Search results for: pattern recognition approach.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6234

Search results for: pattern recognition approach.

5964 Management Pattern for Lodging Business in Bang Khonthi Samut Songkram with Sufficient Economy Approach

Authors: Krisada Sungkhamanee

Abstract:

The objectives of this research are to search the management pattern of Bang Khonthi lodging entrepreneurs for sufficient economy ways, to know the threat that affects this sector and design fit arrangement model to sustain their business with Samut Songkram style. What will happen if they do not use this approach? Will they have a financial crisis? The data and information are collected by informal discussions with 8 managers and 400 questionnaires. A mixed methods of both qualitative research and quantitative research are used. Bent Flyvbjerg-s phronesis is utilized for this analysis. Our research will prove that sufficient economy can help small business firms to solve their problems. We think that the results of our research will be a financial model to solve many problems of the entrepreneurs and this way will can be a model for other provinces of Thailand.

Keywords: Bang Khonthi, Lodging Business, Sufficient Economy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3723
5963 Comparing Hilditch, Rosenfeld, Zhang-Suen,and Nagendraprasad -Wang-Gupta Thinning

Authors: Anastasia Rita Widiarti

Abstract:

This paper compares Hilditch, Rosenfeld, Zhang- Suen, dan Nagendraprasad Wang Gupta (NWG) thinning algorithms for Javanese character image recognition. Thinning is an effective process when the focus in not on the size of the pattern, but rather on the relative position of the strokes in the pattern. The research analyzes the thinning of 60 Javanese characters. Time-wise, Zhang-Suen algorithm gives the best results with the average process time being 0.00455188 seconds. But if we look at the percentage of pixels that meet one-pixel thickness, Rosenfelt algorithm gives the best results, with a 99.98% success rate. From the number of pixels that are erased, NWG algorithm gives the best results with the average number of pixels erased being 84.12%. It can be concluded that the Hilditch algorithm performs least successfully compared to the other three algorithms.

Keywords: Hilditch algorithm, Nagendraprasad-Wang-Guptaalgorithm, Rosenfeld algorithm, Thinning, Zhang-suen algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3918
5962 Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.

Keywords: LS-SVM, medical ultrasound imaging, partially developed speckle, multi-look model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
5961 The Application of a Neural Network in the Reworking of Accu-Chek to Wrist Bands to Monitor Blood Glucose in the Human Body

Authors: J. K Adedeji, O. H Olowomofe, C. O Alo, S.T Ijatuyi

Abstract:

The issue of high blood sugar level, the effects of which might end up as diabetes mellitus, is now becoming a rampant cardiovascular disorder in our community. In recent times, a lack of awareness among most people makes this disease a silent killer. The situation calls for urgency, hence the need to design a device that serves as a monitoring tool such as a wrist watch to give an alert of the danger a head of time to those living with high blood glucose, as well as to introduce a mechanism for checks and balances. The neural network architecture assumed 8-15-10 configuration with eight neurons at the input stage including a bias, 15 neurons at the hidden layer at the processing stage, and 10 neurons at the output stage indicating likely symptoms cases. The inputs are formed using the exclusive OR (XOR), with the expectation of getting an XOR output as the threshold value for diabetic symptom cases. The neural algorithm is coded in Java language with 1000 epoch runs to bring the errors into the barest minimum. The internal circuitry of the device comprises the compatible hardware requirement that matches the nature of each of the input neurons. The light emitting diodes (LED) of red, green, and yellow colors are used as the output for the neural network to show pattern recognition for severe cases, pre-hypertensive cases and normal without the traces of diabetes mellitus. The research concluded that neural network is an efficient Accu-Chek design tool for the proper monitoring of high glucose levels than the conventional methods of carrying out blood test.

Keywords: Accu-Chek, diabetes, neural network, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
5960 Some Results of Sign patterns Allowing Simultaneous Unitary Diagonalizability

Authors: Xin-Lei Feng, Ting-Zhu Huang

Abstract:

Allowing diagonalizability of sign pattern is still an open problem. In this paper, we make a carefully discussion about allowing unitary diagonalizability of two sign pattern. Some sufficient and necessary conditions of allowing unitary diagonalizability are also obtained.

Keywords: Sign pattern, unitary diagonalizability, eigenvalue, allowing diagonalizability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
5959 Scenario Recognition in Modern Building Automation

Authors: Roland Lang, Dietmar Bruckner, Rosemarie Velik, Tobias Deutsch

Abstract:

Modern building automation needs to deal with very different types of demands, depending on the use of a building and the persons acting in it. To meet the requirements of situation awareness in modern building automation, scenario recognition becomes more and more important in order to detect sequences of events and to react to them properly. We present two concepts of scenario recognition and their implementation, one based on predefined templates and the other applying an unsupervised learning algorithm using statistical methods. Implemented applications will be described and their advantages and disadvantages will be outlined.

Keywords: Building automation, ubiquitous computing, scenariorecognition, surveillance system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
5958 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning

Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond

Abstract:

Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.

Keywords: Time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205
5957 Tree Sign Patterns of Small Order that Allow an Eventually Positive Matrix

Authors: Ber-Lin Yu, Jie Cui, Hong Cheng, Zhengfeng Yu

Abstract:

A sign pattern is a matrix whose entries belong to the set {+,−, 0}. An n-by-n sign pattern A is said to allow an eventually positive matrix if there exist some real matrices A with the same sign pattern as A and a positive integer k0 such that Ak > 0 for all k ≥ k0. It is well known that identifying and classifying the n-by-n sign patterns that allow an eventually positive matrix are posed as two open problems. In this article, the tree sign patterns of small order that allow an eventually positive matrix are classified completely.

Keywords: Eventually positive matrix, sign pattern, tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267
5956 Hand Gesture Recognition using Blob Detection for Immersive Projection Display System

Authors: Hasup Lee, Yoshisuke Tateyama, Tetsuro Ogi

Abstract:

We developed a vision interface immersive projection system, CAVE in virtual rea using hand gesture recognition with computer vis background image was subtracted from current webcam and we convert the color space of the imag Then we mask skin regions using skin color range t a noise reduction operation. We made blobs fro gestures were recognized using these blobs. Using recognition, we could implement an effective bothering devices for CAVE. e framework for an reality research field vision techniques. ent image frame age into HSV space. e threshold and apply from the image and ing our hand gesture e interface without

Keywords: CAVE, Computer Vision, Ges Virtual Reality esture Recognition,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2753
5955 Several Spectrally Non-Arbitrary Ray Patterns of Order 4

Authors: Ling Zhang, Feng Liu

Abstract:

A matrix is called a ray pattern matrix if its entries are either 0 or a ray in complex plane which originates from 0. A ray pattern A of order n is called spectrally arbitrary if the complex matrices in the ray pattern class of A give rise to all possible nth degree complex polynomial. Otherwise, it is said to be spectrally non-arbitrary ray pattern. We call that a spectrally arbitrary ray pattern A of order n is minimally spectrally arbitrary if any nonzero entry of A is replaced, then A is not spectrally arbitrary. In this paper, we find that is not spectrally arbitrary when n equals to 4 for any θ which is greater than or equal to 0 and less than or equal to n. In this article, we give several ray patterns A(θ) of order n that are not spectrally arbitrary for some θ which is greater than or equal to 0 and less than or equal to n. by using the nilpotent-Jacobi method. One example is given in our paper.

Keywords: Spectrally arbitrary, Nilpotent matrix, Ray patterns, sign patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 612
5954 Echo State Networks for Arabic Phoneme Recognition

Authors: Nadia Hmad, Tony Allen

Abstract:

This paper presents an ESN-based Arabic phoneme recognition system trained with supervised, forced and combined supervised/forced supervised learning algorithms. Mel-Frequency Cepstrum Coefficients (MFCCs) and Linear Predictive Code (LPC) techniques are used and compared as the input feature extraction technique. The system is evaluated using 6 speakers from the King Abdulaziz Arabic Phonetics Database (KAPD) for Saudi Arabia dialectic and 34 speakers from the Center for Spoken Language Understanding (CSLU2002) database of speakers with different dialectics from 12 Arabic countries. Results for the KAPD and CSLU2002 Arabic databases show phoneme recognition performances of 72.31% and 38.20% respectively.

Keywords: Arabic phonemes recognition, echo state networks (ESNs), neural networks (NNs), supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
5953 Assamese Numeral Corpus for Speech Recognition using Cooperative ANN Architecture

Authors: Mousmita Sarma, Krishna Dutta, Kandarpa Kumar Sarma

Abstract:

Speech corpus is one of the major components in a Speech Processing System where one of the primary requirements is to recognize an input sample. The quality and details captured in speech corpus directly affects the precision of recognition. The current work proposes a platform for speech corpus generation using an adaptive LMS filter and LPC cepstrum, as a part of an ANN based Speech Recognition System which is exclusively designed to recognize isolated numerals of Assamese language- a major language in the North Eastern part of India. The work focuses on designing an optimal feature extraction block and a few ANN based cooperative architectures so that the performance of the Speech Recognition System can be improved.

Keywords: Filter, Feature, LMS, LPC, Cepstrum, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385
5952 Normalization Discriminant Independent Component Analysis

Authors: Liew Yee Ping, Pang Ying Han, Lau Siong Hoe, Ooi Shih Yin, Housam Khalifa Bashier Babiker

Abstract:

In face recognition, feature extraction techniques attempts to search for appropriate representation of the data. However, when the feature dimension is larger than the samples size, it brings performance degradation. Hence, we propose a method called Normalization Discriminant Independent Component Analysis (NDICA). The input data will be regularized to obtain the most reliable features from the data and processed using Independent Component Analysis (ICA). The proposed method is evaluated on three face databases, Olivetti Research Ltd (ORL), Face Recognition Technology (FERET) and Face Recognition Grand Challenge (FRGC). NDICA showed it effectiveness compared with other unsupervised and supervised techniques.

Keywords: Face recognition, small sample size, regularization, independent component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
5951 Make Up Flash: Web Application for the Improvement of Physical Appearance in Images Based on Recognition Methods

Authors: Stefania Arguelles Reyes, Octavio José Salcedo Parra, Alberto Acosta López

Abstract:

This paper presents a web application for the improvement of images through recognition. The web application is based on the analysis of picture-based recognition methods that allow an improvement on the physical appearance of people posting in social networks. The basis relies on the study of tools that can correct or improve some features of the face, with the help of a wide collection of user images taken as reference to build a facial profile. Automatic facial profiling can be achieved with a deeper study of the Object Detection Library. It was possible to improve the initial images with the help of MATLAB and its filtering functions. The user can have a direct interaction with the program and manually adjust his preferences.

Keywords: Application, MATLAB, make up, model, recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 570
5950 Bi-lingual Handwritten Character and Numeral Recognition using Multi-Dimensional Recurrent Neural Networks (MDRNN)

Authors: Kandarpa Kumar Sarma

Abstract:

The key to the continued success of ANN depends, considerably, on the use of hybrid structures implemented on cooperative frame-works. Hybrid architectures provide the ability to the ANN to validate heterogeneous learning paradigms. This work describes the implementation of a set of Distributed and Hybrid ANN models for Character Recognition applied to Anglo-Assamese scripts. The objective is to describe the effectiveness of Hybrid ANN setups as innovative means of neural learning for an application like multilingual handwritten character and numeral recognition.

Keywords: Assamese, Feature, Recurrent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
5949 A Modified Speech Enhancement Using Adaptive Gain Equalizer with Non linear Spectral Subtraction for Robust Speech Recognition

Authors: C. Ganesh Babu, P. T. Vanathi

Abstract:

In this paper we present an enhanced noise reduction method for robust speech recognition using Adaptive Gain Equalizer with Non linear Spectral Subtraction. In Adaptive Gain Equalizer method (AGE), the input signal is divided into a number of subbands that are individually weighed in time domain, in accordance to the short time Signal-to-Noise Ratio (SNR) in each subband estimation at every time instant. Instead of focusing on suppression the noise on speech enhancement is focused. When analysis was done under various noise conditions for speech recognition, it was found that Adaptive Gain Equalizer method algorithm has an obvious failing point for a SNR of -5 dB, with inadequate levels of noise suppression for SNR less than this point. This work proposes the implementation of AGE when coupled with Non linear Spectral Subtraction (AGE-NSS) for robust speech recognition. The experimental result shows that out AGE-NSS performs the AGE when SNR drops below -5db level.

Keywords: Adaptive Gain Equalizer, Non Linear Spectral Subtraction, Speech Enhancement, and Speech Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
5948 Myanmar Character Recognition Using Eight Direction Chain Code Frequency Features

Authors: Kyi Pyar Zaw, Zin Mar Kyu

Abstract:

Character recognition is the process of converting a text image file into editable and searchable text file. Feature Extraction is the heart of any character recognition system. The character recognition rate may be low or high depending on the extracted features. In the proposed paper, 25 features for one character are used in character recognition. Basically, there are three steps of character recognition such as character segmentation, feature extraction and classification. In segmentation step, horizontal cropping method is used for line segmentation and vertical cropping method is used for character segmentation. In the Feature extraction step, features are extracted in two ways. The first way is that the 8 features are extracted from the entire input character using eight direction chain code frequency extraction. The second way is that the input character is divided into 16 blocks. For each block, although 8 feature values are obtained through eight-direction chain code frequency extraction method, we define the sum of these 8 feature values as a feature for one block. Therefore, 16 features are extracted from that 16 blocks in the second way. We use the number of holes feature to cluster the similar characters. We can recognize the almost Myanmar common characters with various font sizes by using these features. All these 25 features are used in both training part and testing part. In the classification step, the characters are classified by matching the all features of input character with already trained features of characters.

Keywords: Chain code frequency, character recognition, feature extraction, features matching, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
5947 A System of Automatic Speech Recognition based on the Technique of Temporal Retiming

Authors: Samir Abdelhamid, Noureddine Bouguechal

Abstract:

We report in this paper the procedure of a system of automatic speech recognition based on techniques of the dynamic programming. The technique of temporal retiming is a technique used to synchronize between two forms to compare. We will see how this technique is adapted to the field of the automatic speech recognition. We will expose, in a first place, the theory of the function of retiming which is used to compare and to adjust an unknown form with a whole of forms of reference constituting the vocabulary of the application. Then we will give, in the second place, the various algorithms necessary to their implementation on machine. The algorithms which we will present were tested on part of the corpus of words in Arab language Arabdic-10 [4] and gave whole satisfaction. These algorithms are effective insofar as we apply them to the small ones or average vocabularies.

Keywords: Continuous speech recognition, temporal retiming, phonetic decoding, algorithms, vocal signal, dynamic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
5946 The Experimental Study of the Effect of Flow Pattern Geometry on Performance of Micro Proton Exchange Membrane Fuel Cell

Authors: Tang Yuan Chen, Chang Hsin Chen, Chiun Hsun Chen

Abstract:

In this research, the flow pattern influence on performance of a micro PEMFC was investigated experimentally. The investigation focused on the impacts of bend angels and rib/channel dimensions of serpentine flow channel pattern on the performance and investigated how they improve the performance. The fuel cell employed for these experiments was a micro single PEMFC with a membrane of 1.44 cm2 Nafion NRE-212. The results show that 60° and 120° bend angles can provide the better performances at 20 and 40 sccm inlet flow rates comparing to that the conventional design. Additionally, wider channel with narrower rib spacing gives better performance. These results may be applied to develop universal heuristics for the design of flow pattern of micro PEMFC.

Keywords: Flow pattern, MEMS, PEMFC, Performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
5945 Human Action Recognition Based on Ridgelet Transform and SVM

Authors: A. Ouanane, A. Serir

Abstract:

In this paper, a novel algorithm based on Ridgelet Transform and support vector machine is proposed for human action recognition. The Ridgelet transform is a directional multi-resolution transform and it is more suitable for describing the human action by performing its directional information to form spatial features vectors. The dynamic transition between the spatial features is carried out using both the Principal Component Analysis and clustering algorithm K-means. First, the Principal Component Analysis is used to reduce the dimensionality of the obtained vectors. Then, the kmeans algorithm is then used to perform the obtained vectors to form the spatio-temporal pattern, called set-of-labels, according to given periodicity of human action. Finally, a Support Machine classifier is used to discriminate between the different human actions. Different tests are conducted on popular Datasets, such as Weizmann and KTH. The obtained results show that the proposed method provides more significant accuracy rate and it drives more robustness in very challenging situations such as lighting changes, scaling and dynamic environment

Keywords: Human action, Ridgelet Transform, PCA, K-means, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
5944 Low Resolution Single Neural Network Based Face Recognition

Authors: Jahan Zeb, Muhammad Younus Javed, Usman Qayyum

Abstract:

This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.

Keywords: Average filtering, Bicubic Interpolation, Neurons, vectorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
5943 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics

Authors: M. Bodner, M. Scampicchio

Abstract:

Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.

Keywords: Adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
5942 Search Engine Module in Voice Recognition Browser to Facilitate the Visually Impaired in Virtual Learning (MGSYS VISI-VL)

Authors: Nurulisma Ismail, Halimah Badioze Zaman

Abstract:

Nowadays, web-based technologies influence in people-s daily life such as in education, business and others. Therefore, many web developers are too eager to develop their web applications with fully animation graphics and forgetting its accessibility to its users. Their purpose is to make their web applications look impressive. Thus, this paper would highlight on the usability and accessibility of a voice recognition browser as a tool to facilitate the visually impaired and blind learners in accessing virtual learning environment. More specifically, the objectives of the study are (i) to explore the challenges faced by the visually impaired learners in accessing virtual learning environment (ii) to determine the suitable guidelines for developing a voice recognition browser that is accessible to the visually impaired. Furthermore, this study was prepared based on an observation conducted with the Malaysian visually impaired learners. Finally, the result of this study would underline on the development of an accessible voice recognition browser for the visually impaired.

Keywords: Accessibility, Usability, Virtual Learning, Visually Impaired, Voice Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
5941 Development of Basic Patternmaking Using Parametric Modelling and AutoLISP

Authors: Haziyah Hussin, Syazwan Abdul Samad, Rosnani Jusoh

Abstract:

This study is aimed towards the automisation of basic patternmaking for traditional clothes for the purpose of mass production using AutoCAD to apply AutoLISP feature under software Hazi Attire. A standard dress form (industrial form) with the size of small (S), medium (M) and large (L) size is measured using full body scanning machine. Later, the pattern for the clothes is designed parametrically based on the measured dress form. Hazi Attire program is used within the framework of AutoCAD to generate the basic pattern of front bodice, back bodice, front skirt, back skirt and sleeve block (sloper). The generation of pattern is based on the parameters inputted by user, whereby in this study, the parameters were determined based on the measured size of dress form. The finalized pattern parameter shows that the pattern fit perfectly on the dress form. Since the pattern is generated almost instantly, these proved that using the AutoLISP programming, the manufacturing lead time for the mass production of the traditional clothes can be decreased.

Keywords: Apparel, AutoLISP, Malay Traditional Clothes, Pattern Ganeration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
5940 Support Vector Machine for Persian Font Recognition

Authors: A. Borji, M. Hamidi

Abstract:

In this paper we examine the use of global texture analysis based approaches for the purpose of Persian font recognition in machine-printed document images. Most existing methods for font recognition make use of local typographical features and connected component analysis. However derivation of such features is not an easy task. Gabor filters are appropriate tools for texture analysis and are motivated by human visual system. Here we consider document images as textures and use Gabor filter responses for identifying the fonts. The method is content independent and involves no local feature analysis. Two different classifiers Weighted Euclidean Distance and SVM are used for the purpose of classification. Experiments on seven different type faces and four font styles show average accuracy of 85% with WED and 82% with SVM classifier over typefaces

Keywords: Persian font recognition, support vector machine, gabor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
5939 Voice Driven Applications in Non-stationary and Chaotic Environment

Authors: C. Kwan, X. Li, D. Lao, Y. Deng, Z. Ren, B. Raj, R. Singh, R. Stern

Abstract:

Automated operations based on voice commands will become more and more important in many applications, including robotics, maintenance operations, etc. However, voice command recognition rates drop quite a lot under non-stationary and chaotic noise environments. In this paper, we tried to significantly improve the speech recognition rates under non-stationary noise environments. First, 298 Navy acronyms have been selected for automatic speech recognition. Data sets were collected under 4 types of noisy environments: factory, buccaneer jet, babble noise in a canteen, and destroyer. Within each noisy environment, 4 levels (5 dB, 15 dB, 25 dB, and clean) of Signal-to-Noise Ratio (SNR) were introduced to corrupt the speech. Second, a new algorithm to estimate speech or no speech regions has been developed, implemented, and evaluated. Third, extensive simulations were carried out. It was found that the combination of the new algorithm, the proper selection of language model and a customized training of the speech recognizer based on clean speech yielded very high recognition rates, which are between 80% and 90% for the four different noisy conditions. Fourth, extensive comparative studies have also been carried out.

Keywords: Non-stationary, speech recognition, voice commands.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
5938 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing

Authors: Aleksandra Zysk, Pawel Badura

Abstract:

Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.

Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
5937 Fitness Action Recognition Based on MediaPipe

Authors: Zixuan Xu, Yichun Lou, Yang Song, Zihuai Lin

Abstract:

MediaPipe is an open-source machine learning computer vision framework that can be ported into a multi-platform environment, which makes it easier to use it to recognize human activity. Based on this framework, many human recognition systems have been created, but the fundamental issue is the recognition of human behavior and posture. In this paper, two methods are proposed to recognize human gestures based on MediaPipe, the first one uses the Adaptive Boosting algorithm to recognize a series of fitness gestures, and the second one uses the Fast Dynamic Time Warping algorithm to recognize 413 continuous fitness actions. These two methods are also applicable to any human posture movement recognition.

Keywords: Computer Vision, MediaPipe, Adaptive Boosting, Fast Dynamic Time Warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
5936 Smartphone-Based Human Activity Recognition by Machine Learning Methods

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

As smartphones are continually upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described more refined, complex and detailed. In this context, we analyzed a set of experimental data, obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model become extremely challenging. After a series of feature selection and parameters adjustments, a well-performed SVM classifier has been trained. 

Keywords: smart sensors, human activity recognition, artificial intelligence, SVM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 635
5935 Speech Coding and Recognition

Authors: M. Satya Sai Ram, P. Siddaiah, M. Madhavi Latha

Abstract:

This paper investigates the performance of a speech recognizer in an interactive voice response system for various coded speech signals, coded by using a vector quantization technique namely Multi Switched Split Vector Quantization Technique. The process of recognizing the coded output can be used in Voice banking application. The recognition technique used for the recognition of the coded speech signals is the Hidden Markov Model technique. The spectral distortion performance, computational complexity, and memory requirements of Multi Switched Split Vector Quantization Technique and the performance of the speech recognizer at various bit rates have been computed. From results it is found that the speech recognizer is showing better performance at 24 bits/frame and it is found that the percentage of recognition is being varied from 100% to 93.33% for various bit rates.

Keywords: Linear predictive coding, Speech Recognition, Voice banking, Multi Switched Split Vector Quantization, Hidden Markov Model, Linear Predictive Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845