such a network, because of the nature of opportunistic network, perhaps there is no a complete path from source to destination for most of the time and even if there is a path; the path can be very unstable and may change or break quickly. Therefore, routing is one of the main challenges in this environment and, in order to make communication possible in an opportunistic network, the intermediate nodes have to play important role in the opportunistic routing protocols. In this paper we proposed an Adaptive Fuzzy Routing in opportunistic network (AFRON). This protocol is using the simple parameters as input parameters to find the path to the destination node. Using Message Transmission Count, Message Size and Time To Live parameters as input fuzzy to increase delivery ratio and decrease the buffer consumption in the all nodes of network.

Keywords: Opportunistic Routing, Fuzzy Routing, Opportunistic Network, Message Routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
1391 Neuro-Fuzzy Network Based On Extended Kalman Filtering for Financial Time Series

Authors: Chokri Slim

Abstract:

The neural network's performance can be measured by efficiency and accuracy. The major disadvantages of neural network approach are that the generalization capability of neural networks is often significantly low, and it may take a very long time to tune the weights in the net to generate an accurate model for a highly complex and nonlinear systems. This paper presents a novel Neuro-fuzzy architecture based on Extended Kalman filter. To test the performance and applicability of the proposed neuro-fuzzy model, simulation study of nonlinear complex dynamic system is carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction of financial time series. A benchmark case studie is used to demonstrate that the proposed model is a superior neuro-fuzzy modeling technique.

Keywords: Neuro-fuzzy, Extended Kalman filter, nonlinear systems, financial time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
1390 Multi-View Neural Network Based Gait Recognition

Authors: Saeid Fazli, Hadis Askarifar, Maryam Sheikh Shoaie

Abstract:

Human identification at a distance has recently gained growing interest from computer vision researchers. Gait recognition aims essentially to address this problem by identifying people based on the way they walk [1]. Gait recognition has 3 steps. The first step is preprocessing, the second step is feature extraction and the third one is classification. This paper focuses on the classification step that is essential to increase the CCR (Correct Classification Rate). Multilayer Perceptron (MLP) is used in this work. Neural Networks imitate the human brain to perform intelligent tasks [3].They can represent complicated relationships between input and output and acquire knowledge about these relationships directly from the data [2]. In this paper we apply MLP NN for 11 views in our database and compare the CCR values for these views. Experiments are performed with the NLPR databases, and the effectiveness of the proposed method for gait recognition is demonstrated.

Keywords: Human motion analysis, biometrics, gait recognition, principal component analysis, MLP neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
1389 Identification of Reusable Software Modules in Function Oriented Software Systems using Neural Network Based Technique

Authors: Sonia Manhas, Parvinder S. Sandhu, Vinay Chopra, Nirvair Neeru

Abstract:

The cost of developing the software from scratch can be saved by identifying and extracting the reusable components from already developed and existing software systems or legacy systems [6]. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. We have used metric based approach for characterizing a software module. In this present work, the metrics McCabe-s Cyclometric Complexity Measure for Complexity measurement, Regularity Metric, Halstead Software Science Indicator for Volume indication, Reuse Frequency metric and Coupling Metric values of the software component are used as input attributes to the different types of Neural Network system and reusability of the software component is calculated. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

Keywords: Software reusability, Neural Networks, MAE, RMSE, Accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
1388 Simulating Human Behavior in (Un)Built Environments: Using an Actor Profiling Method

Authors: Hadas Sopher, Davide Schaumann, Yehuda E. Kalay

Abstract:

This paper addresses the shortcomings of architectural computation tools in representing human behavior in built environments, prior to construction and occupancy of those environments. Evaluating whether a design fits the needs of its future users is currently done solely post construction, or is based on the knowledge and intuition of the designer. This issue is of high importance when designing complex buildings such as hospitals, where the quality of treatment as well as patient and staff satisfaction are of major concern. Existing computational pre-occupancy human behavior evaluation methods are geared mainly to test ergonomic issues, such as wheelchair accessibility, emergency egress, etc. As such, they rely on Agent Based Modeling (ABM) techniques, which emphasize the individual user. Yet we know that most human activities are social, and involve a number of actors working together, which ABM methods cannot handle. Therefore, we present an event-based model that manages the interaction between multiple Actors, Spaces, and Activities, to describe dynamically how people use spaces. This approach requires expanding the computational representation of Actors beyond their physical description, to include psychological, social, cultural, and other parameters. The model presented in this paper includes cognitive abilities and rules that describe the response of actors to their physical and social surroundings, based on the actors’ internal status. The model has been applied in a simulation of hospital wards, and showed adaptability to a wide variety of situated behaviors and interactions.

Keywords: Agent based modeling, architectural design evaluation, event modeling, human behavior simulation, spatial cognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076