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Order 4
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Abstract—A matrix is called a ray pattern matrix if its entries are
either 0 or a ray in complex plane which originates from 0. A ray
pattern A of order n is called spectrally arbitrary if the complex
matrices in the ray pattern class of A give rise to all possible nth degree
complex polynomial. Otherwise, it is said to be spectrally
non-arbitrary ray pattern. We call that a spectrally arbitrary ray pattern
A of order n is minimally spectrally arbitrary if any nonzero entry of A
is replaced, then A is not spectrally arbitrary. In this paper, we find that
is not spectrally arbitrary when n equals to 4 for any 6 which is greater
than or equal to 0 and less than or equal to n. In this article, we give
several ray patterns A(0) of order n that are not spectrally arbitrary for
some 0 which is greater than or equal to 0 and less than or equal to n.
by using the nilpotent-Jacobi method. One example is given in our

paper.

Keywords—Spectrally arbitrary, Nilpotent matrix, Ray patterns,
sign patterns.

1. INTRODUCTION
AN Nx Nray pattern A is a matrix with entries a; from

{re'. 01U {0}

For brevity, we denote a ray re'’ simply by e'’ . It is easy to
verify that for two rays e'% and €', if 6, — 6, = 2kx where k

is an integer number, then

i, i, .
ellzelz’

(D
otherwise, 4 = e'® . For two rays g'%and ', multiplication,

division and addition are performed obviously. The product and
quotient are given as:

eifigi® _ gi(6+0:) ?)
and

eiﬁu /eiﬁz :ei(gl"gz). (3)
0,and @, differ by a multiple of 27 , then e 4e'% =g
i0

The sum of two distinct rays e'% and €' is either a straight
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line through the origin or an open sector in the complex plane
with vertex at the origin (when the two rays are opposite in
direction). We denote # by any sum of rays where at least two
of the rays are distinct. It is easy to verify that

e +#=H#, e#=#
O+#=H#, O0#=0, #+#=H0, ##=H.

Let Z=X+Iiy be a non-zero complex number and

r=zj=x*+y?, then we get x=rcos, y=rsiné ,

where @ is the angle made by z with the positive x-axis.
Therefore, & is unique up to the addition of a multiple of 277
radians. We call the number & satisfying the above pair of

equations and argument of z and denote it by arg z. The ray
pattern class of an N X Nray pattern A, denoted by Q(A), is the

set of Nx N complex matrices given by

{B:[b,,1eM (C):b, =0 if a,=0;
argh,, =arga, otherwise}.

An Nx N ray pattern A is said to be spectrally arbitrary if
given any monic nth degree polynomial f (x) with coefficients

from C, there exists a matrix B € Q(A) having characteristic
polynomial f(X). A spectrally arbitrary ray pattern A is said to

be minimally spectrally arbitrary if any nonzero entry of A is
replaced by zero, then it is not spectrally arbitrary.

The question of the existence of spectrally arbitrary sign
patterns, that is, sign patterns that allow the realization of every
self-conjugate spectrum, arose in [1]. In this paper, the
nilpotent-Jacobi method for showing that a sign pattern was
developed and all its superpatterns are spectrally arbitrary and a
conjunction that a particular family of tridiagonal patterns is
spectrally arbitrary was given. Since that time there have been
many papers on this topic (see, for example, [2]-[7]) and
several families of spectrally arbitrary patterns have been
presented and general properties of spectrally arbitrary patterns
have been studied ([8-11]). In [12], Britz et al. showed that
every irreducible, spectrally arbitrary sign pattern of order n
must have at least 2n-1 nonzeros and they also gave families of
patterns that have exactly 2n nonzeros. This result is easily
extended to zero—nonzero patterns over R and C. In [13], the
problem of classifying the spectrally arbitrary zero—nonzero
patterns over R is studied and all N XN spectrally arbitrary
zero—nonzero patterns are classified when n > 4. This article

233 1SN1:0000000091950263



Open Science Index, Mathematical and Computational Sciences Vol:13, No:12, 2019 publications.waset.org/10010962.pdf

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Vol:13, No:12, 2019

presented the idea that identifies the maximum number of
nonzero entries such that a zero-nonzero pattern with maximum

number of nonzeros is spectrally arbitrary. In [14], DeAlba et al.

studied properties of reducible, spectrally arbitrary sign and
zero-nonzero patterns over R. Recently, McDonald and Stuart
[19] described a method for proving an irreducible ray pattern
with exactly 3n non-zeros and its superpatterns are spectrally.
From that time there have many articles on this topic (see, for
example, [15]-[18]).

II. THE NILPOTENT-JACOBI METHOD

In [9], Drew et al. gave a method of establishing that a sign
pattern and every of its superpatterns are spectrally arbitrary.
This method worked for a sign pattern in whose class certain
types of nilpotent matrices could be found. McDonald and
Stuart [19] extended their method to the ray pattern case in the
following manner:

The nilpotent-Jacobi method [19]:

1. Find a nilpotent matrix in the given ray pattern class.
2. Change 2n of the positive coefficients (denoted by

r,r,, -1, ) of the e’ in this nilpotent matrix to variables
t,t,t,,.

3. Denote the characteristic polynomial of the resulting
matrix as:

X"+ (f (..., +ig, (¢, ... L )X+
+(fn—l(tla-“th)+ign—l(tla-"tZH))X
+(fn(tl""t2n)+ign(tlﬂ"‘t2n))

4. Find the Jacobi matrix

J — 6( f17 g15~'~9 fn7 gn)
t,L,.. .4,

If the determinant of J evaluated at (t,t,,---t, ) =(r,I,,-

r-2r| )
is nonzero, then by continuity of the determinant in the entries
of a matrix, there exists a neighborhood U of (r,n,r,) such

that all the vectors in U are strictly positive and the determinant
of J evaluated at any of these vectors is nonzero. Moreover, by
the Implicit Function Theorem there is a neighborhood V c U

of (r,,r,,---I,,) < R™, a neighborhood W of (0,0,...,0)cR
and a function (h,,h,,---h, ) from W into V such that for any

(a,b,,...a,,b,) eW there exists a strictly positive vector

(8,,8,...8,,)=(h,h,...h, )(@a,,b,...a,,,b,,) eV

where f,(55,...8,0) =2, 0;(5,,5,...5,,) =D If we take positive

scalar multiples of the corresponding matrices, then we have
that each monic nth degree polynomial over R 1is the
characteristic polynomial of some matrix in this ray pattern
class.
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5. Consider a superpattern of our pattern. Let cleg“g“ be the

new nonzero entries. Denote the new functions in
characteristic polynomial by F(x). Let

FOO=X"+2(f(t, bt
j=

.sC)

+6;(t,t, ...t Cpenn, 6 )X

where  f,(t,t,,....0,CeenC) AN G (1L, C

5N

C)

represent the real and complex parts of the coefficient of X"
Let

j — a(.i:\lig’\l"“’ f\nig,\n)
t,0,...1,

be the new Jacobi matrix. As above, let @,h,,...a,,b)ew and
(8158, .--8,0) = (h,hy ... hy )@, by, 3y, ) €V
Then

a; = f,(5,8,,...,8,) = £(5,,5,,...,5,,,0,...,0)
b; =9,(5,5,,-.,5,) = 4(5,,8;,.+,5,0,...,0)

and the determinant of evaluated at

(t,t,...,t,,6,Css...,C ) =(5,5S,,--+55,,,0,0,...,0)

is equal to the determinant of J evaluated at

t,t,....t,,)=(5,,5,,-.-,5,,)

and hence is nonzero. By the implicit function theorem, there

exists a neighborhood V <V of (S/,S5,...,5,,) 5 @ neighborhood

T of(O,O,...,O)eRk and a function (Q,,0,,...,q,,) from T

into V such that for any vector (d,,d,,...,d )eT, there exists a

strictly positive vector

(el’eZ""’eZH): (q17q2""’q2n)(cl’027"'5Ck) e\i

where

A

fi(e.8,,...,8,,,C,Cy,...,C ) = @

and
§;(8,8,,....6,,,C,,C,p5...,C ) = -

Taking (d W0o..,d)eT strictly positive, we have that there

also exist matrices in the superpattern's class with every
characteristic polynomial corresponding to a vector in W. If we
choose positive scalar multiples of the corresponding matrices,
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then we get that each monic nth degree polynomial over C is the
characteristic polynomial of some matrix in this superpattern’s
class.

III. MAIN RESULTS

In [18], McDonald and Stuart defined the N X N ray sign
patterns of the following form.

1 e“ 0 0 0
1 0 0 1 0 0 0
- )
AO=1 o 0 0 0
1.0 0 0 0
1 Tt

where 0< 6 <27 andN > 4 and gave the following theorem.
Theoreml. [18] For n > 4, there exist infinitely many choices

for @ with 0<@<27 , so that A (0) and all of its

superpatterns are spectrally arbitrary ray patterns.
McDonald and Stuart [15] have proved the theorem.

According to the definition of A,.

)

Unfortunately, we find that A, is not spectrally arbitrary for
any € with 0<@<2z . Now we prove that A, is not
spectrally arbitrary for any @ with 0<@<2z . For

convenience, we restrict 0 to g<g<’” . Let q=cosd .
2

Suppose B, € Q(A,), then by scaling and positive diagonally

similarity we can assume

q 1 0 0

B -| g+ii-g> 1 0 (6)
a, b, 0 1
a, ib, ib, ib,

where &,,a,,a,,b,,b,,b, are negative and a,,b, are positive.

From [19], the characteristic polynomial of B, is as follows:
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X! +[(—a, —q) +i(-b —y1-g*)]x’
+[(_a2 _bl 1_q2 +a1q_b4)
+i(-b, +ab +a/1-9* +b)]x*

+[(_a3+a1b4+a1b1\/1_q2 _bz\ll_qz)

2
+i(-b,—abq+b,q+ El ab, , +bb,)]x

“4)

+[-a, +ab,\/1-9

3
+i(-abb, —ab,q+ kZ:I ab, )]

Suppose that B, is nilpotent. Setting the coefficient of X"

equal to zero for j=1,2,3,4, then solving for a; and bj , We

get that
1 =_q’
b =—1-0°,
a, =b+1-9° +a,q-b,
:q l_qza
)]
a,=ab, +ab~1-9° —b,y1-q°
=—qb, +2q(1-9°),
2
b3 = _alblq + bzq + kzzl akb3—k + b1b4
=—(1-gW1-0’,
a, = albz \ll_q2 = q2(1—q2),
b - —-ab,q+ab, +(1-29*)b, +2q(1-g°)b,
4 b2
=2(1-9")
Substituting b, into the equation
a, =qb, +2q(1-9°) ©)
we obtain
a,=-2q(1-9")+2q(1-9*)=0 (10)

which contradicts the fact that B, e Q(A,). Thus, A, is not
potentially nilpotent, which implies that A, is not spectrally
arbitrary for any € with 0 <6 <27.

IV. EXAMPLES
Examplel. The 4x4 ray pattern
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A= 1 5 1 0 (11)
-1 1 0 1
1 —i - i
is not spectrally arbitrary. The matrix
a 1 0 0
1+/3i
B=|& — 1 0 (12)

a, b, 0 1
a, ib, ib, ib

is in the pattern class B € Q(A)whenever a,,a, are negative

and a,,a,,b,b,,b, are positive. The characteristic
polynomial of B is
“+1(q, —l) +i(-b, —g)]x3
+[(-a, —ﬂ+i—b)
+i(=b, +ab +\/7":1 ﬁ)]x2 (13)

Ibz

+ [(_a3 + a1b4 t— ))

\Balb
2
+i(-h, —a]—b‘+

@) + i(_a1b1 4

2
b—2+ 2 ab, , +bb,)Ix
2 k=l

+[(-a, +

Suppose that B is nilpotent. Setting the coefficient of x"’
equal to zero for j=1,2,3,4, thensolving for a i and bj , we get

that
a, =—l -l,a,=0,a, =—,
2’ 16 (14)
ﬁ NG) 33 3
b=- 2 =-ph=-p =
2 4 8 16

which contradicts the fact that BeQ(A). Thus, A is not

potentially nilpotent, which implies that A is not spectrally
arbitrary.
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