Search results for: Bayesian network; structure learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6846

Search results for: Bayesian network; structure learning

6576 e/b-Learning Activities and High School Pedagogy

Authors: Rui Antunes

Abstract:

This article presents the implementation of several different e/b-Learning collaborative activities, used to improve the students learning process in an high school Polytechnic Institution. A new learning model arises, based on a combination between face-toface and distance leaning. Learning is now becoming centered with the development of collaborative activities, and its actors (teachers and students) have to be re-socialized to a new e/b-Learning paradigm. Measuring approaches are proposed for this model and results are presented, showing prospective correlation between students learning success and the use of online collaborative activities.

Keywords: e/b-Learning, Collaborative Learning, TeachingCommunities, Web-based Courseware

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
6575 Blended Learning through Google Classroom

Authors: Lee Bih Ni

Abstract:

This paper discusses that good learning involves all academic groups in the school. Blended learning is learning outside the classroom. Google Classroom is a free service learning app for schools, non-profit organizations and anyone with a personal Google account. Facilities accessed through computers and mobile phones are very useful for school teachers and students. Blended learning classrooms using both traditional and technology-based methods for teaching have become the norm for many educators. Using Google Classroom gives students access to online learning. Even if the teacher is not in the classroom, the teacher can provide learning. This is the supervision of the form of the teacher when the student is outside the school.

Keywords: Blended learning, learning app, Google classroom, schools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
6574 The Future of Blended Learning

Authors: Reem A. Alebaikan

Abstract:

The emergence of blended learning has been influenced by the rapid changes in Higher Education within the last few years. However, there is a lack of studies that look into the future of blended learning in the Saudi context. The most likely explanation is that blended learning is relatively new and, with respect to learning in general, under-researched. This study addresses this gap and explores the views of lecturers and students towards the future of blended learning in Saudi Arabia. This study was informed by the interpretive paradigm that appears to be most appropriate to understand and interpret the perceptions of students and instructors towards a new learning environment. While globally there has been considerable research on the perceptions of e-learning and blended learning with its different models, there is plenty of space for further research specifically in the Arab region, and in Saudi Arabia where blended learning is now being introduced.

Keywords: blended learning, higher education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416
6573 Automatic Number Plate Recognition System Based on Deep Learning

Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi

Abstract:

In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.

Keywords: Automatic number plate recognition, character segmentation, convolutional neural network, CNN, deep learning, number plate localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
6572 Fault Tolerance in Distributed Database Systems

Authors: M. A. Adeboyejo, O. O. Adeosun

Abstract:

Pioneer networked systems assume that connections are reliable, and a faulty operation will be considered in case of losing a connection. Transient connections are typical of mobile devices. Areas of application of data sharing system such as these, lead to the conclusion that network connections may not always be reliable, and that the conventional approaches can be improved. Nigerian commercial banking industry is a critical system whose operation is increasingly becoming dependent on information technology (IT) driven information system. The proposed solution to this problem makes use of a hierarchically clustered network structure which we selected to reflect (as much as possible) the typical organizational structure of the Nigerian commercial banks. Representative transactions such as data updates and replication of the results of such updates were used to simulate the proposed model to show its applicability.

Keywords: Dependability, reliability, data redundancy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3357
6571 Implementation of TinyHash based on Hash Algorithm for Sensor Network

Authors: HangRok Lee, YongJe Choi, HoWon Kim

Abstract:

In recent years, it has been proposed security architecture for sensor network.[2][4]. One of these, TinySec by Chris Kalof, Naveen Sastry, David Wagner had proposed Link layer security architecture, considering some problems of sensor network. (i.e : energy, bandwidth, computation capability,etc). The TinySec employs CBC_mode of encryption and CBC-MAC for authentication based on SkipJack Block Cipher. Currently, This TinySec is incorporated in the TinyOS for sensor network security. This paper introduces TinyHash based on general hash algorithm. TinyHash is the module in order to replace parts of authentication and integrity in the TinySec. it implies that apply hash algorithm on TinySec architecture. For compatibility about TinySec, Components in TinyHash is constructed as similar structure of TinySec. And TinyHash implements the HMAC component for authentication and the Digest component for integrity of messages. Additionally, we define the some interfaces for service associated with hash algorithm.

Keywords: sensor network security, nesC, TinySec, TinyOS, Hash, HMAC, integrity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2353
6570 Hierarchical Clustering Analysis with SOM Networks

Authors: Diego Ordonez, Carlos Dafonte, Minia Manteiga, Bernardino Arcayy

Abstract:

This work presents a neural network model for the clustering analysis of data based on Self Organizing Maps (SOM). The model evolves during the training stage towards a hierarchical structure according to the input requirements. The hierarchical structure symbolizes a specialization tool that provides refinements of the classification process. The structure behaves like a single map with different resolutions depending on the region to analyze. The benefits and performance of the algorithm are discussed in application to the Iris dataset, a classical example for pattern recognition.

Keywords: Neural networks, Self-organizing feature maps, Hierarchicalsystems, Pattern clustering methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
6569 Optimal and Critical Path Analysis of State Transportation Network Using Neo4J

Authors: Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa

Abstract:

A transportation network is a realization of a spatial network, describing a structure which permits either vehicular movement or flow of some commodity. Examples include road networks, railways, air routes, pipelines, and many more. The transportation network plays a vital role in maintaining the vigor of the nation’s economy. Hence, ensuring the network stays resilient all the time, especially in the face of challenges such as heavy traffic loads and large scale natural disasters, is of utmost importance. In this paper, we used the Neo4j application to develop the graph. Neo4j is the world's leading open-source, NoSQL, a native graph database that implements an ACID-compliant transactional backend to applications. The Southern California network model is developed using the Neo4j application and obtained the most critical and optimal nodes and paths in the network using centrality algorithms. The edge betweenness centrality algorithm calculates the critical or optimal paths using Yen's k-shortest paths algorithm, and the node betweenness centrality algorithm calculates the amount of influence a node has over the network. The preliminary study results confirm that the Neo4j application can be a suitable tool to study the important nodes and the critical paths for the major congested metropolitan area.

Keywords: Transportation network, critical path, connectivity reliability, network model, Neo4J application, optimal path, critical path, edge betweenness centrality index, node betweenness centrality index, Yen’s k-shortest paths.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
6568 The Design of the Blended Learning System via E-Media and Online Learning for the Asynchronous Learning: Case Study of Process Management Subject

Authors: Pimploi Tirastittam, Suppara Charoenpoom

Abstract:

Nowadays the asynchronous learning has granted the permission to the anywhere and anything learning via the technology and E-media which give the learner more convenient. This research is about the design of the blended and online learning for the asynchronous learning of the process management subject in order to create the prototype of this subject asynchronous learning which will create the easiness and increase capability in the learning. The pattern of learning is the integration between the in-class learning and online learning via the internet. This research is mainly focused on the online learning and the online learning can be divided into 5 parts which are virtual classroom, online content, collaboration, assessment and reference material. After the system design was finished, it was evaluated and tested by 5 experts in blended learning design and 10 students which the user’s satisfaction level is good. The result is as good as the assumption so the system can be used in the process management subject for a real usage.

Keywords: Blended Learning, Asynchronous Learning, Design, Process Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
6567 E-Learning Management Systems General Framework

Authors: Hamed Fawareh

Abstract:

The recent development in learning technologies leads to emerge many learning management systems (LMS). In this study, we concentrate on the specifications and characteristics of LMSs. Furthermore, this paper emphasizes on the feature of e-learning management systems. The features take on the account main indicators to assist and evaluate the quality of e-learning systems. The proposed indicators based of ten dimensions.

Keywords: E-Learning, System Requirement, Social Requirement, Learning Management System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2522
6566 Effect of Progressive Type-I Right Censoring on Bayesian Statistical Inference of Simple Step–Stress Acceleration Life Testing Plan under Weibull Life Distribution

Authors: Saleem Z. Ramadan

Abstract:

This paper discusses the effects of using progressive Type-I right censoring on the design of the Simple Step Accelerated Life testing using Bayesian approach for Weibull life products under the assumption of cumulative exposure model. The optimization criterion used in this paper is to minimize the expected pre-posterior variance of the Pth percentile time of failures. The model variables are the stress changing time and the stress value for the first step. A comparison between the conventional and the progressive Type-I right censoring is provided. The results have shown that the progressive Type-I right censoring reduces the cost of testing on the expense of the test precision when the sample size is small. Moreover, the results have shown that using strong priors or large sample size reduces the sensitivity of the test precision to the censoring proportion. Hence, the progressive Type-I right censoring is recommended in these cases as progressive Type-I right censoring reduces the cost of the test and doesn't affect the precision of the test a lot. Moreover, the results have shown that using direct or indirect priors affects the precision of the test.

Keywords: Reliability, Accelerated life testing, Cumulative exposure model, Bayesian estimation, Progressive Type-I censoring, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
6565 Deep-Learning Based Approach to Facial Emotion Recognition Through Convolutional Neural Network

Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah

Abstract:

Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. However, accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER benefiting from deep learning, especially CNN and VGG16. First, the data are pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.

Keywords: CNN, deep-learning, facial emotion recognition, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709
6564 Techniques Used in String Matching for Network Security

Authors: Jamuna Bhandari

Abstract:

String matching also known as pattern matching is one of primary concept for network security. In this area the effectiveness and efficiency of string matching algorithms is important for applications in network security such as network intrusion detection, virus detection, signature matching and web content filtering system. This paper presents brief review on some of string matching techniques used for network security.

Keywords: Filtering, honeypot, network telescope, pattern, string, signature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2701
6563 Analysis of Social Network Using Clever Ant Colony Metaphor

Authors: Mohammad Al-Fayoumi, Soumya Banerjee, Jr., P. K. Mahanti

Abstract:

A social network is a set of people or organization or other social entities connected by some form of relationships. Analysis of social network broadly elaborates visual and mathematical representation of that relationship. Web can also be considered as a social network. This paper presents an innovative approach to analyze a social network using a variant of existing ant colony optimization algorithm called as Clever Ant Colony Metaphor. Experiments are performed and interesting findings and observations have been inferred based on the proposed model.

Keywords: Social Network, Ant Colony, Maximum Clique, Sub graph, Clever Ant colony.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
6562 Virtual Science Hub: An Open Source Platform to Enrich Science Teaching

Authors: Enrique Barra, Aldo Gordillo, Juan Quemada

Abstract:

This paper presents the Virtual Science Hub platform. It is an open source platform that combines a social network, an e-learning authoring tool, a videoconference service and a learning object repository for science teaching enrichment. These four main functionalities fit very well together. The platform was released in April 2012 and since then it has not stopped growing. Finally we present the results of the surveys conducted and the statistics gathered to validate this approach.

Keywords: E-learning, platform, authoring tool, science teaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3521
6561 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks

Authors: Anne-Lena Kampen, Øivind Kure

Abstract:

Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.

Keywords: Central ML, embedded machine learning, energy consumption, local ML, Wireless Sensor Networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
6560 Connectionist Approach to Generic Text Summarization

Authors: Rajesh S.Prasad, U. V. Kulkarni, Jayashree.R.Prasad

Abstract:

As the enormous amount of on-line text grows on the World-Wide Web, the development of methods for automatically summarizing this text becomes more important. The primary goal of this research is to create an efficient tool that is able to summarize large documents automatically. We propose an Evolving connectionist System that is adaptive, incremental learning and knowledge representation system that evolves its structure and functionality. In this paper, we propose a novel approach for Part of Speech disambiguation using a recurrent neural network, a paradigm capable of dealing with sequential data. We observed that connectionist approach to text summarization has a natural way of learning grammatical structures through experience. Experimental results show that our approach achieves acceptable performance.

Keywords: Artificial Neural Networks (ANN); Computational Intelligence (CI); Connectionist Text Summarizer ECTS (ECTS); Evolving Connectionist systems; Evolving systems; Fuzzy systems (FS); Part of Speech (POS) disambiguation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
6559 Development of Multimedia Learning Application for Mastery Learning Style: A Graduated Difficulty Strategy

Authors: Nur Azlina Mohamed Mokmin, Mona Masood

Abstract:

Guided by the theory of learning styles, this study is based on the development of a multimedia learning application for students with mastery learning style. The learning material was developed by applying a graduated difficulty learning strategy. Algebra was chosen as the learning topic for this application. The effectiveness of this application in helping students learn is measured by giving a pre- and post-test. The result shows that students who learn using the learning material that matches their preferred learning style perform better than the students with a non-personalized learning material.

Keywords: Algebraic Fractions, Graduated Difficulty, Mastery Learning Style, Multimedia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
6558 Undergraduates Learning Preferences: A Comparison of Science, Technology and Social Science Academic Disciplines in Relations to Teaching Designs and Strategies

Authors: Salina Budin, Shaira Ismail

Abstract:

Students learn effectively in a learning environment with a suitable teaching approach that matches their learning preferences. The main objective of the study is to examine the learning preferences amongst the students in the Science and Technology (S&T), and Social Science (SS) fields of study at the Universiti Teknologi Mara (UiTM), Pulau Pinang. The measurement instrument is based on the Dunn and Dunn Learning Styles which measure five elements of learning styles; environmental, sociological, emotional, physiological and psychological. Questionnaires are distributed amongst undergraduates in the Faculty of Mechanical Engineering and Faculty of Business Management. The respondents comprise of 131 diploma students of the Faculty of Mechanical Engineering and 111 degree students of the Faculty of Business Management. The results indicate that, both S&T and SS students share a similar learning preferences on the environmental aspect, emotional preferences, motivational level, learning responsibility, persistent level in learning and learning structure. Most of the S&T students are concluded as analytical learners and the majority of SS students are global learners. Both S&T and SS students are concluded as visual learners, preferred to be in an active mobility in a relaxing and enjoying mode with some light of refreshments during the learning process and exhibited reflective characteristics in learning. Obviously, the S&T students are considered as left brain dominant, whereas the SS students are right brain dominant. The findings highlighted that both categories of students exhibited similar learning preferences except on psychological preferences.

Keywords: Learning preferences, Dunn and Dunn learning style, teaching approach, science and technology, social science.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
6557 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: Edge network, embedded network, MMA, matrix multiplication accelerator and semantic segmentation network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 466
6556 On the Continuous Service of Distributed e-Learning System

Authors: Kazunari Meguro, Shinichi Motomura, Takao Kawamura, Kazunori Sugahara

Abstract:

In this paper, backup and recovery technique for Peer to Peer applications, such as a distributed asynchronous Web-Based Training system that we have previously proposed. In order to improve the scalability and robustness of this system, all contents and function are realized on mobile agents. These agents are distributed to computers, and they can obtain using a Peer to Peer network that modified Content-Addressable Network. In the proposed system, although entire services do not become impossible even if some computers break down, the problem that contents disappear occurs with an agent-s disappearance. As a solution for this issue, backups of agents are distributed to computers. If a failure of a computer is detected, other computers will continue service using backups of the agents belonged to the computer.

Keywords: Distributed Multimedia Systems, e-Learning, P2P, Mobile Agent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
6555 Computer Aided Language Learning System for Arabic for Second Language Learners

Authors: Osama Abufanas

Abstract:

This paper aims to build an Arabic learning language tool using Flash CS4 professional software with action script 3.0 programming language, based on the Computer Aided Language Learning (CALL) material. An extra intention is to provide a primary tool and focus on learning Arabic as a second language to adults. It contains letters, words and sentences at the first stage. This includes interactive practices, which evaluates learners’ comprehension of the Arabic language. The system was examined and it was found that the language structure was correct and learners were satisfied regarding the system tools. The learners found the system tools efficient and simple to use. The paper's main conclusion illustrates that CALL can be applied without any hesitation to second language learners

Keywords: Arabic Language, Computer Aided Language Learning (CALL), Learner, Material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2728
6554 Implementation of a New Neural Network Function Block to Programmable Logic Controllers Library Function

Authors: Hamid Abdi, Abolfazl Salami, Abolfazl Ahmadi

Abstract:

Programmable logic controllers are the main controllers in the today's industries; they are used for several applications in industrial control systems and there are lots of examples exist from the PLC applications in industries especially in big companies and plants such as refineries, power plants, petrochemical companies, steel companies, and food and production companies. In the PLCs there are some functions in the function library in software that can be used in PLC programs as basic program elements. The aim of this project are introducing and implementing a new function block of a neural network to the function library of PLC. This block can be applied for some control applications or nonlinear functions calculations after it has been trained for these applications. The implemented neural network is a Perceptron neural network with three layers, three input nodes and one output node. The block can be used in manual or automatic mode. In this paper the structure of the implemented function block, the parameters and the training method of the network are presented by considering the especial method of PLC programming and its complexities. Finally the application of the new block is compared with a classic simulated block and the results are presented.

Keywords: Programmable Logic Controller, PLC Programming, Neural Networks, Perception Network, Intelligent Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3809
6553 Creative Thinking Skill Approach Through Problem-Based Learning: Pedagogy and Practice in the Engineering Classroom

Authors: Halizah Awang, Ishak Ramly

Abstract:

Problem-based learning (PBL) is one of the student centered approaches and has been considered by a number of higher educational institutions in many parts of the world as a method of delivery. This paper presents a creative thinking approach for implementing Problem-based Learning in Mechanics of Structure within a Malaysian Polytechnics environment. In the learning process, students learn how to analyze the problem given among the students and sharing classroom knowledge into practice. Further, through this course-s emphasis on problem-based learning, students acquire creative thinking skills and professional skills as they tackle complex, interdisciplinary and real-situation problems. Once the creative ideas are generated, there are useful additional techniques for tender ideas that will grow into a productive concept or solution. The combination of creative skills and technical abilities will enable the students to be ready to “hit-the-ground-running" and produce in industry when they graduate.

Keywords: Creative Thinking Skills, Problem-based Learning, Problem Solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7322
6552 Self-Assembling Hypernetworks for Cognitive Learning of Linguistic Memory

Authors: Byoung-Tak Zhang, Chan-Hoon Park

Abstract:

Hypernetworks are a generalized graph structure representing higher-order interactions between variables. We present a method for self-organizing hypernetworks to learn an associative memory of sentences and to recall the sentences from this memory. This learning method is inspired by the “mental chemistry" model of cognition and the “molecular self-assembly" technology in biochemistry. Simulation experiments are performed on a corpus of natural-language dialogues of approximately 300K sentences collected from TV drama captions. We report on the sentence completion performance as a function of the order of word-interaction and the size of the learning corpus, and discuss the plausibility of this architecture as a cognitive model of language learning and memory.

Keywords: Linguistic recall memory, sentence completion task, self-organizing hypernetworks, cognitive learning and memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
6551 Wireless Control for an Induction Motor

Authors: Benmabrouk. Zaineb, Ben Hamed. Mouna, Lassaad. Sbita

Abstract:

This paper discusses the development of wireless structure control of an induction motor scalar drives. This was realised up on the wireless WiFi networks. This strategy of control is ensured by the use of Wireless ad hoc networks and a virtual network interface based on VNC which is used to make possible to take the remote control of a PC connected on a wireless Ethernet network. Verification of the proposed strategy of control is provided by experimental realistic tests on scalar controlled induction motor drives. The experimental results of the implementations with their analysis are detailed.

Keywords: Digital drives, Induction motor, Remote control, Virtual Network Computing VNC, Wireless Local Area NetworkWiFi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2722
6550 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators

Authors: Wei Zhang

Abstract:

With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.

Keywords: Deep learning, field programmable gate array, FPGA, hardware acceleration, convolutional neural networks, CNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
6549 On CR-Structure and F-Structure Satisfying Polynomial Equation

Authors: Manisha Kankarej

Abstract:

The purpose of this paper is to show a relation between CR structure and F-structure satisfying polynomial equation. In this paper, we have checked the significance of CR structure and F-structure on Integrability conditions and Nijenhuis tensor. It was proved that all the properties of Integrability conditions and Nijenhuis tensor are satisfied by CR structures and F-structure satisfying polynomial equation.

Keywords: CR-submainfolds, CR-structure, Integrability condition & Nijenhuis tensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793
6548 Reinforcement Learning-Based Coexistence Interference Management in Wireless Body Area Networks

Authors: Izaz Ahmad, Farhatullah, Shahbaz Ali, Farhad Ali, Faiza, Hazrat Junaid, Farhan Zaid

Abstract:

Current trends in remote health monitoring to monetize on the Internet of Things applications have been raised in efficient and interference free communications in Wireless Body Area Network (WBAN) scenario. Co-existence interference in WBANs have aggravates the over-congested radio bands, thereby requiring efficient Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) strategies and improve interference management. Existing solutions utilize simplistic heuristics to approach interference problems. The scope of this research article is to investigate reinforcement learning for efficient interference management under co-existing scenarios with an emphasis on homogenous interferences. The aim of this paper is to suggest a smart CSMA/CA mechanism based on reinforcement learning called QIM-MAC that effectively uses sense slots with minimal interference. Simulation results are analyzed based on scenarios which show that the proposed approach maximized Average Network Throughput and Packet Delivery Ratio and minimized Packet Loss Ratio, Energy Consumption and Average Delay.

Keywords: WBAN, IEEE 802.15.4 Standard, CAP Super-frame, Q-Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 650
6547 Remaining Useful Life Prediction Using Elliptical Basis Function Network and Markov Chain

Authors: Yi Yu, Lin Ma, Yong Sun, Yuantong Gu

Abstract:

This paper presents a novel method for remaining useful life prediction using the Elliptical Basis Function (EBF) network and a Markov chain. The EBF structure is trained by a modified Expectation-Maximization (EM) algorithm in order to take into account the missing covariate set. No explicit extrapolation is needed for internal covariates while a Markov chain is constructed to represent the evolution of external covariates in the study. The estimated external and the unknown internal covariates constitute an incomplete covariate set which are then used and analyzed by the EBF network to provide survival information of the asset. It is shown in the case study that the method slightly underestimates the remaining useful life of an asset which is a desirable result for early maintenance decision and resource planning.

Keywords: Elliptical Basis Function Network, Markov Chain, Missing Covariates, Remaining Useful Life

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661