Search results for: Systems Identification.
5151 Robust Adaptive ELS-QR Algorithm for Linear Discrete Time Stochastic Systems Identification
Authors: Ginalber L. O. Serra
Abstract:
This work proposes a recursive weighted ELS algorithm for system identification by applying numerically robust orthogonal Householder transformations. The properties of the proposed algorithm show it obtains acceptable results in a noisy environment: fast convergence and asymptotically unbiased estimates. Comparative analysis with others robust methods well known from literature are also presented.Keywords: Stochastic Systems, Robust Identification, Parameter Estimation, Systems Identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14915150 Identification of Nonlinear Systems Structured by Hammerstein-Wiener Model
Authors: A. Brouri, F. Giri, A. Mkhida, F. Z. Chaoui, A. Elkarkri, M. L. Chhibat
Abstract:
Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two memoryless nonlinearities. The problem of identifying Hammerstein-Wiener systems is addressed in the presence of linear subsystem of structure totally unknown and polynomial input and output nonlinearities. Presently, the system nonlinearities are allowed to be noninvertible. The system identification problem is dealt by developing a two-stage frequency identification method. First, the parameters of system nonlinearities are identified. In the second stage, a frequency approach is designed to estimate the linear subsystem frequency gain. All involved estimators are proved to be consistent.
Keywords: Nonlinear system identification, Hammerstein systems, Wiener systems, frequency identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24005149 Identification of a PWA Model of a Batch Reactor for Model Predictive Control
Authors: Gorazd Karer, Igor Skrjanc, Borut Zupancic
Abstract:
The complex hybrid and nonlinear nature of many processes that are met in practice causes problems with both structure modelling and parameter identification; therefore, obtaining a model that is suitable for MPC is often a difficult task. The basic idea of this paper is to present an identification method for a piecewise affine (PWA) model based on a fuzzy clustering algorithm. First we introduce the PWA model. Next, we tackle the identification method. We treat the fuzzy clustering algorithm, deal with the projections of the fuzzy clusters into the input space of the PWA model and explain the estimation of the parameters of the PWA model by means of a modified least-squares method. Furthermore, we verify the usability of the proposed identification approach on a hybrid nonlinear batch reactor example. The result suggest that the batch reactor can be efficiently identified and thus formulated as a PWA model, which can eventually be used for model predictive control purposes.
Keywords: Batch reactor, fuzzy clustering, hybrid systems, identification, nonlinear systems, PWA systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21955148 Identification of Individual Objects at the Intelligent Assembly Cell
Authors: Ružarovský, Roman, Danišová, Nina, Velíšek, Karol
Abstract:
In this contribution is presented a complex design of individual objects identification in the workplace of intelligent assembly cell. Intelligent assembly cell is situated at Institute of Manufacturing Systems and Applied Mechanics and is used for pneumatic actuator assembly. Pneumatic actuator components are pneumatic roller, cover, piston and spring. Two identification objects alternatives for assembly are designed in the workplace of industrial robot. In the contribution is evaluated and selected suitable alternative for identification – 2D codes reader. The complex design of individual object identification is going out of intelligent manufacturing systems knowledge. Intelligent assembly and manufacturing systems as systems of new generation are gradually loaded in to the mechanical production, when they are removeing human operation out of production process and they also short production times.Keywords: system, cell, intelligent, mechanics, device
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14475147 Model-Free Distributed Control of Dynamical Systems
Authors: Javad Khazaei, Rick S. Blum
Abstract:
Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes.
Keywords: Consensus tracking, distributed control, model-free control, sparse identification of dynamical systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5365146 Applications of Cascade Correlation Neural Networks for Cipher System Identification
Authors: B. Chandra, P. Paul Varghese
Abstract:
Crypto System Identification is one of the challenging tasks in Crypt analysis. The paper discusses the possibility of employing Neural Networks for identification of Cipher Systems from cipher texts. Cascade Correlation Neural Network and Back Propagation Network have been employed for identification of Cipher Systems. Very large collection of cipher texts were generated using a Block Cipher (Enhanced RC6) and a Stream Cipher (SEAL). Promising results were obtained in terms of accuracy using both the Neural Network models but it was observed that the Cascade Correlation Neural Network Model performed better compared to Back Propagation Network.
Keywords: Back Propagation Neural Networks, CascadeCorrelation Neural Network, Crypto systems, Block Cipher, StreamCipher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24445145 New Approach for Constructing a Secure Biometric Database
Authors: A. Kebbeb, M. Mostefai, F. Benmerzoug, Y. Chahir
Abstract:
The multimodal biometric identification is the combination of several biometric systems; the challenge of this combination is to reduce some limitations of systems based on a single modality while significantly improving performance. In this paper, we propose a new approach to the construction and the protection of a multimodal biometric database dedicated to an identification system. We use a topological watermarking to hide the relation between face image and the registered descriptors extracted from other modalities of the same person for more secure user identification.
Keywords: Biometric databases, Multimodal biometrics, security authentication, Digital watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20905144 Identification of Nonlinear Systems Using Radial Basis Function Neural Network
Authors: C. Pislaru, A. Shebani
Abstract:
This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the KMeans clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.
Keywords: System identification, Nonlinear system, Neural networks, RBF neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28645143 Ontology for Semantic Enrichment of Radio Frequency Identification Systems
Authors: Haitham S. Hamza, Mohamed Maher, Shourok Alaa, Aya Khattab, Hadeal Ismail, Kamilia Hosny
Abstract:
Radio Frequency Identification (RFID) has become a key technology in the emerging concept of Internet of Things (IoT). Naturally, business applications would require the deployment of various RFID systems developed by different vendors that use different data formats and structures. This heterogeneity poses a challenge in developing real-life IoT systems with RFID, as integration is becoming very complex and challenging. Semantic integration is a key approach to deal with this challenge. To do so, ontology for RFID systems need to be developed in order to annotated semantically RFID systems, and hence, facilitate their integration. Accordingly, in this paper, we propose ontology for RFID systems. The proposed ontology can be used to semantically enrich RFID systems, and hence, improve their usage and reasoning.Keywords: IoT, RFID, Semantic, sparql, Ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18735142 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and electrocardiogram (ECG)-based systems are unquestionably the best choice due to their appealing inherent characteristics. The Convolutional Neural Networks (CNNs) are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the caliber of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest False Acceptance Rate (FAR) of 0.04% and the highest False Rejection Rate (FRR) of 5%, the best performing network achieved an identification accuracy of 99.94%. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable, but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.
Keywords: Biometrics, dense networks, identification rate, train/test split ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5415141 Quadrotor Black-Box System Identification
Authors: Ionel Stanculeanu, Theodor Borangiu
Abstract:
This paper presents a new approach in the identification of the quadrotor dynamic model using a black-box system for identification. Also the paper considers the problems which appear during the identification in the closed-loop and offers a technical solution for overcoming the correlation between the input noise present in the output
Keywords: System identification, UAV, prediction error method, quadrotor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34595140 Identification of MIMO Systems Using Neuro-Fuzzy Models with a Shuffled Frog Leaping Algorithm
Authors: Sana Bouzaida, Anis Sakly, Faouzi M'Sahli
Abstract:
In this paper, a TSK-type Neuro-fuzzy Inference System that combines the features of fuzzy sets and neural networks has been applied for the identification of MIMO systems. The procedure of adapting parameters in TSK model employs a Shuffled Frog Leaping Algorithm (SFLA) which is inspired from the memetic evolution of a group of frogs when seeking for food. To demonstrate the accuracy and effectiveness of the proposed controller, two nonlinear systems have been considered as the MIMO plant, and results have been compared with other learning methods based on Particle Swarm Optimization algorithm (PSO) and Genetic Algorithm (GA).Keywords: Identification, Shuffled frog Leaping Algorithm (SFLA), TSK-type neuro-fuzzy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17735139 Neuro-Hybrid Models for Automotive System Identification
Authors: Ventura Assuncao
Abstract:
In automotive systems almost all steps concerning the calibration of several control systems, e.g., low idle governor or boost pressure governor, are made with the vehicle because the timeto- production and cost requirements on the projects do not allow for the vehicle analysis necessary to build reliable models. Here is presented a procedure using parametric and NN (neural network) models that enables the generation of vehicle system models based on normal ECU engine control unit) vehicle measurements. These models are locally valid and permit pre and follow-up calibrations so that, only the final calibrations have to be done with the vehicle.Keywords: Automotive systems, neuro-hybrid models, demodulator, nonlinear systems, identification, and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15705138 Use of RFID Technology for Identification, Traceability Monitoring and the Checking of Product Authenticity
Authors: Adriana Alexandru, Eleonora Tudora, Ovidiu Bica
Abstract:
This paper is an overview of the structure of Radio Frequency Identification (RFID) systems and radio frequency bands used by RFID technology. It also presents a solution based on the application of RFID for brand authentication, traceability and tracking, by implementing a production management system and extending its use to traders.Keywords: Radio Frequency Identification, Tag, Tag reader, Traceability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25975137 Gaussian Process Model Identification Using Artificial Bee Colony Algorithm and Its Application to Modeling of Power Systems
Authors: Tomohiro Hachino, Hitoshi Takata, Shigeru Nakayama, Ichiro Iimura, Seiji Fukushima, Yasutaka Igarashi
Abstract:
This paper presents a nonparametric identification of continuous-time nonlinear systems by using a Gaussian process (GP) model. The GP prior model is trained by artificial bee colony algorithm. The nonlinear function of the objective system is estimated as the predictive mean function of the GP, and the confidence measure of the estimated nonlinear function is given by the predictive covariance of the GP. The proposed identification method is applied to modeling of a simplified electric power system. Simulation results are shown to demonstrate the effectiveness of the proposed method.
Keywords: Artificial bee colony algorithm, Gaussian process model, identification, nonlinear system, electric power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15765136 Fingerprint Identification Keyless Entry System
Authors: Chih-Neng Liang, Huang-Bin Huang, Bo-Chiuan Chen
Abstract:
Nowadays, keyless entry systems are widely adopted for vehicle immobilizer systems due to both advantages of security and convenience. Keyless entry systems could overcome brute-force key guessing attack, statistics attack and masquerade attack, however, they can't prevent from thieves stealing behavior. In this paper, we proposed a new architecture try to improve the existent flaws. The integration of the keyless entry system and the fingerprint identification technology is more suitable to implement on the portable transponder to achieve higher security needs. We also adopt and modify AES security protocol for life expectancy and security of the portable transponder. In addition, the identification of a driver's fingerprint makes the service of automatic reinstatement of a driver's preferences become possible. Our design can satisfy not only the three kinds of previous illegal attacks, but also the stealing situation. Furthermore, many practical factors, such as costs, life expectancy and performance, have been well considered in the design of portable transponder.Keywords: Keyless entry-system, fingerprint identification, AES security protocol, vehicle immobilizer system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27435135 Signature Identification Scheme Based on Iterated Function Systems
Authors: Nadia M. G. AL-Saidi
Abstract:
Since 1984 many schemes have been proposed for digital signature protocol, among them those that based on discrete log and factorizations. However a new identification scheme based on iterated function (IFS) systems are proposed and proved to be more efficient. In this study the proposed identification scheme is transformed into a digital signature scheme by using a one way hash function. It is a generalization of the GQ signature schemes. The attractor of the IFS is used to obtain public key from a private one, and in the encryption and decryption of a hash function. Our aim is to provide techniques and tools which may be useful towards developing cryptographic protocols. Comparisons between the proposed scheme and fractal digital signature scheme based on RSA setting, as well as, with the conventional Guillou-Quisquater signature, and RSA signature schemes is performed to prove that, the proposed scheme is efficient and with high performance.Keywords: Digital signature, Fractal, Iterated function systems(IFS), Guillou-Quisquater (GQ) protocol, Zero-knowledge (ZK)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15145134 Using Genetic Algorithms in Closed Loop Identification of the Systems with Variable Structure Controller
Authors: O.M. Mohamed vall, M. Radhi
Abstract:
This work presents a recursive identification algorithm. This algorithm relates to the identification of closed loop system with Variable Structure Controller. The approach suggested includes two stages. In the first stage a genetic algorithm is used to obtain the parameters of switching function which gives a control signal rich in commutations (i.e. a control signal whose spectral characteristics are closest possible to those of a white noise signal). The second stage consists in the identification of the system parameters by the instrumental variable method and using the optimal switching function parameters obtained with the genetic algorithm. In order to test the validity of this algorithm a simulation example is presented.
Keywords: Closed loop identification, variable structure controller, pseud-random binary sequence, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14405133 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants
Authors: Rahib Hidayat Abiyev
Abstract:
This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23755132 Automatic Real-Patient Medical Data De-Identification for Research Purposes
Authors: Petr Vcelak, Jana Kleckova
Abstract:
Our Medicine-oriented research is based on a medical data set of real patients. It is a security problem to share patient private data with peoples other than clinician or hospital staff. We have to remove person identification information from medical data. The medical data without private data are available after a de-identification process for any research purposes. In this paper, we introduce an universal automatic rule-based de-identification application to do all this stuff on an heterogeneous medical data. A patient private identification is replaced by an unique identification number, even in burnedin annotation in pixel data. The identical identification is used for all patient medical data, so it keeps relationships in a data. Hospital can take an advantage of a research feedback based on results.Keywords: DASTA, De-identification, DICOM, Health Level Seven, Medical data, OCR, Personal data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16425131 Mathematical Approach towards Fault Detection and Isolation of Linear Dynamical Systems
Authors: V.Manikandan, N.Devarajan
Abstract:
The main objective of this work is to provide a fault detection and isolation based on Markov parameters for residual generation and a neural network for fault classification. The diagnostic approach is accomplished in two steps: In step 1, the system is identified using a series of input / output variables through an identification algorithm. In step 2, the fault is diagnosed comparing the Markov parameters of faulty and non faulty systems. The Artificial Neural Network is trained using predetermined faulty conditions serves to classify the unknown fault. In step 1, the identification is done by first formulating a Hankel matrix out of Input/ output variables and then decomposing the matrix via singular value decomposition technique. For identifying the system online sliding window approach is adopted wherein an open slit slides over a subset of 'n' input/output variables. The faults are introduced at arbitrary instances and the identification is carried out in online. Fault residues are extracted making a comparison of the first five Markov parameters of faulty and non faulty systems. The proposed diagnostic approach is illustrated on benchmark problems with encouraging results.
Keywords: Artificial neural network, Fault Diagnosis, Identification, Markov parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16335130 Identification and Classification of Plastic Resins using Near Infrared Reflectance Spectroscopy
Authors: Hamed Masoumi, Seyed Mohsen Safavi, Zahra Khani
Abstract:
In this paper, an automated system is presented for identification and separation of plastic resins based on near infrared (NIR) reflectance spectroscopy. For identification and separation among resins, a "Two-Filter" identification method is proposed that is capable to distinguish among polyethylene terephthalate (PET), high density polyethylene (HDPE), polyvinyl chloride (PVC), polypropylene (PP) and polystyrene (PS). Through surveying effects of parameters such as surface contamination, sample thickness, label and cap existence, it was obvious that the "Two-Filter" method has a high efficiency in identification of resins. It is shown that accurate identification and separation of five major resins can be obtained through calculating the relative reflectance at two wavelengths in the NIR region.Keywords: Identification, Near Infrared, Plastic, Separation, Spectroscopy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 100165129 Service Identification Approach to SOA Development
Authors: Nafise Fareghzadeh
Abstract:
Service identification is one of the main activities in the modeling of a service-oriented solution, and therefore errors made during identification can flow down through detailed design and implementation activities that may necessitate multiple iterations, especially in building composite applications. Different strategies exist for how to identify candidate services that each of them has its own benefits and trade offs. The approach presented in this paper proposes a selective identification of services approach, based on in depth business process analysis coupled with use cases and existing assets analysis and goal service modeling. This article clearly emphasizes the key activities need for the analysis and service identification to build a optimized service oriented architecture. In contrast to other approaches this article mentions some best practices and steps, wherever appropriate, to point out the vagueness involved in service identification.Keywords: SOA, service identification, service taxonomy, service layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30905128 On-line Identification of Continuous-time Hammerstein Systems via RBF Networks and Immune Algorithm
Authors: Tomohiro Hachino, Kengo Nagatomo, Hitoshi Takata
Abstract:
This paper deals with an on-line identification method of continuous-time Hammerstein systems by using the radial basis function (RBF) networks and immune algorithm (IA). An unknown nonlinear static part to be estimated is approximately represented by the RBF network. The IA is efficiently combined with the recursive least-squares (RLS) method. The objective function for the identification is regarded as the antigen. The candidates of the RBF parameters such as the centers and widths are coded into binary bit strings as the antibodies and searched by the IA. On the other hand, the candidates of both the weighting parameters of the RBF network and the system parameters of the linear dynamic part are updated by the RLS method. Simulation results are shown to illustrate the proposed method.Keywords: Continuous-time System, Hammerstein System, OnlineIdentification, Immune Algorithm, RBF network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13625127 System Identification Based on Stepwise Regression for Dynamic Market Representation
Authors: Alexander Efremov
Abstract:
A system for market identification (SMI) is presented. The resulting representations are multivariable dynamic demand models. The market specifics are analyzed. Appropriate models and identification techniques are chosen. Multivariate static and dynamic models are used to represent the market behavior. The steps of the first stage of SMI, named data preprocessing, are mentioned. Next, the second stage, which is the model estimation, is considered in more details. Stepwise linear regression (SWR) is used to determine the significant cross-effects and the orders of the model polynomials. The estimates of the model parameters are obtained by a numerically stable estimator. Real market data is used to analyze SMI performance. The main conclusion is related to the applicability of multivariate dynamic models for representation of market systems.Keywords: market identification, dynamic models, stepwise regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16185126 Tag Impersonation Attack on Ultra-Lightweight Radio Frequency Identification Authentication Scheme
Authors: Reham Al-Zahrani, Noura Aleisa
Abstract:
The proliferation of Radio Frequency Identification (RFID) technology has raised concerns about system security, particularly regarding tag impersonation attacks. Regarding RFID systems, an appropriate authentication protocol must resist active and passive attacks. A tag impersonation occurs when an adversary's tag is used to fool an authenticating reader into believing it is a legitimate tag. The paper thoroughly analyses the security of the Efficient, Secure, and Practical Ultra-Lightweight RFID Authentication Scheme (ESRAS). It examines the protocol within the context of RFID systems and focuses specifically on its vulnerability to tag impersonation attacks. The Scyther tool is utilized to assess the protocol's security, providing a comprehensive evaluation of ESRAS's effectiveness in preventing unauthorized tag impersonation.
Keywords: RFID, radio frequency identification, impersonation attack, authentication, ultra-lightweight protocols, security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875125 Short Time Identification of Feed Drive Systems using Nonlinear Least Squares Method
Authors: M.G.A. Nassef, Linghan Li, C. Schenck, B. Kuhfuss
Abstract:
Design and modeling of nonlinear systems require the knowledge of all inside acting parameters and effects. An empirical alternative is to identify the system-s transfer function from input and output data as a black box model. This paper presents a procedure using least squares algorithm for the identification of a feed drive system coefficients in time domain using a reduced model based on windowed input and output data. The command and response of the axis are first measured in the first 4 ms, and then least squares are applied to predict the transfer function coefficients for this displacement segment. From the identified coefficients, the next command response segments are estimated. The obtained results reveal a considerable potential of least squares method to identify the system-s time-based coefficients and predict accurately the command response as compared to measurements.Keywords: feed drive systems, least squares algorithm, onlineparameter identification, short time window
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20965124 Evaluation of the ANN Based Nonlinear System Models in the MSE and CRLB Senses
Authors: M.V Rajesh, Archana R, A Unnikrishnan, R Gopikakumari, Jeevamma Jacob
Abstract:
The System Identification problem looks for a suitably parameterized model, representing a given process. The parameters of the model are adjusted to optimize a performance function based on error between the given process output and identified process output. The linear system identification field is well established with many classical approaches whereas most of those methods cannot be applied for nonlinear systems. The problem becomes tougher if the system is completely unknown with only the output time series is available. It has been reported that the capability of Artificial Neural Network to approximate all linear and nonlinear input-output maps makes it predominantly suitable for the identification of nonlinear systems, where only the output time series is available. [1][2][4][5]. The work reported here is an attempt to implement few of the well known algorithms in the context of modeling of nonlinear systems, and to make a performance comparison to establish the relative merits and demerits.Keywords: Multilayer neural networks, Radial Basis Functions, Clustering algorithm, Back Propagation training, Extended Kalmanfiltering, Mean Square Error, Nonlinear Modeling, Cramer RaoLower Bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16465123 Kalman Filter Design in Structural Identification with Unknown Excitation
Authors: Z. Masoumi, B. Moaveni
Abstract:
This article is about first step of structural health monitoring by identifying structural system in the presence of unknown input. In the structural system identification, identification of structural parameters such as stiffness and damping are considered. In this study, the Kalman filter (KF) design for structural systems with unknown excitation is expressed. External excitations, such as earthquakes, wind or any other forces are not measured or not available. The purpose of this filter is its strengths to estimate the state variables of the system in the presence of unknown input. Also least squares estimation (LSE) method with unknown input is studied. Estimates of parameters have been adopted. Finally, using two examples advantages and drawbacks of both methods are studied.
Keywords: Structural health monitoring, Kalman filter, Least square estimation, structural system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22885122 Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems
Authors: Eleni Aggelogiannaki, Haralambos Sarimveis
Abstract:
In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained is suitably transformed to a nonlinear state space formulation that also takes into account the model mismatch. A stable robust control law is implemented for the attenuation of external disturbances. The proposed identification and control methodology is applied on a long duct, a common component of thermal systems, for a flow based control of temperature distribution. The closed loop performance is significantly improved in comparison to existing control methodologies.
Keywords: Hyperbolic Distributed Parameter Systems, Radial Basis Function Neural Networks, H∞ control, Thermal systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421