Search results for: Analytic Network Process (ANP)
7617 Mining Network Data for Intrusion Detection through Naïve Bayesian with Clustering
Authors: Dewan Md. Farid, Nouria Harbi, Suman Ahmmed, Md. Zahidur Rahman, Chowdhury Mofizur Rahman
Abstract:
Network security attacks are the violation of information security policy that received much attention to the computational intelligence society in the last decades. Data mining has become a very useful technique for detecting network intrusions by extracting useful knowledge from large number of network data or logs. Naïve Bayesian classifier is one of the most popular data mining algorithm for classification, which provides an optimal way to predict the class of an unknown example. It has been tested that one set of probability derived from data is not good enough to have good classification rate. In this paper, we proposed a new learning algorithm for mining network logs to detect network intrusions through naïve Bayesian classifier, which first clusters the network logs into several groups based on similarity of logs, and then calculates the prior and conditional probabilities for each group of logs. For classifying a new log, the algorithm checks in which cluster the log belongs and then use that cluster-s probability set to classify the new log. We tested the performance of our proposed algorithm by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves detection rates as well as reduces false positives for different types of network intrusions.Keywords: Clustering, detection rate, false positive, naïveBayesian classifier, network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55367616 Optimization of Transmission Lines Loading in TNEP Using Decimal Codification Based GA
Authors: H. Shayeghi, M. Mahdavi
Abstract:
Transmission network expansion planning (TNEP) is a basic part of power system planning that determines where, when and how many new transmission lines should be added to the network. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, lines adequacy rate has not been considered at the end of planning horizon, i.e., expanded network misses adequacy after some times and needs to be expanded again. In this paper, expansion planning has been implemented by merging lines loading parameter in the STNEP and inserting investment cost into the fitness function constraints using genetic algorithm. Expanded network will possess a maximum adequacy to provide load demand and also the transmission lines overloaded later. Finally, adequacy index could be defined and used to compare some designs that have different investment costs and adequacy rates. In this paper, the proposed idea has been tested on the Garvers network. The results show that the network will possess maximum efficiency economically.
Keywords: Adequacy Optimization, Transmission Expansion Planning, DCGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18117615 Categorization and Estimation of Relative Connectivity of Genes from Meta-OFTEN Network
Authors: U. Kairov, T. Karpenyuk, E. Ramanculov, A. Zinovyev
Abstract:
The most common result of analysis of highthroughput data in molecular biology represents a global list of genes, ranked accordingly to a certain score. The score can be a measure of differential expression. Recent work proposed a new method for selecting a number of genes in a ranked gene list from microarray gene expression data such that this set forms the Optimally Functionally Enriched Network (OFTEN), formed by known physical interactions between genes or their products. Here we present calculation results of relative connectivity of genes from META-OFTEN network and tentative biological interpretation of the most reproducible signal. The relative connectivity and inbetweenness values of genes from META-OFTEN network were estimated.Keywords: Microarray, META-OFTEN, gene network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16277614 Development of Gas Chromatography Model: Propylene Concentration Using Neural Network
Authors: Areej Babiker Idris Babiker, Rosdiazli Ibrahim
Abstract:
Gas chromatography (GC) is the most widely used technique in analytical chemistry. However, GC has high initial cost and requires frequent maintenance. This paper examines the feasibility and potential of using a neural network model as an alternative whenever GC is unvailable. It can also be part of system verification on the performance of GC for preventive maintenance activities. It shows the performance of MultiLayer Perceptron (MLP) with Backpropagation structure. Results demonstrate that neural network model when trained using this structure provides an adequate result and is suitable for this purpose. cm.Keywords: Analyzer, Levenberg-Marquardt, Gas chromatography, Neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17677613 Modified Fuzzy ARTMAP and Supervised Fuzzy ART: Comparative Study with Multispectral Classification
Authors: F.Alilat, S.Loumi, H.Merrad, B.Sansal
Abstract:
In this article a modification of the algorithm of the fuzzy ART network, aiming at returning it supervised is carried out. It consists of the search for the comparison, training and vigilance parameters giving the minimum quadratic distances between the output of the training base and those obtained by the network. The same process is applied for the determination of the parameters of the fuzzy ARTMAP giving the most powerful network. The modification consist in making learn the fuzzy ARTMAP a base of examples not only once as it is of use, but as many time as its architecture is in evolution or than the objective error is not reached . In this way, we don-t worry about the values to impose on the eight (08) parameters of the network. To evaluate each one of these three networks modified, a comparison of their performances is carried out. As application we carried out a classification of the image of Algiers-s bay taken by SPOT XS. We use as criterion of evaluation the training duration, the mean square error (MSE) in step control and the rate of good classification per class. The results of this study presented as curves, tables and images show that modified fuzzy ARTMAP presents the best compromise quality/computing time.
Keywords: Neural Networks, fuzzy ART, fuzzy ARTMAP, Remote sensing, multispectral Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13647612 An Enhanced Associativity Based Routing with Fuzzy Based Trust to Mitigate Network Attacks
Authors: K. Geetha, P. Thangaraj
Abstract:
Mobile Ad Hoc Networks (MANETs) is a collection of mobile devices forming a communication network without infrastructure. MANET is vulnerable to security threats due to network’s limited security, dynamic topology, scalability and the lack of central management. The Quality of Service (QoS) routing in such networks is limited by network breakage caused by node mobility or nodes energy depletions. The impact of node mobility on trust establishment is considered and its use to propagate trust through a network is investigated in this paper. This work proposes an enhanced Associativity Based Routing (ABR) with Fuzzy based Trust (Fuzzy- ABR) routing protocol for MANET to improve QoS and to mitigate network attacks.Keywords: Mobile Ad hoc Networks (MANET), Associativity Based Routing (ABR), Fuzzy based Computed Trust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25547611 Decision Support for the Selection of Electric Power Plants Generated from Renewable Sources
Authors: Aumnad Phdungsilp, Teeradej Wuttipornpun
Abstract:
Decision support based upon risk analysis into comparison of the electricity generation from different renewable energy technologies can provide information about their effects on the environment and society. The aim of this paper is to develop the assessment framework regarding risks to health and environment, and the society-s benefits of the electric power plant generation from different renewable sources. The multicriteria framework to multiattribute risk analysis technique and the decision analysis interview technique are applied in order to support the decisionmaking process for the implementing renewable energy projects to the Bangkok case study. Having analyses the local conditions and appropriate technologies, five renewable power plants are postulated as options. As this work demonstrates, the analysis can provide a tool to aid decision-makers for achieving targets related to promote sustainable energy system.Keywords: Analytic Hierarchy Process, Bangkok, MultiattributeRisk Analysis, Renewable Energy Technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19487610 Assessment of Vulnerability and Risk of Taijiang Coastal Areas to Climatic Changes
Authors: Yu-Chen Lin, Tzong-Yeang Lee
Abstract:
This study aims to assess the vulnerability and risk of the coastal areas of Taijiang to abnormal oceanographic phenomena. In addition, this study aims to investigate and collect data regarding the disaster losses, land utilization, and other social, economic, and environmental issues in these coastal areas to construct a coastal vulnerability and risk map based on the obtained climate-change risk assessment results. Considering the indexes of the three coastal vulnerability dimensions, namely, man-made facilities, environmental geography, and social economy, this study adopted the equal weighting process and Analytic Hierarchy Process to analyze the vulnerability of these coastal areas to disasters caused by climatic changes. Among the areas with high coastal vulnerability to climatic changes, three towns had the highest coastal vulnerability and four had the highest relative vulnerability. Areas with lower disaster risks were found to be increasingly vulnerable to disasters caused by climatic changes as time progresses.Keywords: Climate change, coastal disaster, risk, vulnerability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18027609 Quality and Quantity in the Strategic Network of Higher Education Institutions
Authors: Juha Kettunen
Abstract:
This study analyzes the quality and the size of the strategic network of higher education institutions. The study analyses the concept of fitness for purpose in quality assurance. It also analyses the transaction costs of networking that have consequences on the number of members in the network. Empirical evidence is presented of the Consortium on Applied Research and Professional Education, which is a European strategic network of six higher education institutions. The results of the study support the argument that the number of members in the strategic network should be relatively small to provide high quality results. The practical importance is that networking has been able to promote international research and development projects. The results of this study are important for those who want to design and improve international networks in higher education.
Keywords: Higher education, network, research and development, strategic management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15197608 Probabilistic Modeling of Network-induced Delays in Networked Control Systems
Authors: Manoj Kumar, A.K. Verma, A. Srividya
Abstract:
Time varying network induced delays in networked control systems (NCS) are known for degrading control system-s quality of performance (QoP) and causing stability problems. In literature, a control method employing modeling of communication delays as probability distribution, proves to be a better method. This paper focuses on modeling of network induced delays as probability distribution. CAN and MIL-STD-1553B are extensively used to carry periodic control and monitoring data in networked control systems. In literature, methods to estimate only the worst-case delays for these networks are available. In this paper probabilistic network delay model for CAN and MIL-STD-1553B networks are given. A systematic method to estimate values to model parameters from network parameters is given. A method to predict network delay in next cycle based on the present network delay is presented. Effect of active network redundancy and redundancy at node level on network delay and system response-time is also analyzed.Keywords: NCS (networked control system), delay analysis, response-time distribution, worst-case delay, CAN, MIL-STD-1553B, redundancy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17717607 Methodology of the Energy Supply Disturbances Affecting Energy System
Authors: J. Augutis, R. Krikstolaitis, L. Martisauskas
Abstract:
Recently global concerns for the energy security have steadily been on the increase and are expected to become a major issue over the next few decades. Energy security refers to a resilient energy system. This resilient system would be capable of withstanding threats through a combination of active, direct security measures and passive or more indirect measures such as redundancy, duplication of critical equipment, diversity in fuel, other sources of energy, and reliance on less vulnerable infrastructure. Threats and disruptions (disturbances) to one part of the energy system affect another. The paper presents methodology in theoretical background about energy system as an interconnected network and energy supply disturbances impact to the network. The proposed methodology uses a network flow approach to develop mathematical model of the energy system network as the system of nodes and arcs with energy flowing from node to node along paths in the network.Keywords: Energy Security, Energy Supply Disturbances, Modeling of Energy System, Network Flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14047606 Identifying Network Subgraph-Associated Essential Genes in Molecular Networks
Authors: Efendi Zaenudin, Chien-Hung Huang, Ka-Lok Ng
Abstract:
Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research.
Keywords: Biological molecular networks, essential genes, graph theory, network subgraphs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4957605 Determination of the Optimal DG PV Interconnection Location Using Losses and Voltage Regulation as Assessment Indicators Case Study: ECG 33 kV Sub-Transmission Network
Authors: Ekow A. Kwofie, Emmanuel K. Anto, Godfred Mensah
Abstract:
In this paper, CYME Distribution software has been used to assess the impacts of solar Photovoltaic (PV) distributed generation (DG) plant on the Electricity Company of Ghana (ECG) 33 kV sub-transmission network at different PV penetration levels. As ECG begins to encourage DG PV interconnections within its network, there has been the need to assess the impacts on the sub-transmission losses and voltage contribution. In Tema, a city in Accra - Ghana, ECG has a 33 kV sub-transmission network made up of 20 No. 33 kV buses that was modeled. Three different locations were chosen: The source bus, a bus along the sub-transmission radial network and a bus at the tail end to determine the optimal location for DG PV interconnection. The optimal location was determined based on sub-transmission technical losses and voltage impact. PV capacities at different penetration levels were modeled at each location and simulations performed to determine the optimal PV penetration level. Interconnection at a bus along (or in the middle of) the sub-transmission network offered the highest benefits at an optimal PV penetration level of 80%. At that location, the maximum voltage improvement of 0.789% on the neighboring 33 kV buses and maximum loss reduction of 6.033% over the base case scenario were recorded. Hence, the optimal location for DG PV integration within the 33 kV sub-transmission utility network is at a bus along the sub-transmission radial network.
Keywords: Distributed generation photovoltaic, DG PV, optimal location, penetration level, sub-transmission network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13207604 Solar-Inducted Cluster Head Relocation Algorithm
Authors: Goran Djukanovic, Goran Popovic
Abstract:
A special area in the study of Wireless Sensor Networks (WSNs) is how to move sensor nodes, as it expands the scope of application of wireless sensors and provides new opportunities to improve network performance. On the other side, it opens a set of new problems, especially if complete clusters are mobile. Node mobility can prolong the network lifetime. In such WSN, some nodes are possibly moveable or nomadic (relocated periodically), while others are static. This paper presents an idea of mobile, solar-powered CHs that relocate themselves inside clusters in such a way that the total energy consumption in the network reduces, and the lifetime of the network extends. Positioning of CHs is made in each round based on selfish herd hypothesis, where leader retreats to the center of gravity. Based on this idea, an algorithm, together with its modified version, has been presented and tested in this paper. Simulation results show that both algorithms have benefits in network lifetime, and prolongation of network stability period duration.
Keywords: CH-active algorithm, mobile cluster head, sensors, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10387603 Detection of Moving Images Using Neural Network
Authors: P. Latha, L. Ganesan, N. Ramaraj, P. V. Hari Venkatesh
Abstract:
Motion detection is a basic operation in the selection of significant segments of the video signals. For an effective Human Computer Intelligent Interaction, the computer needs to recognize the motion and track the moving object. Here an efficient neural network system is proposed for motion detection from the static background. This method mainly consists of four parts like Frame Separation, Rough Motion Detection, Network Formation and Training, Object Tracking. This paper can be used to verify real time detections in such a way that it can be used in defense applications, bio-medical applications and robotics. This can also be used for obtaining detection information related to the size, location and direction of motion of moving objects for assessment purposes. The time taken for video tracking by this Neural Network is only few seconds.
Keywords: Frame separation, Correlation Network, Neural network training, Radial Basis Function, object tracking, Motion Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31497602 Towards for Admission Control in WIMAX Relay Station Mesh Network for Mobile Stations out of Coverage Using Ad-Hoc
Authors: Anas Majeed, A. A. Zaidan, B. B. Zaidan, Laiha Mat Kiah
Abstract:
WIMAX relay station mesh network has been approved by IEEE 802.16j as a standard to provide a highly data rate transmission, the RS was implemented to extend the coverage zone of the BS, for instance the MSs previously were out of the coverage of the BS they become in the coverage of the RS, therefore these MSs can have Admission control from the BS through the RS. This paper describe a problem in the mesh network Relay station, for instance the problem of how to serve the mobile stations (MSs) which are out of the Relay station coverage. This paper also proposed a solution for mobile stations out of the coverage of the WIMAX Relay stations mesh Network. Therefore Ad-hoc network defined as a solution by using its admission control schema and apply it on the mobiles inside and outside the Relay station coverage.
Keywords: WIMAX, relay station, mesh network, ad-hoc, WiFi, generic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17587601 Denial of Service (DOS) Attack and Its Possible Solutions in VANET
Authors: Halabi Hasbullah, Irshad Ahmed Soomro, Jamalul-lail Ab Manan
Abstract:
Vehicular Ad-hoc Network (VANET) is taking more attention in automotive industry due to the safety concern of human lives on roads. Security is one of the safety aspects in VANET. To be secure, network availability must be obtained at all times since availability of the network is critically needed when a node sends any life critical information to other nodes. However, it can be expected that security attacks are likely to increase in the coming future due to more and more wireless applications being developed and deployed onto the well-known expose nature of the wireless medium. In this respect, the network availability is exposed to many types of attacks. In this paper, Denial of Service (DOS) attack on network availability is presented and its severity level in VANET environment is elaborated. A model to secure the VANET from the DOS attacks has been developed and some possible solutions to overcome the attacks have been discussed.Keywords: Vehicular Ad hoc Network (VANET); security;availability; security attack; Denial of Service (DOS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60837600 MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax
Authors: Svitov David, Alyamkin Sergey
Abstract:
The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network.Keywords: ArcFace, distillation, face recognition, margin-based softmax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6317599 The Care Management Network as an Effective Intervention in Mitigating the Risks of Hypertension
Authors: Feng-Chuan Pan, Fang-Yue Liu
Abstract:
Hospitals in southern Hualien teamed with the Hypertension Joint Care Network. Working with the network, the team provided a special designed health education to the individual who had been identified as a hypertension patient in the outpatient department. Some metabolism improvements achieved. This is a retrospective study by purposively taking 106 patients from a hospital between 2008 and 2010. Records of before and after education intervention of the objects was collected and analyzed to see the how the intervention affected the patients- hypertension control via clinical parameter monitoring. The results showed that the clinical indicators, the LDL-C, the cholesterol and the systolic blood pressure were significantly improved. The study provides evidence for the effectiveness of the network in controlling hypertension.Keywords: hypertension, joint care management network, cardiovascular diseases, metabolic syndrome.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17297598 A Quantitative Tool for Analyze Process Design
Authors: Andrés Carrión García, Aura López de Murillo, José Jabaloyes Vivas, Angela Grisales del Río
Abstract:
Some quality control tools use non metric subjective information coming from experts, who qualify the intensity of relations existing inside processes, but without quantifying them. In this paper we have developed a quality control analytic tool, measuring the impact or strength of the relationship between process operations and product characteristics. The tool includes two models: a qualitative model, allowing relationships description and analysis; and a formal quantitative model, by means of which relationship quantification is achieved. In the first one, concepts from the Graphs Theory were applied to identify those process elements which can be sources of variation, that is, those quality characteristics or operations that have some sort of prelacy over the others and that should become control items. Also the most dependent elements can be identified, that is those elements receiving the effects of elements identified as variation sources. If controls are focused in those dependent elements, efficiency of control is compromised by the fact that we are controlling effects, not causes. The second model applied adapts the multivariate statistical technique of Covariance Structural Analysis. This approach allowed us to quantify the relationships. The computer package LISREL was used to obtain statistics and to validate the model.
Keywords: Characteristics matrix, covariance structure analysis, LISREL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15977597 Modeling of Surface Roughness in Vibration Cutting by Artificial Neural Network
Authors: H. Soleimanimehr, M. J. Nategh , S. Amini
Abstract:
Development of artificial neural network (ANN) for prediction of aluminum workpieces' surface roughness in ultrasonicvibration assisted turning (UAT) has been the subject of the present study. Tool wear as the main cause of surface roughness was also investigated. ANN was trained through experimental data obtained on the basis of full factorial design of experiments. Various influential machining parameters were taken into consideration. It was illustrated that a multilayer perceptron neural network could efficiently model the surface roughness as the response of the network, with an error less than ten percent. The performance of the trained network was verified by further experiments. The results of UAT were compared with the results of conventional turning experiments carried out with similar machining parameters except for the vibration amplitude whence considerable reduction was observed in the built-up edge and the surface roughness.Keywords: Aluminum, Artificial Neural Network (ANN), BuiltupEdge, Surface Roughness, Tool Wear, Ultrasonic VibrationAssisted Turning (UAT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17557596 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural
Authors: Baeza S. Roberto
Abstract:
The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes is included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.Keywords: Neural network, dry relaxation, knitting, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17607595 RBF modeling of Incipient Motion of Plane Sand Bed Channels
Authors: Gopu Sreenivasulu, Bimlesh Kumar, Achanta Ramakrishna Rao
Abstract:
To define or predict incipient motion in an alluvial channel, most of the investigators use a standard or modified form of Shields- diagram. Shields- diagram does give a process to determine the incipient motion parameters but an iterative one. To design properly (without iteration), one should have another equation for resistance. Absence of a universal resistance equation also magnifies the difficulties in defining the model. Neural network technique, which is particularly useful in modeling a complex processes, is presented as a tool complimentary to modeling incipient motion. Present work develops a neural network model employing the RBF network to predict the average velocity u and water depth y based on the experimental data on incipient condition. Based on the model, design curves have been presented for the field application.Keywords: Incipient motion, Prediction error, Radial-Basisfunction, Sediment transport, Shields' diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15077594 A Tuning Method for Microwave Filter via Complex Neural Network and Improved Space Mapping
Authors: Shengbiao Wu, Weihua Cao, Min Wu, Can Liu
Abstract:
This paper presents an intelligent tuning method of microwave filter based on complex neural network and improved space mapping. The tuning process consists of two stages: the initial tuning and the fine tuning. At the beginning of the tuning, the return loss of the filter is transferred to the passband via the error of phase. During the fine tuning, the phase shift caused by the transmission line and the higher order mode is removed by the curve fitting. Then, an Cauchy method based on the admittance parameter (Y-parameter) is used to extract the coupling matrix. The influence of the resonant cavity loss is eliminated during the parameter extraction process. By using processed data pairs (the amount of screw variation and the variation of the coupling matrix), a tuning model is established by the complex neural network. In view of the improved space mapping algorithm, the mapping relationship between the actual model and the ideal model is established, and the amplitude and direction of the tuning is constantly updated. Finally, the tuning experiment of the eight order coaxial cavity filter shows that the proposed method has a good effect in tuning time and tuning precision.Keywords: Microwave filter, scattering parameter (s-parameter), coupling matrix, intelligent tuning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13157593 Applying Fuzzy Analytic Hierarchy Process for Evaluating Service Quality of Online Auction
Authors: Chien-Hua Wang, Meng-Ying Chou, Chin-Tzong Pang
Abstract:
This paper applies fuzzy AHP to evaluate the service quality of online auction. Service quality is a composition of various criteria. Among them many intangible attributes are difficult to measure. This characteristic introduces the obstacles for respondents on reply in the survey. So as to overcome this problem, we invite fuzzy set theory into the measurement of performance and use AHP in obtaining criteria. We found the most concerned dimension of service quality is Transaction Safety Mechanism and the least is Charge Item. Other criteria such as information security, accuracy and information are too vital.Keywords: Fuzzy set theory, AHP, Online auction, Service quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21787592 A Hybrid Classification Method using Artificial Neural Network Based Decision Tree for Automatic Sleep Scoring
Authors: Haoyu Ma, Bin Hu, Mike Jackson, Jingzhi Yan, Wen Zhao
Abstract:
In this paper we propose a new classification method for automatic sleep scoring using an artificial neural network based decision tree. It attempts to treat sleep scoring progress as a series of two-class problems and solves them with a decision tree made up of a group of neural network classifiers, each of which uses a special feature set and is aimed at only one specific sleep stage in order to maximize the classification effect. A single electroencephalogram (EEG) signal is used for our analysis rather than depending on multiple biological signals, which makes greatly simplifies the data acquisition process. Experimental results demonstrate that the average epoch by epoch agreement between the visual and the proposed method in separating 30s wakefulness+S1, REM, S2 and SWS epochs was 88.83%. This study shows that the proposed method performed well in all the four stages, and can effectively limit error propagation at the same time. It could, therefore, be an efficient method for automatic sleep scoring. Additionally, since it requires only a small volume of data it could be suited to pervasive applications.
Keywords: Sleep, Sleep stage, Automatic sleep scoring, Electroencephalography, Decision tree, Artificial neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20727591 A Trainable Neural Network Ensemble for ECG Beat Classification
Authors: Atena Sajedin, Shokoufeh Zakernejad, Soheil Faridi, Mehrdad Javadi, Reza Ebrahimpour
Abstract:
This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22167590 A Bayesian Network Reliability Modeling for FlexRay Systems
Authors: Kuen-Long Leu, Yung-Yuan Chen, Chin-Long Wey, Jwu-E Chen, Chung-Hsien Hsu
Abstract:
The increasing importance of FlexRay systems in automotive domain inspires unceasingly relative researches. One primary issue among researches is to verify the reliability of FlexRay systems either from protocol aspect or from system design aspect. However, research rarely discusses the effect of network topology on the system reliability. In this paper, we will illustrate how to model the reliability of FlexRay systems with various network topologies by a well-known probabilistic reasoning technology, Bayesian Network. In this illustration, we especially investigate the effectiveness of error containment built in star topology and fault-tolerant midpoint synchronization algorithm adopted in FlexRay communication protocol. Through a FlexRay steer-by-wire case study, the influence of different topologies on the failure probability of the FlexRay steerby- wire system is demonstrated. The notable value of this research is to show that the Bayesian Network inference is a powerful and feasible method for the reliability assessment of FlexRay systems.Keywords: Bayesian Network, FlexRay, fault tolerance, network topology, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20297589 Fault Detection and Identification of COSMED K4b2 Based On PCA and Neural Network
Authors: Jing Zhou, Steven Su, Aihuang Guo
Abstract:
COSMED K4b2 is a portable electrical device designed to test pulmonary functions. It is ideal for many applications that need the measurement of the cardio-respiratory response either in the field or in the lab is capable with the capability to delivery real time data to a sink node or a PC base station with storing data in the memory at the same time. But the actual sensor outputs and data received may contain some errors, such as impulsive noise which can be related to sensors, low batteries, environment or disturbance in data acquisition process. These abnormal outputs might cause misinterpretations of exercise or living activities to persons being monitored. In our paper we propose an effective and feasible method to detect and identify errors in applications by principal component analysis (PCA) and a back propagation (BP) neural network.
Keywords: BP Neural Network, Exercising Testing, Fault Detection and Identification, Principal Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30777588 Authentic Learning for Computer Network with Mobile Device-Based Hands-On Labware
Authors: Kai Qian, Ming Yang, Minzhe Guo, Prabir Bhattacharya, Lixin Tao
Abstract:
Computer network courses are essential parts of college computer science curriculum and hands-on networking experience is well recognized as an effective approach to help students understand better about the network concepts, the layered architecture of network protocols, and the dynamics of the networks. However, existing networking labs are usually server-based and relatively cumbersome, which require a certain level of specialty and resource to set up and maintain the lab environment. Many universities/colleges lack the resources and build-ups in this field and have difficulty to provide students with hands-on practice labs. A new affordable and easily-adoptable approach to networking labs is desirable to enhance network teaching and learning. In addition, current network labs are short on providing hands-on practice for modern wireless and mobile network learning. With the prevalence of smart mobile devices, wireless and mobile network are permeating into various aspects of our information society. The emerging and modern mobile technology provides computer science students with more authentic learning experience opportunities especially in network learning. A mobile device based hands-on labware can provide an excellent ‘real world’ authentic learning environment for computer network especially for wireless network study. In this paper, we present our mobile device-based hands-on labware (series of lab module) for computer network learning which is guided by authentic learning principles to immerse students in a real world relevant learning environment. We have been using this labware in teaching computer network, mobile security, and wireless network classes. The student feedback shows that students can learn more when they have hands-on authentic learning experience.
Keywords: Mobile computing, android, network, labware.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074