Search results for: wood plastic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1493

Search results for: wood plastic

1463 Complex Rigid-Plastic Deformation Model of Tow Degree of Freedom Mechanical System under Impulsive Force

Authors: Abdelouaheb Rouabhi

Abstract:

In order to study the plastic resource of structures, the elastic-plastic single degree of freedom model described by Prandtl diagram is widely used. The generalization of this model to tow degree of freedom beyond the scope of a simple rigid-plastic system allows investigating the plastic resource of structures under complex disproportionate by individual components of deformation (earthquake). This macro-model greatly increases the accuracy of the calculations carried out. At the same time, the implementation of the proposed macro-model calculations easier than the detailed dynamic elastic-plastic calculations existing software systems such as ANSYS.

Keywords: elastic-plastic, single degree of freedom model, rigid-plastic system, plastic resource, complex plastic deformation, macro-model

Procedia PDF Downloads 349
1462 Constraints and Opportunities of Wood Production Value Chain: Evidence from Southwest Ethiopia

Authors: Abduselam Faris, Rijalu Negash, Zera Kedir

Abstract:

This study was initiated to identify constraints and opportunities of the wood production value chain in Southwest Ethiopia. About 385 wood trees growing farmers were randomly interviewed. Similarly, about 30 small-scale wood processors, 30 retailers, 15 local collectors and 5 wholesalers were purposively included in the study. The results of the study indicated that 98.96 % of the smallholder farmers that engaged in the production of wood trees which is used for wood were male-headed, with an average age of 46.88 years. The main activity that the household engaged was agriculture (crop and livestock) which accounts for about 61.56% of the sample respondents. Through value chain mapping of actors, the major value chain participant and supporting actors were identified. On average, the tree-growing farmers generated gross income of 9385.926 Ethiopian birr during the survey year. Among the critical constraints identified along the wood production value chain was limited supply of credit, poor market information dissemination, high interference of brokers, and shortage of machines, inadequate working area and electricity. The availability of forest resources is the leading opportunity in the wood production value chain. Reinforcing the linkage among wood production value chain actors, providing skill training for small-scale processors, and developing suitable policy for wood tree wise use is key recommendations forward.

Keywords: value chain analysis, wood production, southwest Ethiopia, constraints and opportunities

Procedia PDF Downloads 59
1461 Analysis of Green Wood Preservation Chemicals

Authors: Aitor Barbero-López, Soumaya Chibily, Gerhard Scheepers, Thomas Grahn, Martti Venäläinen, Antti Haapala

Abstract:

Wood decay is addressed continuously within the wood industry through use and development of wood preservatives. The increasing awareness on the negative effects of many chemicals towards the environment is causing political restrictions in their use and creating more urgent need for research on green alternatives. This paper discusses some of the possible natural extracts for wood preserving applications and compares the analytical methods available for testing their behavior and efficiency against decay fungi. The results indicate that natural extracts have interesting chemical constituents that delay fungal growth but vary in efficiency depending on the chemical concentration and substrate used. Results also suggest that presence and redistribution of preservatives in wood during exposure trials can be assessed by spectral imaging methods although standardized methods are not available. This study concludes that, in addition to the many standard methods available, there is a need to develop new faster methods for screening potential preservative formulation while maintaining the comparability and relevance of results.

Keywords: analytics, methods, preservatives, wood decay

Procedia PDF Downloads 203
1460 The Effects of Wood Ash on Ignition Point of Wood

Authors: K. A. Ibe, J. I. Mbonu, G. K. Umukoro

Abstract:

The effects of wood ash on the ignition point of five common tropical woods in Nigeria were investigated. The ash and moisture contents of the wood saw dust from Mahogany (Khaya ivorensis), Opepe (Sarcocephalus latifolius), Abura (Hallealedermannii verdc), Rubber (Heavea brasilensis) and Poroporo (Sorghum bicolour) were determined using a furnace (Vecstar furnaces, model ECF2, serial no. f3077) and oven (Genlab laboratory oven, model MINO/040) respectively. The metal contents of the five wood sawdust ash samples were determined using a Perkin Elmer optima 3000 dv atomic absorption spectrometer while the ignition points were determined using Vecstar furnaces model ECF2. Poroporo had the highest ash content, 2.263 g while rubber had the least, 0.710 g. The results for the moisture content range from 2.971 g to 0.903 g. Magnesium metal had the highest concentration of all the metals, in all the wood ash samples; with mahogany ash having the highest concentration, 9.196 ppm while rubber ash had the least concentration of magnesium metal, 2.196 ppm. The ignition point results showed that the wood ashes from mahogany and opepe increased the ignition points of the test wood samples when coated on them while the ashes from poroporo, rubber and abura decreased the ignition points of the test wood samples when coated on them. However, Opepe saw dust ash decreased the ignition point in one of the test wood samples, suggesting that the metal content of the test wood sample was more than that of the Opepe saw dust ash. Therefore, Mahogany and Opepe saw dust ashes could be used in the surface treatment of wood to enhance their fire resistance or retardancy. However, the caution to be exercised in this application is that the metal content of the test wood samples should be evaluated as well.

Keywords: ash, fire, ignition point, retardant, wood saw dust

Procedia PDF Downloads 358
1459 Development of a New Characterization Method to Analyse Cypermethrin Penetration in Wood Material by Immunolabelling

Authors: Sandra Tapin-Lingua, Katia Ruel, Jean-Paul Joseleau, Daouia Messaoudi, Olivier Fahy, Michel Petit-Conil

Abstract:

The preservative efficacy of organic biocides is strongly related to their capacity of penetration and retention within wood tissues. The specific detection of the pyrethroid insecticide is currently obtained after extraction followed by chemical analysis by chromatography techniques. However visualizing the insecticide molecule within the wood structure requires specific probes together with microscopy techniques. Therefore, the aim of the present work was to apply a new methodology based on antibody-antigen recognition and electronic microscopy to visualize directly pyrethroids in the wood material. A polyclonal antibody directed against cypermethrin was developed and implement it on Pinus sylvestris wood samples coated with technical cypermethrin. The antibody was tested on impregnated wood and the specific recognition of the insecticide was visualized in transmission electron microscopy (TEM). The immunogold-TEM assay evidenced the capacity of the synthetic biocide to penetrate in the wood. The depth of penetration was measured on sections taken at increasing distances from the coated surface of the wood. Such results correlated with chemical analyzes carried out by GC-ECD after extraction. In addition, the immuno-TEM investigation allowed visualizing, for the first time at the ultrastructure scale of resolution, that cypermethrin was able to diffuse within the secondary wood cell walls.

Keywords: cypermethrin, insecticide, wood penetration, wood retention, immuno-transmission electron microscopy, polyclonal antibody

Procedia PDF Downloads 377
1458 Kinetic Analysis of Wood Pellets by Isothermal Calorimetry for Evaluating its Self-heating Potential

Authors: Can Yao, Chang Dong Sheng

Abstract:

The heat released by wood pellets during storage will cause self-heating and even self-ignition. In this work, the heat release rates of pine, fir wood and mahogany pellets at 30–70℃ were measured by TAM air isothermal calorimeter, and the kinetic analysis was performed by iso-conversion ratio and non-steady-state methods to evaluate its self-heating potential. The results show that the reaction temperature can significantly affect the heat release rate. The higher the temperature, the greater the heat release rate. The heat release rates of different kinds of wood pellets are obviously different, and the order of the heat release rates for the three pellets at 70℃ is pine > fir wood > mahogany. The kinetic analysis of the iso-conversion ratio method indicates that the distribution of activation energy for pine, fir wood and mahogany pellets under the release of 0.1–1.0 J/g specific heat are 58–102 kJ/mol, 59–108 kJ/mol and 59–112 kJ/mol, respectively. Their activation energies obtained from the non-steady-state kinetic analysis are 13.43 kJ/mol, 19.19 kJ/mol and 21.09 kJ/mol, respectively. Both kinetic analyses show that the magnitude of self-heating risk for the three pellet fuels is pine pellets > fir wood pellets > mahogany pellets.

Keywords: isothermal calorimeter, kinetics, self-heating, wood pellets

Procedia PDF Downloads 131
1457 Levels of Plastic Waste and Fish Landed By Beach Seine Fishers in Coastal Ghana

Authors: Francis Gbogbo, Angelica Ama Essandoh, Wendy Teresa Baffoe, Henry Groos, Charles Mario Boateng, Emmanuel Robert Blankson

Abstract:

Baseline data on plastic landing by fishers and monitoring of this is important in evaluating the success of plastic waste management efforts. This study investigated plastic and fish landed by beach seine fishers in Ghana, together with the rate of plastic deposition on an adjoining beach. Plastic constituted 31.6% of the total catch, and 41.7% of the fish landed by weight. There were significant differences between the average weight of fish (139.58±53.6kg) and plastic (65.73±14.6kg) landed per fishing session and the catch per unit effort of fish (183.4±76.7 kg/day) and plastic (88.4±35.2 kg/day). The mean weight of plastic landed per fishing session was higher than the mean weight of each of the 26 species of fisheries. The rate of plastic deposition on the beach was 8.1±2.5 plastic items per m2 per tidal cycle or 0.35±0.11kg plastic per m2 per tidal cycle, with food packs and tableware dominating the deposited plastic. The results suggested that ongoing water sachets and plastic bottle recycling in Ghana are yielding results and calls for targeted efforts in plastic food packs and tableware management.

Keywords: fishig, landing, plastic waste, intertidal area, fishing effort

Procedia PDF Downloads 40
1456 Wood Energy in Bangladesh: An Overview of Status, Challenges and Development

Authors: Md. Kamrul Hassan, Ari Pappinen

Abstract:

Wood energy is the single most important form of renewable energy in many parts of the world especially in the least developing countries in South Asia like Bangladesh. The last portion of the national population of this country depends on wood energy for their daily primary energy need. This paper deals with the estimation of wood fuel at the current level and identifies the challenges and strategies related to the development of this resource. Desk research, interactive research and field survey were conducted for gathering and analyzing of data for this study. The study revealed that wood fuel plays a significant role in total primary energy supply in Bangladesh, and the contribution of wood fuel in final energy consumption in 2013 was about 24%. Trees on homestead areas, secondary plantation on off forest lands, and forests are the main sources of supplying wood fuel in the country. Insufficient supply of wood fuel against high upward demand is the main cause of concern for sustainable consumption, which eventually leads deterioration and depletion of the resources. Inadequate afforestation programme, lack of initiatives towards the utilization of set-aside lands for wood energy plantations, and inefficient management of the existing resources have been identified as the major impediments to the development of wood energy in Bangladesh. The study argued that enhancement of public-private-partnership afforestation programmes, intensifying the waste and marginal lands with short-rotation tree species, and formulation of biomass-based rural energy strategies at the regional level are relevant to the promotion of sustainable wood energy in the country.

Keywords: Bangladesh, challenge, supply, wood energy

Procedia PDF Downloads 165
1455 Performance Tests of Wood Glues on Different Wood Species Used in Wood Workshops: Morogoro Tanzania

Authors: Japhet N. Mwambusi

Abstract:

High tropical forests deforestation for solid wood furniture industry is among of climate change contributing agents. This pressure indirectly is caused by furniture joints failure due to poor gluing technology based on improper use of different glues to different wood species which lead to low quality and weak wood-glue joints. This study was carried in order to run performance tests of wood glues on different wood species used in wood workshops: Morogoro Tanzania whereby three popular wood species of C. lusitanica, T. glandis and E. maidenii were tested against five glues of Woodfix, Bullbond, Ponal, Fevicol and Coral found in the market. The findings were necessary on developing a guideline for proper glue selection for a particular wood species joining. Random sampling was employed to interview carpenters while conducting a survey on the background of carpenters like their education level and to determine factors that influence their glues choice. Monsanto Tensiometer was used to determine bonding strength of identified wood glues to different wood species in use under British Standard of testing wood shear strength (BS EN 205) procedures. Data obtained from interviewing carpenters were analyzed through Statistical Package of Social Science software (SPSS) to allow the comparison of different data while laboratory data were compiled, related and compared by the use of MS Excel worksheet software as well as Analysis of Variance (ANOVA). Results revealed that among all five wood glues tested in the laboratory to three different wood species, Coral performed much better with the average shear strength 4.18 N/mm2, 3.23 N/mm2 and 5.42 N/mm2 for Cypress, Teak and Eucalyptus respectively. This displays that for a strong joint to be formed to all tree wood species for soft wood and hard wood, Coral has a first priority in use. The developed table of guideline from this research can be useful to carpenters on proper glue selection to a particular wood species so as to meet glue-bond strength. This will secure furniture market as well as reduce pressure to the forests for furniture production because of the strong existing furniture due to their strong joints. Indeed, this can be a good strategy on reducing climate change speed in tropics which result from high deforestation of trees for furniture production.

Keywords: climate change, deforestation, gluing technology, joint failure, wood-glue, wood species

Procedia PDF Downloads 213
1454 The Assessment of Forest Wood Biomass Potential in Terms of Sustainable Development

Authors: Julija Konstantinavičienė, Vlada Vitunskienė

Abstract:

The role of sustainable biomass, including wood biomass, is becoming more important because of European Green Deal. The New EU Forest strategy is a flagship element of the European Green Deal and a key action on the EU biodiversity strategy for 2030. The first measure of this strategy is promoting sustainable forest management, including encouraging the sustainable use of wood-based resources. The first aim of this research was to develop and present a new approach to the concept of forest wood biomass potential in terms of sustainable development, distinguishing theoretical, technical and sustainable potential and detailing its constraints. The second aim was to prepare the methodology outline of sustainable forest wood biomass potential assessment and empirically check this methodology, considering economic, social and ecological constraints. The basic methodologies of the research: the review of research (with a combination of semi-systematic and integrative review methodologies), rapid assessment method and statistical data analysis. The developed methodology of assessment of forest wood potential in terms of sustainable development can be used in Lithuania and in other countries and will let us compare this potential a different time and spatial levels. The application of the methodology will be able to serve the development of new national strategies for the wood sector.

Keywords: assessment, constraints, forest wood biomass, methodology, potential, sustainability

Procedia PDF Downloads 87
1453 Synthesis and Characterization of Recycled Isotactic Polypropylene Nanocomposites Containing Date Wood Fiber

Authors: Habib Shaban

Abstract:

Nanocomposites of isotactic polypropylene (iPP) and date wood fiber were prepared after modification of the host matrix by reactive extrusion grafting of maleic anhydride. Chemical and mechanical treatment of date wood flour (WF) was conducted to obtain nanocrystalline cellulose. Layered silicates (clay) were partially intercalated with date wood fiber, and the modified layered silicate was used as filler in the PP matrix via a melt-blending process. The tensile strength of composites prepared from wood fiber modified clay was greater than that of the iPP-clay and iPP-WF composites at a 6% filler concentration, whereas deterioration of mechanical properties was observed when clay and WF were used alone for reinforcement. The dispersion of the filler in the matrix significantly decreased after clay modification with cellulose at higher concentrations, as shown by X-ray diffraction (XRD) data.

Keywords: nanocomposites, isotactic polypropylene, date wood flour, intercalated, melt-blending

Procedia PDF Downloads 360
1452 Statistical Feature Extraction Method for Wood Species Recognition System

Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof

Abstract:

Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.

Keywords: classification, feature extraction, fuzzy, inspection system, image analysis, macroscopic images

Procedia PDF Downloads 398
1451 Comparison of Two Artificial Accelerated Weathering Methods of Larch Wood with Natural Weathering in Exterior Conditions

Authors: I. Sterbova, E. Oberhofnerova, M. Panek, M. Pavelek

Abstract:

With growing popularity, wood of European larch (Larix decidua, Mill.) is being more often applied into the exterior, usually as facade elements, also without surface treatment. The aim of this work was to compare two laboratory tests of artificial accelerated weathering of wood with two ways of natural weathering in the exterior. To assess changes in selected surface characteristics of larch wood, accelerated weathering methods in the Xenotest and UV chamber were used, both in combination with temperature cycling, for 6 weeks. They were compared with natural weathering results at exposition under 45° and 90° in the exterior for 12 months. The changes of colour, gloss, contact angle of water and also changes in visual characteristics were evaluated. The results of wood surfaces changes after 6 weeks of accelerated weathering in Xenotest are closer to 12 months of natural weathering in the exterior at an angle of 90° compared to the UV chamber testing. The results, especially the colour changes, of the samples exposed at an angle of 45° in the exterior were significantly different. Testing in Xenotest more closely simulates the weathering of façade elements in the exterior compared to the UV chamber testing.

Keywords: larch wood, wooden facade, wood accelerated weathering, weathering methods

Procedia PDF Downloads 110
1450 Mimosa Tannin – Starch - Sugar Based Wood Adhesive

Authors: Salise Oktay, Nilgün Kizilcan, Başak Bengü

Abstract:

At present, formaldehyde based adhesives such as urea formaldehyde (UF), melamine formaldehyde (MF), melamine – urea formaldehyde (MUF), etc. are mostly used in wood based panel industry because of their high reactivity, chemical versatility, and economic competitiveness. However, formaldehyde based wood adhesives are produced from non- renewable resources. Hence, there has been a growing interest in the development of environment friendly, economically competitive, bio-based wood adhesives in order to meet wood based panel industry requirements. In this study, as formaldehyde free adhesive, Mimosa tannin, starch, sugar based wood adhesivewas synthesized. Citric acid and tartaric acid were used as hardener for the resin system. Solid content, viscosity, and gel time analyzes of the prepared adhesive were performed in order to evaluate the adhesive processability. FTIR characterization technique was used to elucidate the chemical structures of the cured adhesivesamples. In order to evaluate the performance of the prepared bio-based resin formulation, particleboards were produced in a laboratory scale, and mechanical, physical properties of the boards were investigated. Besides, the formaldehyde contents of the boards were determined by using the perforator method. The obtained results revealed that the developed bio-based wood adhesive formulation can be a good potential candidate to use wood based panel industry with some developments.

Keywords: bio-based wood adhesives, mimosa tannin, corn starch, sugar, polycarboxyclic acid

Procedia PDF Downloads 204
1449 Analysis of Different Resins in Web-to-Flange Joints

Authors: W. F. Ribeiro, J. L. N. Góes

Abstract:

The industrial process adds to engineering wood products features absent in solid wood, with homogeneous structure and reduced defects, improved physical and mechanical properties, bio-deterioration, resistance and better dimensional stability, improving quality and increasing the reliability of structures wood. These features combined with using fast-growing trees, make them environmentally ecological products, ensuring a strong consumer market. The wood I-joists are manufactured by the industrial profiles bonding flange and web, an important aspect of the production of wooden I-beams is the adhesive joint that bonds the web to the flange. Adhesives can effectively transfer and distribute stresses, thereby increasing the strength and stiffness of the composite. The objective of this study is to evaluate different resins in a shear strain specimens with the aim of analyzing the most efficient resin and possibility of using national products, reducing the manufacturing cost. First was conducted a literature review, where established the geometry and materials generally used, then established and analyzed 8 national resins and produced six specimens for each.

Keywords: engineered wood products, structural resin, wood i-joist, Pinus taeda

Procedia PDF Downloads 250
1448 Dynamic Simulation of Disintegration of Wood Chips Caused by Impact and Collisions during the Steam Explosion Pre-Treatment

Authors: Muhammad Muzamal, Anders Rasmuson

Abstract:

Wood material is extensively considered as a raw material for the production of bio-polymers, bio-fuels and value-added chemicals. However, the shortcoming in using wood as raw material is that the enzymatic hydrolysis of wood material is difficult because the accessibility of enzymes to hemicelluloses and cellulose is hindered by complex chemical and physical structure of the wood. The steam explosion (SE) pre-treatment improves the digestion of wood material by creating both chemical and physical modifications in wood. In this process, first, wood chips are treated with steam at high pressure and temperature for a certain time in a steam treatment vessel. During this time, the chemical linkages between lignin and polysaccharides are cleaved and stiffness of material decreases. Then the steam discharge valve is rapidly opened and the steam and wood chips exit the vessel at very high speed. These fast moving wood chips collide with each other and with walls of the equipment and disintegrate to small pieces. More damaged and disintegrated wood have larger surface area and increased accessibility to hemicelluloses and cellulose. The energy required for an increase in specific surface area by same value is 70 % more in conventional mechanical technique, i.e. attrition mill as compared to steam explosion process. The mechanism of wood disintegration during the SE pre-treatment is very little studied. In this study, we have simulated collision and impact of wood chips (dimension 20 mm x 20 mm x 4 mm) with each other and with walls of the vessel. The wood chips are simulated as a 3D orthotropic material. Damage and fracture in the wood material have been modelled using 3D Hashin’s damage model. This has been accomplished by developing a user-defined subroutine and implementing it in the FE software ABAQUS. The elastic and strength properties used for simulation are of spruce wood at 12% and 30 % moisture content and at 20 and 160 OC because the impacted wood chips are pre-treated with steam at high temperature and pressure. We have simulated several cases to study the effects of elastic and strength properties of wood, velocity of moving chip and orientation of wood chip at the time of impact on the damage in the wood chips. The disintegration patterns captured by simulations are very similar to those observed in experimentally obtained steam exploded wood. Simulation results show that the wood chips moving with higher velocity disintegrate more. Moisture contents and temperature decreases elastic properties and increases damage. Impact and collision in specific directions cause easy disintegration. This model can be used to efficiently design the steam explosion equipment.

Keywords: dynamic simulation, disintegration of wood, impact, steam explosion pretreatment

Procedia PDF Downloads 370
1447 Hip and Valley Support Location in Wood Framing

Authors: P. Hajyalikhani, B. Hudson, D. Boll, L. Boren, Z. Sparks, M. Ward

Abstract:

Wood Light frame construction is one of the most common types of construction methods for residential and light commercial building in North America and parts of Europe. The typical roof framing for wood framed building is sloped and consists of several structural members such as rafters, hips, and valleys which are connected to the ridge and ceiling joists. The common slopes for roofs are 3/12, 8/12, and 12/12. Wood framed residential roof failure is most commonly caused by wind damage in such buildings. In the recent study, one of the weaknesses of wood framed roofs is long unsupported structural member lengths, such as hips and valleys. The purpose of this research is to find the critical support location for long hips and valleys with different slopes. ForteWeb software is used to find the critical location. The analysis results demonstrating the maximum unbraced hip and valley length are from 8.5 to 10.25 ft. dependent on the slope and roof type.

Keywords: wood frame, stick framing, hip, valley

Procedia PDF Downloads 89
1446 Anti-Bubble Painting Booth for Wood Coating Resins

Authors: Abasali Masoumi, Amir Gholamian Bozorgi

Abstract:

To have the best quality in wood products such as tabletops and inlay-woods, applying two principles are required: aesthetic and protection against the destructive agent. Artists spent a lot of time creating a masterwork project and also for better demonstrating beautiful appearance and preserving it for hundred years. So they need good material and appropriate method to finish it. As usual, wood painters use polyester or epoxy resins. These finishes need a special skill to use and then give a fantastic paint film and clearness. If we let resins dry in exposure to environmental agents such as unstable temperature, dust and etc., no doubt it becomes cloudy, crack, blister and much wood dust and air bubbles in it. We have designed a special wood coating booth (IR-Patent No: 70429) for wood-coating resins (polyester and epoxy), and this booth provides an adjustable space to control factors that is necessary to have a good finish in the end. Anti-bubble painting booth has the ability to remove bubbles from resin, precludes the cracking process and causes the resin to be the best. With this booth drying time of resin is reduced from 24 hours to 6 hours by fixing the optimum temperature, and it is very good for saving time. This booth is environment-friendly and never lets the poisonous vapors and other VOC (Volatile organic components) enter to workplace atmosphere because they are very harmful to humans.

Keywords: wood coating, epoxy resin, polyester resin, wood finishes

Procedia PDF Downloads 188
1445 Analyses of Copper Nanoparticles Impregnated Wood and Its Fungal Degradation Performance

Authors: María Graciela Aguayo, Laura Reyes, Claudia Oviedo, José Navarrete, Liset Gómez, Hugo Torres

Abstract:

Most wood species used in construction deteriorate when exposed to environmental conditions that favor wood-degrading organisms’ growth. Therefore, chemical protection by impregnation allows more efficient use of forest resources extending the wood useful life. A wood protection treatment which has attracted considerable interest in the scientific community during the last decade is wood impregnation with nano compounds. Radiata pine is the main wood species used in the Chilean construction industry, with total availability of 8 million m³ sawn timber. According to the requirements of the American Wood Protection Association (AWPA) and the Chilean Standards (NCh) radiata pine timber used in construction must be protected due to its low natural durability. In this work, the impregnation with copper nanoparticles (CuNP) was studied in terms of penetration and its protective effect against wood rot fungi. Two concentrations: 1 and 3 g/L of NPCu were applied by impregnation on radiata pine sapwood. Test penetration under AWPA A3-91 standard was carried out, and wood decay tests were performed according to EN 113, with slight modifications. The results of penetration for 1 g/L CuNP showed an irregular total penetration, and the samples impregnated with 3 g/L showed a total penetration with uniform concentration (blue color in all cross sections). The impregnation wood mass losses due to fungal exposure were significantly reduced, regardless of the concentration of the solution or the fungus. In impregnated wood samples, exposure to G. trabeum resulted ML values of 2.70% and 1.19% for 1 g/L and 3 g/L CuNP, respectively, and exposure to P. placenta resulted in 4.02% and 0.70%-ML values for 1 g/L and 3 g/L CuNP, respectively. In this study, the penetration analysis confirmed a uniform distribution inside the wood, and both concentrations were effective against the tested fungi, giving mass loss values lower than 5%. Therefore, future research in wood preservatives should focus on new nanomaterials that are more efficient and environmentally friendly. Acknowledgments: CONICYT FONDEF IDeA I+D 2019, grant number ID19I10122.

Keywords: copper nanoparticles, fungal degradation, radiata pine wood, wood preservation

Procedia PDF Downloads 167
1444 Influence of Plastic Waste Reinforcement on Compaction and Consolidation Behavior of Silty Soil

Authors: Maryam Meftahi, Yashar Hamidzadeh

Abstract:

In recent decades, the amount of solid waste production has been rising. In the meantime, plastic waste is one of the major parts of urban solid waste, so, recycling plastic waste from water bottles has become a serious challenge in the whole world. The experimental program includes the study of the effect of waste plastic fibers on maximum dry density (MDD), optimum moisture content (OMC) with different sizes and contents. Also, one dimensional consolidation tests were carried out to evaluate the benefit of utilizing randomly distributed waste plastics fiber to improve the engineering behavior of a tested soils. Silty soil specimens were prepared and tested at five different percentages of plastic waste content (i.e. 0.25%, 0.50%, 0.75%, 1% and 1.25% by weight of the parent soil). The size of plastic chips used, are 4 mm, 8 mm and 12 mm long and 4 mm in width. The results show that with the addition of waste plastic fibers, the MDD and OMC and also the compressibility of soil decrease significantly.

Keywords: silty soil, waste plastic, compaction, consolidation, reinforcement

Procedia PDF Downloads 142
1443 Design Consideration of a Plastic Shredder in Recycling Processes

Authors: Tolulope A. Olukunle

Abstract:

Plastic waste management has emerged as one of the greatest challenges facing developing countries. This paper describes the design of various components of a plastic shredder. This machine is widely used in industries and recycling plants. The introduction of plastic shredder machine will promote reduction of post-consumer plastic waste accumulation and serves as a system for wealth creation and empowerment through conversion of waste into economically viable products. In this design research, a 10 kW electric motor with a rotational speed of 500 rpm was chosen to drive the shredder. A pulley size of 400 mm is mounted on the electric motor at a distance of 1000 mm away from the shredder pulley. The shredder rotational speed is 300 rpm.

Keywords: design, machine, plastic waste, recycling

Procedia PDF Downloads 288
1442 Survey of the Elimination of Red Acid Dye by Wood Dust

Authors: N. Ouslimani, T. Abadlia, M. Fadel

Abstract:

This work focused on the elimination of acid textile dye (red bermacide acid dye BN-CL-200), widely used for dyeing wool and polyamide fibers, by adsorption on a natural material, wood sawdust, in the static mode by keeping under continuous stirring, a specific mass of the adsorbent, with a dye solution of known concentration. The influence of various parameters is studied like the influence of particle size, mass, pH and time. The best results were obtained with 0.4 mm grain size, mass of 3g, Temperature of 20 °C, pH 2 and Time contact of 120 min.

Keywords: acid dye, environment, wood sawdust, wastewater

Procedia PDF Downloads 412
1441 Advocating for and Implementing the Use of Advance Top Bar (ATB) for a More Than 100% Increase in Honey Yield in Top Bar Hives Owing to Honey Harvesting Without Comb Destruction

Authors: Perry Ayi Mankattah

Abstract:

Introduction: Africa, which should lead the world in honey production, is importing three times the honey it produces even though it has a healthy, industrious and large population of bees. This is due to the mechanism of honey harvesting that destroys the combs and thereby reducing honey production and rate of harvesting. For Africa to take its place in the world of honey production, Africa should adopt a method that enables a higher rate of honey harvesting. The Advance Top Bar is, therefore, a simplified framework that provides that answer. It can be made of wood, plastic and metal that can be fabricated by tin/metal smiths, wielders and carpenters at the village level without any very sophisticated machines. Material and Methods: ATB is a top bar-like hollow framework of dimension 3.2*48 cm that can be made of wood, plastic and metal. It is made up of three parts of a constant hollow top bar, a variable grooved bottom bar with both bars being joined through synchronized holes (that align both the top and bottom bars ) by either metal or plastic rods of length 22cm and diameter of 5 mm with rounded balls at both ends It could be used with foundation combs or without and also other accessories to have about ten (10) function which includes commercial propolis harvesting queen rearing etc. The variable bottom bar length depends on the width of the hive, as most African beehives are somehow not standardized. Results: Foundation combs are placed within the Advance Top Bar for the bees to form their combs over its mesh to prevent comb breakage during honey harvesting. Similarly, honeycombs on top bars will produce natural foundation combs when also placed in the Advance top bar system just as they are re-used in the Langstroth Frames. Discussions and Conclusions: Any modification that will promote non-comb destruction during honey harvesting in Top bars shall cause Africa to increase honey production by over 100% as beekeepers adopt the mechanism. Honey-laden combs from the current normal top bars could be placed in the Advance Top Bar to harvest without comb destruction; hence the same system could be used as a transition to the adoption of the Advance Top Bar with less cost.

Keywords: honey, harvest, increase, production

Procedia PDF Downloads 39
1440 Plastic Degradation Activity of Bacillus Sp. Isolated from the Gut of Plastic-Fed Yellow Mealworm

Authors: Najat El-Kurdi, Sherif Hammad, Mohamed Ghazi, Sahar El-Shatoury, Khaled Zakaria

Abstract:

The increasing number of plastic production and its importance to humanity in daily life made it a headache to the planet earth. The persistence of plastic wastes in the environment formed a serious problem. They are prominent with their capability to resist microbial degradation for decades. Thus, it was crucial to find ways to eliminate the plastics without depending on conventional recycling methods, which causes the formation of more hazardous compounds and doubles the problem. In this paper, mealworms were fed with a mixture of plastic wastes such as plastic bags, Styrofoam, PE foam, and plastic tarpaulins film as the sole food source for a month. Frass was collected at the end of the test and examined using FTIR analysis. Also, the gut bacteria were isolated and identified using 16S rRNA. The results show the mineralization of plastic in the frass of plastic-fed worms when compared to control. The 16S rRNA and the BLAST analysis showed that the obtained isolate belongs to the genus Bacillus Sp especially Bacillus subtilis. Phylogenetic analysis showed their relatedness to the other Bacillus species in the NCBI database.

Keywords: mealworm, waste management, plastic-degrading bacteria, gut microbiome, Bacillus sp

Procedia PDF Downloads 105
1439 Properties of Concrete with Wood Ashes in Construction Engineering

Authors: Piotr-Robert Lazik, Lena Teichmann, Harald Garrecht

Abstract:

Many concrete technologists are looking for a solution to replace fly ashes as a component that occurs as a major component of many types of concrete. The importance of such a component is clear -it saves cement and reduces the amount of CO₂ in the atmosphere that occurs during cement production. For example, the amount of cement in ultrahigh strength concrete (UHPC) is approximately 700-800 kg/m³ in normal concrete up to 350 kg/m³. For this reason, it is easy to follow that the use of components like fly ashes or wood ashes protect the environment. The newest investigations carried out at the University of Stuttgart have clearly shown that the use of wood ashes with appropriate pre-treatment in concrete has a positive effect. German-wide, there are hundreds of tons of wood ashes, which can be used in a wide range of construction materials. The strengths of the concrete with different types of cement and with wood ashes have given the same or, in some cases, better results than those with the use of fly ashes. There are many areas in building construction, where the clays of wood ashes can be used as a by-product. This does not only require a strength test but also, for example, an examination of structural-physical parameters. Especially the heat and moisture characteristics have an important role in times of energy-efficient construction. These are therefore determined and then compared with the characteristics of the concretes with fly ashes. The University of Stuttgart has decided to investigate the buildings' physical properties of different types of concrete with wood ashes to find their application in construction. After the examination of the buildings' physical properties in combination with strength tests, it is possible to determine in which field of civil engineering, this type of concrete can be used.

Keywords: fly ashes, wood ashes, structural-physical parameters, UHPC

Procedia PDF Downloads 115
1438 Fluorination Renders the Wood Surface Hydrophobic without Any Loos of Physical and Mechanical Properties

Authors: Martial Pouzet, Marc Dubois, Karine Charlet, Alexis Béakou

Abstract:

The availability, the ecologic and economic characteristics of wood are advantages which explain the very wide scope of applications of this material, in several domains such as paper industry, furniture, carpentry and building. However, wood is a hygroscopic material highly sensitive to ambient humidity and temperature. The swelling and the shrinking caused by water absorption and desorption cycles lead to crack and deformation in the wood volume, making it incompatible for such applications. In this study, dynamic fluorination using F2 gas was applied to wood samples (douglas and silver fir species) to decrease their hydrophilic character. The covalent grafting of fluorine atoms onto wood surface through a conversion of C-OH group into C-F was validated by Fourier-Transform infrared spectroscopy and 19F solid state Nuclear Magnetic Resonance. It revealed that the wood, which is initially hydrophilic, acquired a hydrophobic character comparable to that of the Teflon, thanks to fluorination. A good durability of this treatment was also determined by aging tests under ambient atmosphere and under UV irradiation. Moreover, this treatment allowed obtaining hydrophobic character without major structural (morphology, density and colour) or mechanical changes. The maintaining of these properties after fluorination, which requires neither toxic solvent nor heating, appears as a remarkable advantage over other more traditional physical and chemical wood treatments.

Keywords: cellulose, spectroscopy, surface treatment, water absorption

Procedia PDF Downloads 178
1437 Variations in Wood Traits across Major Gymnosperm and Angiosperm Tree Species and the Driving Factors in China

Authors: Meixia Zhang, Chengjun Ji, Wenxuan Han

Abstract:

Many wood traits are important functional attributes for tree species, connected with resource competition among species, community dynamics, and ecosystem functions. Large variations in these traits exist among taxonomic categories, but variation in these traits between gymnosperms and angiosperms is still poorly documented. This paper explores the systematic differences in 12 traits between the two tree categories and the potential effects of environmental factors and life form. Based on a database of wood traits for major gymnosperm and angiosperm tree species across China, the values of 12 wood traits and their driving factors in gymnosperms vs. angiosperms were compared. The results are summarized below: i) Means of wood traits were all significantly lower in gymnosperms than in angiosperms. ii) Air-dried density (ADD) and tangential shrinkage coefficient (TSC) reflect the basic information of wood traits for gymnosperms, while ADD and radial shrinkage coefficient (RSC) represent those for angiosperms, providing higher explanation power when used as the evaluation index of wood traits. iii) For both gymnosperm and angiosperm species, life form exhibits the largest explanation rate for large-scale spatial patterns of ADD, TSC (RSC), climatic factors the next, and edaphic factors have the least effect, suggesting that life form is the dominant factor controlling spatial patterns of wood traits. Variations in the magnitude and key traits between gymnosperms and angiosperms and the same dominant factors might indicate the evolutionary divergence and convergence in key functional traits among woody plants.

Keywords: allometry, functional traits, phylogeny, shrinkage coefficient, wood density

Procedia PDF Downloads 238
1436 Validation of the X-Ray Densitometry Method for Radial Density Pattern Determination of Acacia seyal var. seyal Tree Species

Authors: Hanadi Mohamed Shawgi Gamal, Claus Thomas Bues

Abstract:

Wood density is a variable influencing many of the technological and quality properties of wood. Understanding the pattern of wood density radial variation is important for its end-use. The X-ray technique, traditionally applied to softwood species to assess the wood quality properties, due to its simple and relatively uniform wood structure. On the other hand, very limited information is available about the validation of using this technique for hardwood species. The suitability of using the X-ray technique for the determination of hardwood density has a special significance in countries like Sudan, where only a few timbers are well known. This will not only save the time consumed by using the traditional methods, but it will also enhance the investigations of the great number of the lesser known species, the thing which will fill the huge cap of lake information of hardwood species growing in Sudan. The current study aimed to evaluate the validation of using the X-ray densitometry technique to determine the radial variation of wood density of Acacia seyal var. seyal. To this, a total of thirty trees were collected randomly from four states in Sudan. The wood density radial trend was determined using the basic density as well as density obtained by the X-ray densitometry method in order to assess the validation of X-ray technique in wood density radial variation determination. The results showed that the pattern of radial trend of density obtained by X-ray technique is very similar to that achieved by basic density. These results confirmed the validation of using the X-ray technique for Acacia seyal var. seyal density radial trend determination. It also promotes the suitability of using this method in other hardwood species.

Keywords: x-ray densitometry, wood density, Acacia seyal var. seyal, radial variation

Procedia PDF Downloads 115
1435 Congolese Wood in the Antwerp Interwar Interior

Authors: M. Jaenen, M. de Bouw, A. Verdonck, M. Leus

Abstract:

During the interwar period artificial materials were often preferred, but many Antwerp architects relied on the application of wood for most of the interior finishing works and furnishings. Archival, literature and on site research of interwar suburban townhouses and the Belgian wood and furniture industry gave a new insight to the application of wood in the interwar interior. Many interwar designers favored the decorative values in all treatments of wood because of its warmth, comfort, good-wearing, and therefore, economic qualities. For the creation of a successful modern interior the texture and surface of the wood becomes as important as the color itself. This aesthetics valuation was the result of the modernization of the wood industry. The development of veneer and plywood gave the possibility to create strong, flat, long and plain wooden surfaces which are capable of retaining their shape. Also the modernization of cutting machines resulted in high quality and diversity in texture of veneer. The flat and plain plywood surfaces were modern decorated with all kinds of veneer-sliced options. In addition, wood species from the former Belgian Colony Congo were imported. Limba (Terminalia superba), kambala (Chlorophora excelsa), mubala (Pentaclethra macrophylla) and sapelli (Entandrophragma cylindricum) were used in the interior of many Antwerp interwar suburban town houses. From the thirties onwards Belgian wood firms established modern manufactures in Congo. There the local wood was dried, cut and prepared for exportation to the harbor of Antwerp. The presence of all kinds of strong and decorative Congolese wood products supported its application in the interwar interior design. The Antwerp architects combined them in their designs for doors, floors, stairs, built-in-furniture, wall paneling and movable furniture.

Keywords: Antwerp, congo, furniture, interwar

Procedia PDF Downloads 191
1434 Experimental Assessment of Polypropylene Plastic Aggregates(PPA) for Pavement Construction: Their Mechanical Properties via Marshall Test

Authors: Samiullah Bhatti, Safdar Abbas Zaidi, Syed Murtaza Ali Jafri

Abstract:

This research paper presents the results of using plastic aggregate in flexible pavement. Plastic aggregates have been prepared with polypropylene (PP) recycled products and have been tested with Marshall apparatus. Grade 60/70 bitumen has been chosen for this research with a total content of 2.5 %, 3 % and 3.5 %. Plastic aggregates are mixed with natural aggregates with different proportions and it ranges from 10 % to 100 % with an increment of 10 %. Therefore, a total of 10 Marshall cakes were prepared with plastic aggregates in addition to a standard pavement sample. In total 33 samples have been tested for Marshall stability, flow and voids in mineral aggregates. The results show an increase in the value when it changes from 2.5 % bitumen to 3 % and after then it goes again toward declination. Thus, 3 % bitumen content has been found as the most optimum value for flexible pavements. Among all the samples, 20 % PP aggregates sample has been found satisfactory with respect to all the standards provided by ASTM. Therefore, it is suggested to use 20 plastic aggregates in flexible pavement construction. A comparison of bearing capacity and skid resistance is also observed.

Keywords: marshall test, polypropylene plastic, plastic aggregates, flexible pavement alternative, recycling of plastic waste

Procedia PDF Downloads 105