Search results for: music classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1216

Search results for: music classification

946 Using Time-Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa

Authors: A. S. Adesuyi, Z. Munch

Abstract:

This study investigates the use of a time-series of MODIS NDVI data to identify agricultural land cover change on an annual time step (2007 - 2012) and characterize the trend. Following an ISODATA classification of the MODIS imagery to selectively mask areas not agriculture or semi-natural, NDVI signatures were created to identify areas cereals and vineyards with the aid of ancillary, pictometry and field sample data for 2010. The NDVI signature curve and training samples were used to create a decision tree model in WEKA 3.6.9 using decision tree classifier (J48) algorithm; Model 1 including ISODATA classification and Model 2 not. These two models were then used to classify all data for the study area for 2010, producing land cover maps with classification accuracies of 77% and 80% for Model 1 and 2 respectively. Model 2 was subsequently used to create land cover classification and change detection maps for all other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices. Over the years as predicted by the land cover classification. Forty one percent of the catchment comprised of cereals with 35% possibly following a crop rotation system. Vineyards largely remained constant with only one percent conversion to vineyard from other land cover classes.

Keywords: Change detection, Land cover, NDVI, time-series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
945 A Review on Soft Computing Technique in Intrusion Detection System

Authors: Noor Suhana Sulaiman, Rohani Abu Bakar, Norrozila Sulaiman

Abstract:

Intrusion Detection System is significant in network security. It detects and identifies intrusion behavior or intrusion attempts in a computer system by monitoring and analyzing the network packets in real time. In the recent year, intelligent algorithms applied in the intrusion detection system (IDS) have been an increasing concern with the rapid growth of the network security. IDS data deals with a huge amount of data which contains irrelevant and redundant features causing slow training and testing process, higher resource consumption as well as poor detection rate. Since the amount of audit data that an IDS needs to examine is very large even for a small network, classification by hand is impossible. Hence, the primary objective of this review is to review the techniques prior to classification process suit to IDS data.

Keywords: Intrusion Detection System, security, soft computing, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
944 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: Analysis of optimization, artificial intelligence-based optimization, optimization for learning and data analysis, global optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911
943 Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm

Authors: M. Analoui, M. Fadavi Amiri

Abstract:

The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced.

Keywords: Feature reduction, genetic algorithm, pattern classification, nearest neighbor rule classifiers (k-NNR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
942 Ensembling Classifiers – An Application toImage Data Classification from Cherenkov Telescope Experiment

Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti

Abstract:

Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques with classifiers such as random forests, neural networks and support vector machines. The data sets are from MAGIC, a Cherenkov telescope experiment. The task is to classify gamma signals from overwhelmingly hadron and muon signals representing a rare class classification problem. We compare the individual classifiers with their ensemble counterparts and discuss the results. WEKA a wonderful tool for machine learning has been used for making the experiments.

Keywords: Ensembles, WEKA, Neural networks [NN], SupportVector Machines [SVM], Random Forests [RF].

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
941 Multilevel Classifiers in Recognition of Handwritten Kannada Numerals

Authors: Dinesh Acharya U., N. V. Subba Reddy, Krishnamoorthi Makkithaya

Abstract:

The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals based on structural features. Five different types of features, namely, profile based 10-segment string, water reservoir; vertical and horizontal strokes, end points and average boundary length from the minimal bounding box are used in the recognition of numeral. The effect of each feature and their combination in the numeral classification is analyzed using nearest neighbor classifiers. It is common to combine multiple categories of features into a single feature vector for the classification. Instead, separate classifiers can be used to classify based on each visual feature individually and the final classification can be obtained based on the combination of separate base classification results. One popular approach is to combine the classifier results into a feature vector and leaving the decision to next level classifier. This method is extended to extract a better information, possibility distribution, from the base classifiers in resolving the conflicts among the classification results. Here, we use fuzzy k Nearest Neighbor (fuzzy k-NN) as base classifier for individual feature sets, the results of which together forms the feature vector for the final k Nearest Neighbor (k-NN) classifier. Testing is done, using different features, individually and in combination, on a database containing 1600 samples of different numerals and the results are compared with the results of different existing methods.

Keywords: Fuzzy k Nearest Neighbor, Multiple Classifiers, Numeral Recognition, Structural features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
940 Empirical Mode Decomposition with Wavelet Transform Based Analytic Signal for Power Quality Assessment

Authors: Sudipta Majumdar, Amarendra Kumar Mishra

Abstract:

This paper proposes empirical mode decomposition (EMD) together with wavelet transform (WT) based analytic signal for power quality (PQ) events assessment. EMD decomposes the complex signals into several intrinsic mode functions (IMF). As the PQ events are non stationary, instantaneous parameters have been calculated from these IMFs using analytic signal obtained form WT. We obtained three parameters from IMFs and then used KNN classifier for classification of PQ disturbance. We compared the classification of proposed method for PQ events by obtaining the features using Hilbert transform (HT) method. The classification efficiency using WT based analytic method is 97.5% and using HT based analytic signal is 95.5%.

Keywords: Empirical mode decomposition, Hilbert transform, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287
939 Dynamic Clustering using Particle Swarm Optimization with Application in Unsupervised Image Classification

Authors: Mahamed G.H. Omran, Andries P Engelbrecht, Ayed Salman

Abstract:

A new dynamic clustering approach (DCPSO), based on Particle Swarm Optimization, is proposed. This approach is applied to unsupervised image classification. The proposed approach automatically determines the "optimum" number of clusters and simultaneously clusters the data set with minimal user interference. The algorithm starts by partitioning the data set into a relatively large number of clusters to reduce the effects of initial conditions. Using binary particle swarm optimization the "best" number of clusters is selected. The centers of the chosen clusters is then refined via the Kmeans clustering algorithm. The experiments conducted show that the proposed approach generally found the "optimum" number of clusters on the tested images.

Keywords: Clustering Validation, Particle Swarm Optimization, Unsupervised Clustering, Unsupervised Image Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453
938 An Automated Method to Segment and Classify Masses in Mammograms

Authors: Viet Dzung Nguyen, Duc Thuan Nguyen, Tien Dzung Nguyen, Van Thanh Pham

Abstract:

Mammography is the most effective procedure for an early diagnosis of the breast cancer. Nowadays, people are trying to find a way or method to support as much as possible to the radiologists in diagnosis process. The most popular way is now being developed is using Computer-Aided Detection (CAD) system to process the digital mammograms and prompt the suspicious region to radiologist. In this paper, an automated CAD system for detection and classification of massive lesions in mammographic images is presented. The system consists of three processing steps: Regions-Of- Interest detection, feature extraction and classification. Our CAD system was evaluated on Mini-MIAS database consisting 322 digitalized mammograms. The CAD system-s performance is evaluated using Receiver Operating Characteristics (ROC) and Freeresponse ROC (FROC) curves. The archived results are 3.47 false positives per image (FPpI) and sensitivity of 85%.

Keywords: classification, computer-aided detection, featureextraction, mass detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
937 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications

Authors: S. Sowmyayani

Abstract:

The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.

Keywords: Supervised learning, unsupervised learning, regression, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346
936 Enhanced Multi-Intensity Analysis in Multi-Scenery Classification-Based Macro and Micro Elements

Authors: R. Bremananth

Abstract:

Several computationally challenging issues are encountered while classifying complex natural scenes. In this paper, we address the problems that are encountered in rotation invariance with multi-intensity analysis for multi-scene overlapping. In the present literature, various algorithms proposed techniques for multi-intensity analysis, but there are several restrictions in these algorithms while deploying them in multi-scene overlapping classifications. In order to resolve the problem of multi-scenery overlapping classifications, we present a framework that is based on macro and micro basis functions. This algorithm conquers the minimum classification false alarm while pigeonholing multi-scene overlapping. Furthermore, a quadrangle multi-intensity decay is invoked. Several parameters are utilized to analyze invariance for multi-scenery classifications such as rotation, classification, correlation, contrast, homogeneity, and energy. Benchmark datasets were collected for complex natural scenes and experimented for the framework. The results depict that the framework achieves a significant improvement on gray-level matrix of co-occurrence features for overlapping in diverse degree of orientations while pigeonholing multi-scene overlapping.

Keywords: Automatic classification, contrast, homogeneity, invariant analysis, multi-scene analysis, overlapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
935 Corporate Credit Rating using Multiclass Classification Models with order Information

Authors: Hyunchul Ahn, Kyoung-Jae Kim

Abstract:

Corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has been one of the attractive research topics in the literature. In recent years, multiclass classification models such as artificial neural network (ANN) or multiclass support vector machine (MSVM) have become a very appealing machine learning approaches due to their good performance. However, most of them have only focused on classifying samples into nominal categories, thus the unique characteristic of the credit rating - ordinality - has been seldom considered in their approaches. This study proposes new types of ANN and MSVM classifiers, which are named OMANN and OMSVM respectively. OMANN and OMSVM are designed to extend binary ANN or SVM classifiers by applying ordinal pairwise partitioning (OPP) strategy. These models can handle ordinal multiple classes efficiently and effectively. To validate the usefulness of these two models, we applied them to the real-world bond rating case. We compared the results of our models to those of conventional approaches. The experimental results showed that our proposed models improve classification accuracy in comparison to typical multiclass classification techniques with the reduced computation resource.

Keywords: Artificial neural network, Corporate credit rating, Support vector machines, Ordinal pairwise partitioning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3439
934 A New Classification of Risk-Reduction Options to Improve the Risk-Reduction Readiness of the Railway Industry

Authors: Eberechi Weli, Michael Todinov

Abstract:

The gap between the selection of risk-reduction options in the railway industry and the task of their effective implementation results in compromised safety and substantial losses. An effective risk management must necessarily integrate the evaluation phases with the implementation phase. This paper proposes an essential categorisation of risk reduction measures that best addresses a standard railway industry portfolio. By categorising the risk reduction options into design, operational, procedural and technical options, it is guaranteed that the efforts of the implementation facilitators (people, processes and supporting systems) are systematically harmonised. The classification is based on an integration of fundamental principles of risk reduction in the railway industry with the systems engineering approach.

This paper argues that the use of a similar classification approach is an attribute of organisations possessing a superior level of risk-reduction readiness. The integration of the proposed rational classification structure provides a solid ground for effective risk reduction.

Keywords: Cost effectiveness, organisational readiness, risk reduction, railway, system engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
933 Characterisation and Classification of Natural Transients

Authors: Ernst D. Schmitter

Abstract:

Monitoring lightning electromagnetic pulses (sferics) and other terrestrial as well as extraterrestrial transient radiation signals is of considerable interest for practical and theoretical purposes in astro- and geophysics as well as meteorology. Managing a continuous flow of data, automisation of the detection and classification process is important. Features based on a combination of wavelet and statistical methods proved efficient for analysis and characterisation of transients and as input into a radial basis function network that is trained to discriminate transients from pulse like to wave like.

Keywords: transient signals, statistics, wavelets, neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
932 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life due to the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or COVID-19 induced pneumonia. The early prediction and classification of such lung diseases help reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans are pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publicly available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scans, COVID-19, deep learning, image processing, pneumonia, lung disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610
931 Urban Land Cover Change of Olomouc City Using LANDSAT Images

Authors: Miloš Marjanović, Jaroslav Burian, Ja kub Miřijovský, Jan Harbula

Abstract:

This paper regards the phenomena of intensive suburbanization and urbanization in Olomouc city and in Olomouc region in general for the period of 1986–2009. A Remote Sensing approach that involves tracking of changes in Land Cover units is proposed to quantify the urbanization state and trends in temporal and spatial aspects. It actually consisted of two approaches, Experiment 1 and Experiment 2 which implied two different image classification solutions in order to provide Land Cover maps for each 1986–2009 time split available in the Landsat image set. Experiment 1 dealt with the unsupervised classification, while Experiment 2 involved semi- supervised classification, using a combination of object-based and pixel-based classifiers. The resulting Land Cover maps were subsequently quantified for the proportion of urban area unit and its trend through time, and also for the urban area unit stability, yielding the relation of spatial and temporal development of the urban area unit. Some outcomes seem promising but there is indisputably room for improvements of source data and also processing and filtering.

Keywords: Change detection, image classification, land cover, Landsat images, Olomouc city, urbanization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
930 An Improved Preprocessing for Biosonar Target Classification

Authors: Turgay Temel, John Hallam

Abstract:

An improved processing description to be employed in biosonar signal processing in a cochlea model is proposed and examined. It is compared to conventional models using a modified discrimination analysis and both are tested. Their performances are evaluated with echo data captured from natural targets (trees).Results indicate that the phase characteristics of low-pass filters employed in the echo processing have a significant effect on class separability for this data.

Keywords: Cochlea model, discriminant analysis, neurospikecoding, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
929 Internet: a New Medium to Promote Traditional Dances in Indonesia

Authors: Maria Satya Rani, Fandy Tjiptono, Suyoto

Abstract:

As a multicultural country, Indonesia has many subcultures with unique performing arts. Some of them are well-known to international tourists, such as music ensemble (known as gamelan) in Bali and Java, shadow puppet play (wayang) in Java, and martial arts (known as pencak silat) in Sumatra. Some examples of famous traditional dances in Indonesia are Srimpi from Yogyakarta and Solo, Legong from Bali, and Gong dance from Kalimantan. Performing arts show the identity of a nation. However, they are a complex subject, especially when they are addressed to children. The performing arts, e.g. music, dance theatre, and opera are experiential, experimental, and emotionally charged. Therefore, the right strategy and promotion need to be developed to engage children to appreciate and preserve traditional dances. This study aims to explore and identify possibilities of internet usage as a medium to promote traditional dances, especially to children in Indonesia.

Keywords: children education, culture preservation in Indonesia, national identity, online promotion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
928 Gene Expression Data Classification Using Discriminatively Regularized Sparse Subspace Learning

Authors: Chunming Xu

Abstract:

Sparse representation which can represent high dimensional data effectively has been successfully used in computer vision and pattern recognition problems. However, it doesn-t consider the label information of data samples. To overcome this limitation, we develop a novel dimensionality reduction algorithm namely dscriminatively regularized sparse subspace learning(DR-SSL) in this paper. The proposed DR-SSL algorithm can not only make use of the sparse representation to model the data, but also can effective employ the label information to guide the procedure of dimensionality reduction. In addition,the presented algorithm can effectively deal with the out-of-sample problem.The experiments on gene-expression data sets show that the proposed algorithm is an effective tool for dimensionality reduction and gene-expression data classification.

Keywords: sparse representation, dimensionality reduction, labelinformation, sparse subspace learning, gene-expression data classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
927 Gene Selection Guided by Feature Interdependence

Authors: Hung-Ming Lai, Andreas Albrecht, Kathleen Steinhöfel

Abstract:

Cancers could normally be marked by a number of differentially expressed genes which show enormous potential as biomarkers for a certain disease. Recent years, cancer classification based on the investigation of gene expression profiles derived by high-throughput microarrays has widely been used. The selection of discriminative genes is, therefore, an essential preprocess step in carcinogenesis studies. In this paper, we have proposed a novel gene selector using information-theoretic measures for biological discovery. This multivariate filter is a four-stage framework through the analyses of feature relevance, feature interdependence, feature redundancy-dependence and subset rankings, and having been examined on the colon cancer data set. Our experimental result show that the proposed method outperformed other information theorem based filters in all aspect of classification errors and classification performance.

Keywords: Colon cancer, feature interdependence, feature subset selection, gene selection, microarray data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
926 A New Weighted LDA Method in Comparison to Some Versions of LDA

Authors: Delaram Jarchi, Reza Boostani

Abstract:

Linear Discrimination Analysis (LDA) is a linear solution for classification of two classes. In this paper, we propose a variant LDA method for multi-class problem which redefines the between class and within class scatter matrices by incorporating a weight function into each of them. The aim is to separate classes as much as possible in a situation that one class is well separated from other classes, incidentally, that class must have a little influence on classification. It has been suggested to alleviate influence of classes that are well separated by adding a weight into between class scatter matrix and within class scatter matrix. To obtain a simple and effective weight function, ordinary LDA between every two classes has been used in order to find Fisher discrimination value and passed it as an input into two weight functions and redefined between class and within class scatter matrices. Experimental results showed that our new LDA method improved classification rate, on glass, iris and wine datasets, in comparison to different versions of LDA.

Keywords: Discriminant vectors, weighted LDA, uncorrelation, principle components, Fisher-face method, Bootstarp method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
925 Classification of the Latin Alphabet as Pattern on ARToolkit Markers for Augmented Reality Applications

Authors: Mohamed Badeche, Mohamed Benmohammed

Abstract:

augmented reality is a technique used to insert virtual objects in real scenes. One of the most used libraries in the area is the ARToolkit library. It is based on the recognition of the markers that are in the form of squares with a pattern inside. This pattern which is mostly textual is source of confusing. In this paper, we present the results of a classification of Latin characters as a pattern on the ARToolkit markers to know the most distinguishable among them.

Keywords: ARToolkit library, augmented reality, K-means, patterns

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
924 Genetic Algorithm for Feature Subset Selection with Exploitation of Feature Correlations from Continuous Wavelet Transform: a real-case Application

Authors: G. Van Dijck, M. M. Van Hulle, M. Wevers

Abstract:

A genetic algorithm (GA) based feature subset selection algorithm is proposed in which the correlation structure of the features is exploited. The subset of features is validated according to the classification performance. Features derived from the continuous wavelet transform are potentially strongly correlated. GA-s that do not take the correlation structure of features into account are inefficient. The proposed algorithm forms clusters of correlated features and searches for a good candidate set of clusters. Secondly a search within the clusters is performed. Different simulations of the algorithm on a real-case data set with strong correlations between features show the increased classification performance. Comparison is performed with a standard GA without use of the correlation structure.

Keywords: Classification, genetic algorithm, hierarchicalagglomerative clustering, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
923 Mining of Interesting Prediction Rules with Uniform Two-Level Genetic Algorithm

Authors: Bilal Alatas, Ahmet Arslan

Abstract:

The main goal of data mining is to extract accurate, comprehensible and interesting knowledge from databases that may be considered as large search spaces. In this paper, a new, efficient type of Genetic Algorithm (GA) called uniform two-level GA is proposed as a search strategy to discover truly interesting, high-level prediction rules, a difficult problem and relatively little researched, rather than discovering classification knowledge as usual in the literatures. The proposed method uses the advantage of uniform population method and addresses the task of generalized rule induction that can be regarded as a generalization of the task of classification. Although the task of generalized rule induction requires a lot of computations, which is usually not satisfied with the normal algorithms, it was demonstrated that this method increased the performance of GAs and rapidly found interesting rules.

Keywords: Classification rule mining, data mining, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
922 Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles

Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis

Abstract:

Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.

Keywords: Big data, big data ecosystem, classification of big data actors, big data actors roles, definition of government (big) data ecosystem, data-driven government, eGovernment, gaps in data ecosystems, government (big) data, public administration, systematic literature review.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
921 Effects of Hidden Unit Sizes and Autoregressive Features in Mental Task Classification

Authors: Ramaswamy Palaniappan, Nai-Jen Huan

Abstract:

Classification of electroencephalogram (EEG) signals extracted during mental tasks is a technique that is actively pursued for Brain Computer Interfaces (BCI) designs. In this paper, we compared the classification performances of univariateautoregressive (AR) and multivariate autoregressive (MAR) models for representing EEG signals that were extracted during different mental tasks. Multilayer Perceptron (MLP) neural network (NN) trained by the backpropagation (BP) algorithm was used to classify these features into the different categories representing the mental tasks. Classification performances were also compared across different mental task combinations and 2 sets of hidden units (HU): 2 to 10 HU in steps of 2 and 20 to 100 HU in steps of 20. Five different mental tasks from 4 subjects were used in the experimental study and combinations of 2 different mental tasks were studied for each subject. Three different feature extraction methods with 6th order were used to extract features from these EEG signals: AR coefficients computed with Burg-s algorithm (ARBG), AR coefficients computed with stepwise least square algorithm (ARLS) and MAR coefficients computed with stepwise least square algorithm. The best results were obtained with 20 to 100 HU using ARBG. It is concluded that i) it is important to choose the suitable mental tasks for different individuals for a successful BCI design, ii) higher HU are more suitable and iii) ARBG is the most suitable feature extraction method.

Keywords: Autoregressive, Brain-Computer Interface, Electroencephalogram, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
920 Multi-View Neural Network Based Gait Recognition

Authors: Saeid Fazli, Hadis Askarifar, Maryam Sheikh Shoaie

Abstract:

Human identification at a distance has recently gained growing interest from computer vision researchers. Gait recognition aims essentially to address this problem by identifying people based on the way they walk [1]. Gait recognition has 3 steps. The first step is preprocessing, the second step is feature extraction and the third one is classification. This paper focuses on the classification step that is essential to increase the CCR (Correct Classification Rate). Multilayer Perceptron (MLP) is used in this work. Neural Networks imitate the human brain to perform intelligent tasks [3].They can represent complicated relationships between input and output and acquire knowledge about these relationships directly from the data [2]. In this paper we apply MLP NN for 11 views in our database and compare the CCR values for these views. Experiments are performed with the NLPR databases, and the effectiveness of the proposed method for gait recognition is demonstrated.

Keywords: Human motion analysis, biometrics, gait recognition, principal component analysis, MLP neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
919 A Systematic Literature Review on Security and Privacy Design Patterns

Authors: Ebtehal Aljedaani, Maha Aljohani

Abstract:

Privacy and security patterns are both important for developing software that protects users' data and privacy. Privacy patterns are designed to address common privacy problems, such as unauthorized data collection and disclosure. Security patterns are designed to protect software from attack and ensure reliability and trustworthiness. Using privacy and security patterns, software engineers can implement security and privacy by design principles, which means that security and privacy are considered throughout the software development process. These patterns are available to translate "security and privacy-by-design" into practical advice for software engineering. Previous research on privacy and security patterns has typically focused on one category of patterns at a time. This paper aims to bridge this gap by merging the two categories and identifying their similarities and differences. To do this, we conducted a systematic literature review of 40 research papers on privacy and security patterns. The papers were analyzed based on the category of the pattern, the classification of the pattern, and the security requirements that the pattern addresses. This paper presents the results of a comprehensive review of privacy and security design patterns. The review is intended to help future IT designers understand the relationship between the two types of patterns and how to use them to design secure and privacy-preserving software. The paper provides a clear classification of privacy and security design patterns, along with examples of each type. We found that there is only one widely accepted classification of privacy design patterns, while there are several competing classifications of security design patterns. Three types of security design patterns were found to be the most used.

Keywords: Design patterns, security, privacy, classification of patterns, security patterns, privacy patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63
918 A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah

Abstract:

Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification.

Keywords: Hyperspectral image, spatial hypergraph, dimensionality reduction, semantic interpretation, band selection, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
917 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel

Abstract:

Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: Artificial Immune System, Breast Cancer Diagnosis, Euclidean Function, Gaussian Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121