Search results for: SQL injection attack detection.
1745 Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack
Authors: Syed Fahad Tahir, Asifullah Khan, Abdul Majid, Anwar M. Mirza
Abstract:
In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.Keywords: Bit Correct Ratio (BCR), Grid Search, Intelligent Decoding, Jackknife Technique, Support Vector Machine (SVM), Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691744 The Guaranteed Detection of the Seismoacoustic Emission Source in the C-OTDR Systems
Authors: Andrey V. Timofeev
Abstract:
A method is proposed for stable detection of seismoacoustic sources in C-OTDR systems that guarantee given upper bounds for probabilities of type I and type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDRsystem are presented.
Keywords: Guaranteed detection, C-OTDR systems, change point, interval estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19861743 A Novel Impulse Detector for Filtering of Highly Corrupted Images
Authors: Umesh Ghanekar
Abstract:
As the performance of the filtering system depends upon the accuracy of the noise detection scheme, in this paper, we present a new scheme for impulse noise detection based on two levels of decision. In this scheme in the first stage we coarsely identify the corrupted pixels and in the second stage we finally decide whether the pixel under consideration is really corrupt or not. The efficacy of the proposed filter has been confirmed by extensive simulations.Keywords: Impulse detection, noise removal, image filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14081742 Detection of New Attacks on Ubiquitous Services in Cloud Computing and Countermeasures
Authors: L. Sellami, D. Idoughi, P. F. Tiako
Abstract:
Cloud computing provides infrastructure to the enterprise through the Internet allowing access to cloud services at anytime and anywhere. This pervasive aspect of the services, the distributed nature of data and the wide use of information make cloud computing vulnerable to intrusions that violate the security of the cloud. This requires the use of security mechanisms to detect malicious behavior in network communications and hosts such as intrusion detection systems (IDS). In this article, we focus on the detection of intrusion into the cloud sing IDSs. We base ourselves on client authentication in the computing cloud. This technique allows to detect the abnormal use of ubiquitous service and prevents the intrusion of cloud computing. This is an approach based on client authentication data. Our IDS provides intrusion detection inside and outside cloud computing network. It is a double protection approach: The security user node and the global security cloud computing.
Keywords: Cloud computing, intrusion detection system, privacy, trust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10991741 Detection Characteristics of the Random and Deterministic Signals in Antenna Arrays
Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev
Abstract:
In this paper, approach to incoherent signal detection in multi-element antenna array are researched and modeled. Two types of useful signals with unknown wavefront were considered: first one, deterministic (Barker code), and second one, random (Gaussian distribution). The derivation of the sufficient statistics took into account the linearity of the antenna array. The performance characteristics and detecting curves are modeled and compared for different useful signals parameters and for different number of elements of the antenna array. Results of researches in case of some additional conditions can be applied to a digital communications systems.Keywords: Antenna array, detection curves, performance characteristics, quadrature processing, signal detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17741740 Segmentation of Noisy Digital Images with Stochastic Gradient Kernel
Authors: Abhishek Neogi, Jayesh Verma, Pinaki Pratim Acharjya
Abstract:
Image segmentation and edge detection is a fundamental section in image processing. In case of noisy images Edge Detection is very less effective if we use conventional Spatial Filters like Sobel, Prewitt, LOG, Laplacian etc. To overcome this problem we have proposed the use of Stochastic Gradient Mask instead of Spatial Filters for generating gradient images. The present study has shown that the resultant images obtained by applying Stochastic Gradient Masks appear to be much clearer and sharper as per Edge detection is considered.Keywords: Image segmentation, edge Detection, noisy images, spatialfilters, stochastic gradient kernel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15201739 A New Method for Identifying Broken Rotor Bars in Squirrel Cage Induction Motor Based on Particle Swarm Optimization Method
Authors: V. Rashtchi, R. Aghmasheh
Abstract:
Detection of squirrel cage induction motor (SCIM) broken bars has long been an important but difficult job in the detection area of motor faults. Early detection of this abnormality in the motor would help to avoid costly breakdowns. A new detection method based on particle swarm optimization (PSO) is presented in this paper. Stator current in an induction motor will be measured and characteristic frequency components of faylted rotor will be detected by minimizing a fitness function using pso. Supply frequency and side band frequencies and their amplitudes can be estimated by the proposed method. The proposed method is applied to a faulty motor with one and two broken bars in different loading condition. Experimental results prove that the proposed method is effective and applicable.
Keywords: broken bar, PSO, fault detection, SCIM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17161738 Detection of Clipped Fragments in Speech Signals
Authors: Sergei Aleinik, Yuri Matveev
Abstract:
In this paper a novel method for the detection of clipping in speech signals is described. It is shown that the new method has better performance than known clipping detection methods, is easy to implement, and is robust to changes in signal amplitude, size of data, etc. Statistical simulation results are presented.
Keywords: Clipping, clipped signal, speech signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26731737 Target Signal Detection Using MUSIC Spectrum in Noise Environment
Authors: Sangjun Park, Sangbae Jeong, Moonsung Han, Minsoo hahn
Abstract:
In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. The algorithm detects the DOAs of multiple sources using the inverse of the eigenvalue-weighted eigen spectra. To apply the algorithm to target signal detection for GSC-based beamforming, we utilize its spectral response for the target DOA in noisy conditions. For evaluation of the algorithm, the performance of the proposed target signal detection method is compared with that of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics(ROC) curves.Keywords: Beamforming, direction of arrival, multiple signal classification, target signal detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25411736 Activation of Prophenoloxidase during Bacterial Injection into the Desert Locust, Schistocerca Gregaria
Authors: Shaiemaa, A. Momen, Dalia, A.M. Salem, Emad, M.S. Barakat, Mohamed, S. Salama
Abstract:
The present study has been conducted to characterize the prophenoloxidase (PPO) system of the desert locust, Schistocerca gregaria following injection of Bacillus thuringiensis kurstaki (Bt). The bulk of PPO system was associated with haemocytes and a little amount was found in plasma. This system was activated by different activators such as laminarin, lipopolysaccharide (LPS) and trypsin suggesting that the stimulatory mechanism may involve an enzyme cascade of one or more associated molecules. These activators did not activate all the molecules of the cascade. Presence of phenoloxidase activity (PO) coincides with the appearance of protein band with molecular weight (MW) 70.154 KD (Kilo Dalton).Keywords: Schistocerca gregaria, haemolymph, proteins, prophenoloxidase system, phenoloxidase
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17221735 Burnout Recognition for Call Center Agents by Using Skin Color Detection with Hand Poses
Authors: El Sayed A. Sharara, A. Tsuji, K. Terada
Abstract:
Call centers have been expanding and they have influence on activation in various markets increasingly. A call center’s work is known as one of the most demanding and stressful jobs. In this paper, we propose the fatigue detection system in order to detect burnout of call center agents in the case of a neck pain and upper back pain. Our proposed system is based on the computer vision technique combined skin color detection with the Viola-Jones object detector. To recognize the gesture of hand poses caused by stress sign, the YCbCr color space is used to detect the skin color region including face and hand poses around the area related to neck ache and upper back pain. A cascade of clarifiers by Viola-Jones is used for face recognition to extract from the skin color region. The detection of hand poses is given by the evaluation of neck pain and upper back pain by using skin color detection and face recognition method. The system performance is evaluated using two groups of dataset created in the laboratory to simulate call center environment. Our call center agent burnout detection system has been implemented by using a web camera and has been processed by MATLAB. From the experimental results, our system achieved 96.3% for upper back pain detection and 94.2% for neck pain detection.
Keywords: Call center agents, fatigue, skin color detection, face recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10441734 Immune Responce in Mice Immunized with Live Cold-Adapted Influenza Vaccine in Combination with Chitosan-Based Adjuvants
Authors: Nelly К. Akhmatova, Оlga V. Lebedinskaya, Ancha V. Baranova, Еlena А. Lebedinskaya, Ekaterina V. Sorokina, Elvin А. Akhmatov, Аnatoliy P. Godovalov, Stanislav G. Markushin
Abstract:
An influence of intranasal combined injection of live cold-adapted influenza vaccine with chitosan derivatives as adjuvants on the subpopulation structure of mononuclear leukocytes of mouse spleen which reflects the orientation of the immune response was studied. It is found that the inclusion of chitosan preparations promotes activation of cellular-level of immune response.Keywords: Immunophenotype, chitosan, cold-adapted vaccine, intranasal injection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18871733 An Expert System for Car Failure Diagnosis
Authors: Ahmad T. Al-Taani
Abstract:
Car failure detection is a complicated process and requires high level of expertise. Any attempt of developing an expert system dealing with car failure detection has to overcome various difficulties. This paper describes a proposed knowledge-based system for car failure detection. The paper explains the need for an expert system and the some issues on developing knowledge-based systems, the car failure detection process and the difficulties involved in developing the system. The system structure and its components and their functions are described. The system has about 150 rules for different types of failures and causes. It can detect over 100 types of failures. The system has been tested and gave promising results.Keywords: Expert system, car failure diagnosis, knowledgebasedsystem, CLIPS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119161732 CdS Quantum Dots as Fluorescent Probes for Detection of Naphthalene
Authors: Zhengyu Yan, Yan Yu, Jianqiu Chen
Abstract:
A novel sensing system has been designed for naphthalene detection based on the quenched fluorescence signal of CdS quantum dots. The fluorescence intensity of the system reduced significantly after adding CdS quantum dots to the water pollution model because of the fluorescent static quenching f mechanism. Herein, we have demonstrated the facile methodology can offer a convenient and low analysis cost with the recovery rate as 97.43%-103.2%, which has potential application prospect.Keywords: CdS quantum dots, modification, detection, naphthalene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12741731 Evaluation of Haar Cascade Classifiers Designed for Face Detection
Authors: R. Padilla, C. F. F. Costa Filho, M. G. F. Costa
Abstract:
In the past years a lot of effort has been made in the field of face detection. The human face contains important features that can be used by vision-based automated systems in order to identify and recognize individuals. Face location, the primary step of the vision-based automated systems, finds the face area in the input image. An accurate location of the face is still a challenging task. Viola-Jones framework has been widely used by researchers in order to detect the location of faces and objects in a given image. Face detection classifiers are shared by public communities, such as OpenCV. An evaluation of these classifiers will help researchers to choose the best classifier for their particular need. This work focuses of the evaluation of face detection classifiers minding facial landmarks.Keywords: Face datasets, face detection, facial landmarking, haar wavelets, Viola-Jones detectors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54091730 Practical Aspects of Face Recognition
Authors: S. Vural, H. Yamauchi
Abstract:
Current systems for face recognition techniques often use either SVM or Adaboost techniques for face detection part and use PCA for face recognition part. In this paper, we offer a novel method for not only a powerful face detection system based on Six-segment-filters (SSR) and Adaboost learning algorithms but also for a face recognition system. A new exclusive face detection algorithm has been developed and connected with the recognition algorithm. As a result of it, we obtained an overall high-system performance compared with current systems. The proposed algorithm was tested on CMU, FERET, UNIBE, MIT face databases and significant performance has obtained.Keywords: Adaboost, Face Detection, Face recognition, SVM, Gabor filters, PCA-ICA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15971729 Optimization of Control Parameters for MRR in Injection Flushing Type of EDM on Stainless Steel 304 Workpiece
Authors: M. S. Reza, M. Hamdi, A.S. Hadi
Abstract:
The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece with copper tools are being optimized according to its individual machining characteristic i.e. material removal rate (MRR). Lower MRR during EDM machining process may decrease its- machining productivity. Hence, the quality characteristic for MRR is set to higher-the-better to achieve the optimum machining productivity. Taguchi method has been used for the construction, layout and analysis of the experiment for each of the machining characteristic for the MRR. The use of Taguchi method in the experiment saves a lot of time and cost of preparing and machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that the higher the discharge voltage, the higher will be the MRR.Keywords: ANOVA, EDM, Injection Flushing, L18 OrthogonalArray, MRR, Stainless Steel 304
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18201728 A Review on Soft Computing Technique in Intrusion Detection System
Authors: Noor Suhana Sulaiman, Rohani Abu Bakar, Norrozila Sulaiman
Abstract:
Intrusion Detection System is significant in network security. It detects and identifies intrusion behavior or intrusion attempts in a computer system by monitoring and analyzing the network packets in real time. In the recent year, intelligent algorithms applied in the intrusion detection system (IDS) have been an increasing concern with the rapid growth of the network security. IDS data deals with a huge amount of data which contains irrelevant and redundant features causing slow training and testing process, higher resource consumption as well as poor detection rate. Since the amount of audit data that an IDS needs to examine is very large even for a small network, classification by hand is impossible. Hence, the primary objective of this review is to review the techniques prior to classification process suit to IDS data.Keywords: Intrusion Detection System, security, soft computing, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18641727 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network
Authors: Sanae Attioui, Said Najah
Abstract:
The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.
Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4981726 Program Memories Error Detection and Correction On-Board Earth Observation Satellites
Authors: Y. Bentoutou
Abstract:
Memory Errors Detection and Correction aim to secure the transaction of data between the central processing unit of a satellite onboard computer and its local memory. In this paper, the application of a double-bit error detection and correction method is described and implemented in Field Programmable Gate Array (FPGA) technology. The performance of the proposed EDAC method is measured and compared with two different EDAC devices, using the same FPGA technology. Statistical analysis of single-event upset (SEU) and multiple-bit upset (MBU) activity in commercial memories onboard the first Algerian microsatellite Alsat-1 is given.
Keywords: Error Detection and Correction, On-board computer, small satellite missions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22201725 Thermosolutal MHD Mixed Marangoni Convective Boundary Layers in the Presence of Suction or Injection
Authors: Noraini Ahmad, Seripah Awang Kechil, Norma Mohd Basir
Abstract:
The steady coupled dissipative layers, called Marangoni mixed convection boundary layers, in the presence of a magnetic field and solute concentration that are formed along the surface of two immiscible fluids with uniform suction or injection effects is examined. The similarity boundary layer equations are solved numerically using the Runge-Kutta Fehlberg with shooting technique. The Marangoni, buoyancy and external pressure gradient effects that are generated in mixed convection boundary layer flow are assessed. The velocity, temperature and concentration boundary layers thickness decrease with the increase of the magnetic field strength and the injection to suction. For buoyancy-opposed flow, the Marangoni mixed convection parameter enhances the velocity boundary layer but decreases the temperature and concentration boundary layers. However, for the buoyancy-assisted flow, the Marangoni mixed convection parameter decelerates the velocity but increases the temperature and concentration boundary layers.Keywords: Magnetic field, mixed Marangoni convection, similarity boundary layers, solute concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18821724 Harmonic Reduction In Three-Phase Parallel Connected Inverter
Authors: M.A.A. Younis, N. A. Rahim, S. Mekhilef
Abstract:
This paper presents the design and analysis of a parallel connected inverter configuration of. The configuration consists of parallel connected three-phase dc/ac inverter. Series resistors added to the inverter output to maintain same current in each inverter of the two parallel inverters, and to reduce the circulating current in the parallel inverters to the minimum. High frequency third harmonic injection PWM (THIPWM) employed to reduce the total harmonic distortion and to make maximum use of the voltage source. DSP was used to generate the THIPWM and the control algorithm for the converter. Selected experimental results have been shown to validate the proposed system.Keywords: Three-phase inverter, Third harmonic injection PWM, inverters parallel connection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37741723 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection
Authors: A. Mirrashid, M. Khoshbin, A. Atghaei, H. Shahbazi
Abstract:
In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.
Keywords: Attention, fire detection, smoke detection, spatiotemporal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3561722 Neural Network in Fixed Time for Collision Detection between Two Convex Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
In this paper, a different architecture of a collision detection neural network (DCNN) is developed. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons, linear and threshold logic, which simplified the actual implementation of all the networks proposed. The study of the collision detection is divided into two sections, the collision between a point and a polyhedron and then the collision between two convex polyhedra. The aim of this research is to determine through the AMAXNET network a mini maximum point in a fixed time, which allows us to detect the presence of a potential collision.
Keywords: Collision identification, fixed time, convex polyhedra, neural network, AMAXNET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161721 A Genetic Algorithm Approach Considering Zero Injection Bus Constraint Modeling for Optimal Phasor Measurement Unit Placement
Authors: G. Chandana Sushma, T. R. Jyothsna
Abstract:
This paper presents optimal Phasor Measurement Unit (PMU) Placement in network using a genetic algorithm approach as it is infeasible and require high installation cost to place PMUs at every bus in network. This paper proposes optimal PMU allocation considering observability and redundancy utilizing Genetic Algorithm (GA) approach. The nonlinear constraints of buses are modeled to give accurate results. Constraints associated with Zero Injection (ZI) buses and radial buses are modeled to optimize number of locations for PMU placement. GA is modeled with ZI bus constraints to minimize number of locations without losing complete observability. Redundancy of every bus in network is computed to show optimum redundancy of complete system network. The performance of method is measured by Bus Observability Index (BOI) and Complete System Observability Performance Index (CSOPI). MATLAB simulations are carried out on IEEE -14, -30 and -57 bus-systems and compared with other methods in literature survey to show the effectiveness of the proposed approach.
Keywords: Constraints, genetic algorithm, observability, phasor measurement units, redundancy, synchrophasors, zero injection bus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7841720 An Automated Method to Segment and Classify Masses in Mammograms
Authors: Viet Dzung Nguyen, Duc Thuan Nguyen, Tien Dzung Nguyen, Van Thanh Pham
Abstract:
Mammography is the most effective procedure for an early diagnosis of the breast cancer. Nowadays, people are trying to find a way or method to support as much as possible to the radiologists in diagnosis process. The most popular way is now being developed is using Computer-Aided Detection (CAD) system to process the digital mammograms and prompt the suspicious region to radiologist. In this paper, an automated CAD system for detection and classification of massive lesions in mammographic images is presented. The system consists of three processing steps: Regions-Of- Interest detection, feature extraction and classification. Our CAD system was evaluated on Mini-MIAS database consisting 322 digitalized mammograms. The CAD system-s performance is evaluated using Receiver Operating Characteristics (ROC) and Freeresponse ROC (FROC) curves. The archived results are 3.47 false positives per image (FPpI) and sensitivity of 85%.Keywords: classification, computer-aided detection, featureextraction, mass detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16551719 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data
Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores
Abstract:
Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.Keywords: SAR, generalized gamma distribution, detection curves, radar detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11741718 Intrusion Detection Using a New Particle Swarm Method and Support Vector Machines
Authors: Essam Al Daoud
Abstract:
Intrusion detection is a mechanism used to protect a system and analyse and predict the behaviours of system users. An ideal intrusion detection system is hard to achieve due to nonlinearity, and irrelevant or redundant features. This study introduces a new anomaly-based intrusion detection model. The suggested model is based on particle swarm optimisation and nonlinear, multi-class and multi-kernel support vector machines. Particle swarm optimisation is used for feature selection by applying a new formula to update the position and the velocity of a particle; the support vector machine is used as a classifier. The proposed model is tested and compared with the other methods using the KDD CUP 1999 dataset. The results indicate that this new method achieves better accuracy rates than previous methods.Keywords: Feature selection, Intrusion detection, Support vector machine, Particle swarm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19901717 Modeling and Simulation of Dynamic Voltage Restorer for Mitigation of Voltage Sags
Authors: S. Ganesh, L. Raguraman, E. Anushya, J. krishnasree
Abstract:
Voltage sags are the most common power quality disturbance in the distribution system. It occurs due to the fault in the electrical network or by the starting of a large induction motor and this can be solved by using the custom power devices such as Dynamic Voltage Restorer (DVR). In this paper DVR is proposed to compensate voltage sags on critical loads dynamically. The DVR consists of VSC, injection transformers, passive filters and energy storage (lead acid battery). By injecting an appropriate voltage, the DVR restores a voltage waveform and ensures constant load voltage. The simulation and experimental results of a DVR using MATLAB software shows clearly the performance of the DVR in mitigating voltage sags.
Keywords: Dynamic voltage restorer, Voltage sags, Power quality, Injection methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42861716 A Comprehensive Method of Fault Detection and Isolation Based On Testability Modeling Data
Authors: Junyou Shi, Weiwei Cui
Abstract:
Testability modeling is a commonly used method in testability design and analysis of system. A dependency matrix will be obtained from testability modeling, and we will give a quantitative evaluation about fault detection and isolation. Based on the dependency matrix, we can obtain the diagnosis tree. The tree provides the procedures of the fault detection and isolation. But the dependency matrix usually includes built-in test (BIT) and manual test in fact. BIT runs the test automatically and is not limited by the procedures. The method above cannot give a more efficient diagnosis and use the advantages of the BIT. A Comprehensive method of fault detection and isolation is proposed. This method combines the advantages of the BIT and Manual test by splitting the matrix. The result of the case study shows that the method is effective.
Keywords: BIT, fault detection, fault isolation, testability modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666