Search results for: wearable sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1496

Search results for: wearable sensor

1406 Localization Problem in Optical Fiber Sensors

Authors: M. Zyczkowski, P. Markowski, M. Karol

Abstract:

The security industry is making many efforts to lower the costs of system installation. However, the dominant technique is the application of fiber optic sensors. It is necessary to determine the location of the disorder of long optical fiber cables. For a number of years, many research centers developed their own solutions. The article presents the construction of the sensor systems with the possibility of disorder location. We present a methodology for determining location of the disorder. The aim of investigations is to answer the question of which of optical sensor configuration offer the best performance for location of the disorder.

Keywords: fiber optic sensor, security sensor, fiber cables, system instillation

Procedia PDF Downloads 607
1405 Integrated Flavor Sensor Using Microbead Array

Authors: Ziba Omidi, Min-Ki Kim

Abstract:

This research presents the design, fabrication and application of a flavor sensor for an integrated electronic tongue and electronic nose that can allow rapid characterization of multi-component mixtures in a solution. The odor gas and liquid are separated using hydrophobic porous membrane in micro fluidic channel. The sensor uses an array composed of microbeads in micromachined cavities localized on silicon wafer. Sensing occurs via colorimetric and fluorescence changes to receptors and indicator molecules that are attached to termination sites on the polymeric microbeads. As a result, the sensor array system enables simultaneous and near-real-time analyses using small samples and reagent volumes with the capacity to incorporate significant redundancies. One of the key parts of the system is a passive pump driven only by capillary force. The hydrophilic surface of the fluidic structure draws the sample into the sensor array without any moving mechanical parts. Since there is no moving mechanical component in the structure, the size of the fluidic structure can be compact and the fabrication becomes simple when compared to the device including active microfluidic components. These factors should make the proposed system inexpensive to mass-produce, portable and compatible with biomedical applications.

Keywords: optical sensor, semiconductor manufacturing, smell sensor, taste sensor

Procedia PDF Downloads 412
1404 Accurate Position Electromagnetic Sensor Using Data Acquisition System

Authors: Z. Ezzouine, A. Nakheli

Abstract:

This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.

Keywords: electromagnetic sensor, accurately, data acquisition, position measurement

Procedia PDF Downloads 257
1403 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.

Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem

Procedia PDF Downloads 45
1402 Proposing a Boundary Coverage Algorithm ‎for Underwater Sensor Network

Authors: Seyed Mohsen Jameii

Abstract:

Wireless underwater sensor networks are a type of sensor networks that are located in underwater environments and linked together by acoustic waves. The application of these kinds of network includes monitoring of pollutants (chemical, biological, and nuclear), oil fields detection, prediction of the likelihood of a tsunami in coastal areas, the use of wireless sensor nodes to monitor the passing submarines, and determination of appropriate locations for anchoring ships. This paper proposes a boundary coverage algorithm for intrusion detection in underwater sensor networks. In the first phase of the proposed algorithm, optimal deployment of nodes is done in the water. In the second phase, after the employment of nodes at the proper depth, clustering is executed to reduce the exchanges of messages between the sensors. In the third phase, the algorithm of "divide and conquer" is used to save energy and increase network efficiency. The simulation results demonstrate the efficiency of the proposed algorithm.

Keywords: boundary coverage, clustering, divide and ‎conquer, underwater sensor nodes

Procedia PDF Downloads 311
1401 Power Aware Modified I-LEACH Protocol Using Fuzzy IF Then Rules

Authors: Gagandeep Singh, Navdeep Singh

Abstract:

Due to limited battery of sensor nodes, so energy efficiency found to be main constraint in WSN. Therefore the main focus of the present work is to find the ways to minimize the energy consumption problem and will results; enhancement in the network stability period and life time. Many researchers have proposed different kind of the protocols to enhance the network lifetime further. This paper has evaluated the issues which have been neglected in the field of the WSNs. WSNs are composed of multiple unattended ultra-small, limited-power sensor nodes. Sensor nodes are deployed randomly in the area of interest. Sensor nodes have limited processing, wireless communication and power resource capabilities Sensor nodes send sensed data to sink or Base Station (BS). I-LEACH gives adaptive clustering mechanism which very efficiently deals with energy conservations. This paper ends up with the shortcomings of various adaptive clustering based WSNs protocols.

Keywords: WSN, I-Leach, MATLAB, sensor

Procedia PDF Downloads 249
1400 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film

Authors: Li Long, Thomas Ortlepp

Abstract:

A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor, and sensor layout geometrical form factor. Based on the properties of electrons, phonons, grain boundaries, and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of the Boltzmann transport equation. The model includes the effect of grain structure, grain boundary trap properties, and doping concentration. The layer structure factor is analyzed with respect to the infrared absorption coefficient. The optimization of layout design is characterized by the form factor, which is calculated for different sensor designs. A double-layer polycrystalline silicon thermopile infrared sensor on a suspended membrane has been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed by measurement results.

Keywords: polycrystalline silicon, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor

Procedia PDF Downloads 104
1399 Improving Coverage in Wireless Sensor Networks Using Particle Swarm Optimization Algorithm

Authors: Ehsan Abdolzadeh, Sanaz Nouri, Siamak Khalaj

Abstract:

Today WSNs have many applications in different fields like the environment, military operations, discoveries, monitoring operations, and so on. Coverage size and energy consumption are the important challenges that these networks need to face. This paper tries to solve the problem of coverage with a requirement of k-coverage and minimum energy consumption. In order to minimize energy consumption, visual sensor networks have been used that observe and process just those targets that are located in their view direction. As a result, sensor rotations have decreased, and subsequently, energy consumption has been minimized. To solve the problem of coverage particle swarm optimization, coverage optimization has been able to ensure coverage requirement together with minimizing sensor rotations while meeting the problem requirement of k≤14. So energy consumption has decreased, and this could extend the sensors’ lifetime subsequently.

Keywords: K coverage, particle union optimization algorithm, wireless sensor networks, visual sensor networks

Procedia PDF Downloads 71
1398 Communication of Sensors in Clustering for Wireless Sensor Networks

Authors: Kashish Sareen, Jatinder Singh Bal

Abstract:

The use of wireless sensor networks (WSNs) has grown vastly in the last era, pointing out the crucial need for scalable and energy-efficient routing and data gathering and aggregation protocols in corresponding large-scale environments. Wireless Sensor Networks have now recently emerged as a most important computing platform and continue to grow in diverse areas to provide new opportunities for networking and services. However, the energy constrained and limited computing resources of the sensor nodes present major challenges in gathering data. The sensors collect data about their surrounding and forward it to a command centre through a base station. The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) as they are very useful in target detecting and other applications. However, hierarchical clustering protocols have maximum been used in to overall system lifetime, scalability and energy efficiency. In this paper, the state of the art in corresponding hierarchical clustering approaches for large-scale WSN environments is shown.

Keywords: clustering, DLCC, MLCC, wireless sensor networks

Procedia PDF Downloads 449
1397 A Multicopy Strategy for Improved Security Wireless Sensor Network

Authors: Tuğçe Yücel

Abstract:

A Wireless Sensor Network(WSN) is a collection of sensor nodes which are deployed randomly in an area for surveillance. Efficient utilization of limited battery energy of sensors for increased network lifetime as well as data security are major design objectives for WSN. Moreover secure transmission of data sensed to a base station for further processing. Producing multiple copies of data packets and sending them on different paths is one of the strategies for this purpose, which leads to redundant energy consumption and hence reduced network lifetime. In this work we develop a restricted multi-copy multipath strategy where data move through ‘frequently’ or ‘heavily’ used sensors is copied by the sensor incident to such central nodes and sent on node-disjoint paths. We develop a mixed integer programing(MIP) model and heuristic approach present some preleminary test results.

Keywords: MIP, sensor, telecommunications, WSN

Procedia PDF Downloads 477
1396 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms

Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi

Abstract:

A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.

Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization

Procedia PDF Downloads 393
1395 An Energy Efficient Clustering Approach for Underwater ‎Wireless Sensor Networks

Authors: Mohammad Reza Taherkhani‎

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make a connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: underwater sensor networks, clustering, learning automata, energy consumption

Procedia PDF Downloads 334
1394 The Design, Development, and Optimization of a Capacitive Pressure Sensor Utilizing an Existing 9DOF Platform

Authors: Andrew Randles, Ilker Ocak, Cheam Daw Don, Navab Singh, Alex Gu

Abstract:

Nine Degrees of Freedom (9 DOF) systems are already in development in many areas. In this paper, an integrated pressure sensor is proposed that will make use of an already existing monolithic 9 DOF inertial MEMS platform. Capacitive pressure sensors can suffer from limited sensitivity for a given size of membrane. This novel pressure sensor design increases the sensitivity by over 5 times compared to a traditional array of square diaphragms while still fitting within a 2 mm x 2 mm chip and maintaining a fixed static capacitance. The improved design uses one large diaphragm supported by pillars with fixed electrodes placed above the areas of maximum deflection. The design optimization increases the sensitivity from 0.22 fF/kPa to 1.16 fF/kPa. Temperature sensitivity was also examined through simulation.

Keywords: capacitive pressure sensor, 9 DOF, 10 DOF, sensor, capacitive, inertial measurement unit, IMU, inertial navigation system, INS

Procedia PDF Downloads 513
1393 A Survey on a Critical Infrastructure Monitoring Using Wireless Sensor Networks

Authors: Khelifa Benahmed, Tarek Benahmed

Abstract:

There are diverse applications of wireless sensor networks (WSNs) in the real world, typically invoking some kind of monitoring, tracking, or controlling activities. In an application, a WSN is deployed over the area of interest to sense and detect the events and collect data through their sensors in a geographical area and transmit the collected data to a Base Station (BS). This paper presents an overview of the research solutions available in the field of environmental monitoring applications, more precisely the problems of critical area monitoring using wireless sensor networks.

Keywords: critical infrastructure monitoring, environment monitoring, event region detection, wireless sensor networks

Procedia PDF Downloads 316
1392 Maximization of Lifetime for Wireless Sensor Networks Based on Energy Efficient Clustering Algorithm

Authors: Frodouard Minani

Abstract:

Since last decade, wireless sensor networks (WSNs) have been used in many areas like health care, agriculture, defense, military, disaster hit areas and so on. Wireless Sensor Networks consist of a Base Station (BS) and more number of wireless sensors in order to monitor temperature, pressure, motion in different environment conditions. The key parameter that plays a major role in designing a protocol for Wireless Sensor Networks is energy efficiency which is a scarcest resource of sensor nodes and it determines the lifetime of sensor nodes. Maximizing sensor node’s lifetime is an important issue in the design of applications and protocols for Wireless Sensor Networks. Clustering sensor nodes mechanism is an effective topology control approach for helping to achieve the goal of this research. In this paper, the researcher presents an energy efficiency protocol to prolong the network lifetime based on Energy efficient clustering algorithm. The Low Energy Adaptive Clustering Hierarchy (LEACH) is a routing protocol for clusters which is used to lower the energy consumption and also to improve the lifetime of the Wireless Sensor Networks. Maximizing energy dissipation and network lifetime are important matters in the design of applications and protocols for wireless sensor networks. Proposed system is to maximize the lifetime of the Wireless Sensor Networks by choosing the farthest cluster head (CH) instead of the closest CH and forming the cluster by considering the following parameter metrics such as Node’s density, residual-energy and distance between clusters (inter-cluster distance). In this paper, comparisons between the proposed protocol and comparative protocols in different scenarios have been done and the simulation results showed that the proposed protocol performs well over other comparative protocols in various scenarios.

Keywords: base station, clustering algorithm, energy efficient, sensors, wireless sensor networks

Procedia PDF Downloads 109
1391 A Study on Using Network Coding for Packet Transmissions in Wireless Sensor Networks

Authors: Rei-Heng Cheng, Wen-Pinn Fang

Abstract:

A wireless sensor network (WSN) is composed by a large number of sensors and one or a few base stations, where the sensor is responsible for detecting specific event information, which is sent back to the base station(s). However, how to save electricity consumption to extend the network lifetime is a problem that cannot be ignored in the wireless sensor networks. Since the sensor network is used to monitor a region or specific events, how the information can be reliably sent back to the base station is surly important. Network coding technique is often used to enhance the reliability of the network transmission. When a node needs to send out M data packets, it encodes these data with redundant data and sends out totally M + R packets. If the receiver can get any M packets out from these M + R packets, it can decode and get the original M data packets. To transmit redundant packets will certainly result in the excess energy consumption. This paper will explore relationship between the quality of wireless transmission and the number of redundant packets. Hopefully, each sensor can overhear the nearby transmissions, learn the wireless transmission quality around it, and dynamically determine the number of redundant packets used in network coding.

Keywords: energy consumption, network coding, transmission reliability, wireless sensor networks

Procedia PDF Downloads 362
1390 Using Wearable Technology to Monitor Perinatal Health: Perspectives of Community Health Workers and Potential Use by Underserved Perinatal Women in California

Authors: Tamara Jimah, Priscilla Kehoe, Pamela Pimentel, Amir Rahmani, Nikil Dutt, Yuqing Guo

Abstract:

Ensuring equitable access to maternal health care is critical for public health. Particularly for underserved women, community health workers (CHWs) have been invaluable in providing support through health education and strategies for improved maternal self-care management. Our research aimed to assess the acceptance of technology by CHWs and perinatal women to promote healthy pregnancy and postpartum wellness. This pilot study was conducted at a local community organization in Orange County, California, where CHWs play an important role in supporting low-income women through home visitations. Questionnaires were administered to 14 CHWs and 114 pregnant and postpartum women, literate in English and/or Spanish. CHWs tested two wearable devices (Galaxy watch and Oura ring) and shared their user experience, including potential reception by the perinatal women they served. In addition, perinatal women provided information on access to a smart phone and the internet, as well as their interest in using wearable devices to self-monitor personal health with guidance from a CHW. Over 85% of CHWs agreed that it was useful to track pregnancy with the smart watch and ring. The majority of perinatal women owned a smartphone (97.4%), had access to the internet (80%) and unlimited data plans (78%), expressed interest in using the smart wearable devices to self-monitor health, and were open to receiving guidance from a CHW (87%). Community health workers and perinatal women embraced the use of wearable technology to monitor maternal health. These preliminary findings have formed the basis of an ongoing research study that integrates CHW guidance and technology (i.e., smart watch, smart ring, and a mobile phone app) to promote self-efficacy and self-management among underserved perinatal women.

Keywords: community health workers, health promotion and education, health equity, maternal and child health, technology

Procedia PDF Downloads 118
1389 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks

Authors: N. Nalini, Lokesh B. Bhajantri

Abstract:

In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.

Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology

Procedia PDF Downloads 420
1388 A Sensor Placement Methodology for Chemical Plants

Authors: Omid Ataei Nia, Karim Salahshoor

Abstract:

In this paper, a new precise and reliable sensor network methodology is introduced for unit processes and operations using the Constriction Coefficient Particle Swarm Optimization (CPSO) method. CPSO is introduced as a new search engine for optimal sensor network design purposes. Furthermore, a Square Root Unscented Kalman Filter (SRUKF) algorithm is employed as a new data reconciliation technique to enhance the stability and accuracy of the filter. The proposed design procedure incorporates precision, cost, observability, reliability together with importance-of-variables (IVs) as a novel measure in Instrumentation Criteria (IC). To the best of our knowledge, no comprehensive approach has yet been proposed in the literature to take into account the importance of variables in the sensor network design procedure. In this paper, specific weight is assigned to each sensor, measuring a process variable in the sensor network to indicate the importance of that variable over the others to cater to the ultimate sensor network application requirements. A set of distinct scenarios has been conducted to evaluate the performance of the proposed methodology in a simulated Continuous Stirred Tank Reactor (CSTR) as a highly nonlinear process plant benchmark. The obtained results reveal the efficacy of the proposed method, leading to significant improvement in accuracy with respect to other alternative sensor network design approaches and securing the definite allocation of sensors to the most important process variables in sensor network design as a novel achievement.

Keywords: constriction coefficient PSO, importance of variable, MRMSE, reliability, sensor network design, square root unscented Kalman filter

Procedia PDF Downloads 137
1387 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System

Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma

Abstract:

Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.

Keywords: machine learning, wearable devices, user interface, user experience, internet of things

Procedia PDF Downloads 260
1386 A Learning Automata Based Clustering Approach for Underwater ‎Sensor Networks to Reduce Energy Consumption

Authors: Motahareh Fadaei

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: clustering, energy consumption‎, learning automata, underwater sensor networks

Procedia PDF Downloads 288
1385 Challenges for Interface Designers in Designing Sensor Dashboards in the Context of Industry 4.0

Authors: Naveen Kumar, Shyambihari Prajapati

Abstract:

Industry 4.0 is the fourth industrial revolution that focuses on interconnectivity of machine to machine, human to machine and human to human via Internet of Things (IoT). Technologies of industry 4.0 facilitate communication between human and machine through IoT and forms Cyber-Physical Production System (CPPS). In CPPS, multiple shop floors sensor data are connected through IoT and displayed through sensor dashboard to the operator. These sensor dashboards have enormous amount of information to be presented which becomes complex for operators to perform monitoring, controlling and interpretation tasks. Designing handheld sensor dashboards for supervision task will become a challenge for the interface designers. This paper reports emerging technologies of industry 4.0, changing context of increasing information complexity in consecutive industrial revolutions and upcoming design challenges for interface designers in context of Industry 4.0. Authors conclude that information complexity of sensor dashboards design has increased with consecutive industrial revolutions and designs of sensor dashboard causes cognitive load on users. Designing such complex dashboards interfaces in Industry 4.0 context will become main challenges for the interface designers.

Keywords: Industry4.0, sensor dashboard design, cyber-physical production system, Interface designer

Procedia PDF Downloads 101
1384 Wearable Devices Could Reduce the Risk of Injury in Parasomnias Phenotypes

Authors: Vivian Correa

Abstract:

Hypothesis There are typical patterns - phenotypes - of sleep behaviors by age and biological sex groups of parasomnia patients where wearable devices could avoid injuries. Materials and methods We analyzed public video records on sleep-related behaviors likely representing parasomnias, looking for phenotypes in different groups. We searched public internet databases using the keywords “sleepwalking”, “sleep eating,” “sleep sex”, and “aggression in sleep” in six languages. Poor-quality vide-records and those showing apparently faked sleep behaviors were excluded. We classified the videos into estimated sex and age (children, adults, elderly) groups; scored the activity types by a self-made scoring scale; and applied binary logistic regression for analyzing the association between sleep behaviors versus the groups by STATA package providing 95% confidence interval and the probability of statistical significance. Results 224 videos (102 women) were analyzed. The odds of sleepwalking and related dangerous behaviors were lower in the elderly than in adults (P<0.025). Females performed complex risky behaviors during sleepwalking more often than males (P<0.012). Elderly people presented emotional behaviors less frequently than adults (P<0.004), and females showed them twice often as males. Elderly males had 40-fold odds compared to adults and children to perform aggressive movements and 70-fold odds of complex movements in the bed compared to adults. Conclusion Unlike other groups, the high chances of adults being sleepwalkers and elderly males performing intense and violent movements in bed showed us the importance of developing wearable parasomnia devices to prevent injuries.

Keywords: parasomnia, wearable devices, sleepwalking, RBD

Procedia PDF Downloads 82
1383 A Fabrication Method for PEDOT: PSS Based Humidity Sensor

Authors: Nazia Tarannum, M. Ayaz Ahmad

Abstract:

The main goal of this article is to report some interesting features for the fabrication/design of PEDOT:PSS based humidity sensor. Here first we fabricated humidity sensor and then studied its electro-mechanical characteristics. In general the humidity plays an important role in various private and government sectors all over the world. Monitoring and controlling the humidity is a great task for the reliable operation of various systems. The PEDOT:PSS is very much promising humidity sensor and also is fabricated by performing various analyses. The interdigited electrode (IDE) has channel length 200 microns prepared by lithography. Lithography of IDE was done on PPR coated glass substrate using negative mask and exposing it with UV light for 10 secs via DSA. During the above said fabrication, we have taken account for the following steps: •Plasma ashing of IDE •Spincoating of PEDOT:PSS was done @3000 rpm on IDE substrace •Baked the substrace at 130 °C up to time limit 15 mins. •Resistance measurement using Labtracer 2.9 software via Keithley 2400source meter.

Keywords: fabrication method, PEDOT:PSS material, humidity sensor, electro-mechanical

Procedia PDF Downloads 316
1382 Overview of a Quantum Model for Decision Support in a Sensor Network

Authors: Shahram Payandeh

Abstract:

This paper presents an overview of a model which can be used as a part of a decision support system when fusing information from multiple sensing environment. Data fusion has been widely studied in the past few decades and numerous frameworks have been proposed to facilitate decision making process under uncertainties. Multi-sensor data fusion technology plays an increasingly significant role during people tracking and activity recognition. This paper presents an overview of a quantum model as a part of a decision-making process in the context of multi-sensor data fusion. The paper presents basic definitions and relationships associating the decision-making process and quantum model formulation in the presence of uncertainties.

Keywords: quantum model, sensor space, sensor network, decision support

Procedia PDF Downloads 196
1381 A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor

Authors: Heungsu Lee, Youngseok Kim, Jonghwa Yi, Chul Park

Abstract:

A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived.

Keywords: FBG sensor, harbor structure, maintenance, safety evaluation system

Procedia PDF Downloads 183
1380 Experimental and Characterization Studies on Micro Direct Methanol Fuel Cell

Authors: S. Muthuraja Soundrapandian, C.K. Subramaniam

Abstract:

A micro Direct Methanol Fuel Cell (DMFC) of 1 cm2 active area with selective sensor materials to sense methanol for redox, has been developed. Among different Pt alloys, Pt-Sn/C was able to produce high current density and repeatability. Membrane Elecctrode Assembly (MEA) of anode catalyst Pt-Sn/C was prepared with nafion as active membrane and Pt black as cathode catalyst. The sensor’s maximum ability to detect the trace levels of methanol in ppm has been analyzed. A compact sensor set up has also been made and the characterization studies were carried out. The acceptable value of current density was derived by the cell and the results are able to fulfill the needs of DMFC technology for the practical applications.

Keywords: DMFC, sensor, MEA, Pt-Sn

Procedia PDF Downloads 104
1379 An Algorithm to Depreciate the Energy Utilization Using a Bio-Inspired Method in Wireless Sensor Network

Authors: Navdeep Singh Randhawa, Shally Sharma

Abstract:

Wireless Sensor Network is an autonomous technology emanating in the current scenario at a fast pace. This technology faces a number of defiance’s and energy management is one of them, which has a huge impact on the network lifetime. To sustain energy the different types of routing protocols have been flourished. The classical routing protocols are no more compatible to perform in complicated environments. Hence, in the field of routing the intelligent algorithms based on nature systems is a turning point in Wireless Sensor Network. These nature-based algorithms are quite efficient to handle the challenges of the WSN as they are capable of achieving local and global best optimization solutions for the complex environments. So, the main attention of this paper is to develop a routing algorithm based on some swarm intelligent technique to enhance the performance of Wireless Sensor Network.

Keywords: wireless sensor network, routing, swarm intelligence, MPRSO

Procedia PDF Downloads 319
1378 Carbon Based Wearable Patch Devices for Real-Time Electrocardiography Monitoring

Authors: Hachul Jung, Ahee Kim, Sanghoon Lee, Dahye Kwon, Songwoo Yoon, Jinhee Moon

Abstract:

We fabricated a wearable patch device including novel patch type flexible dry electrode based on carbon nanofibers (CNFs) and silicone-based elastomer (MED 6215) for real-time ECG monitoring. There are many methods to make flexible conductive polymer by mixing metal or carbon-based nanoparticles. In this study, CNFs are selected for conductive nanoparticles because carbon nanotubes (CNTs) are difficult to disperse uniformly in elastomer compare with CNFs and silver nanowires are relatively high cost and easily oxidized in the air. Wearable patch is composed of 2 parts that dry electrode parts for recording bio signal and sticky patch parts for mounting on the skin. Dry electrode parts were made by vortexer and baking in prepared mold. To optimize electrical performance and diffusion degree of uniformity, we developed unique mixing and baking process. Secondly, sticky patch parts were made by patterning and detaching from smooth surface substrate after spin-coating soft skin adhesive. In this process, attachable and detachable strengths of sticky patch are measured and optimized for them, using a monitoring system. Assembled patch is flexible, stretchable, easily skin mountable and connectable directly with the system. To evaluate the performance of electrical characteristics and ECG (Electrocardiography) recording, wearable patch was tested by changing concentrations of CNFs and thickness of the dry electrode. In these results, the CNF concentration and thickness of dry electrodes were important variables to obtain high-quality ECG signals without incidental distractions. Cytotoxicity test is conducted to prove biocompatibility, and long-term wearing test showed no skin reactions such as itching or erythema. To minimize noises from motion artifacts and line noise, we make the customized wireless, light-weight data acquisition system. Measured ECG Signals from this system are stable and successfully monitored simultaneously. To sum up, we could fully utilize fabricated wearable patch devices for real-time ECG monitoring easily.

Keywords: carbon nanofibers, ECG monitoring, flexible dry electrode, wearable patch

Procedia PDF Downloads 156
1377 Harmony Search-Based K-Coverage Enhancement in Wireless Sensor Networks

Authors: Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit

Abstract:

Many wireless sensor network applications require K-coverage of the monitored area. In this paper, we propose a scalable harmony search based algorithm in terms of execution time, K-Coverage Enhancement Algorithm (KCEA), it attempts to enhance initial coverage, and achieve the required K-coverage degree for a specific application efficiently. Simulation results show that the proposed algorithm achieves coverage improvement of 5.34% compared to K-Coverage Rate Deployment (K-CRD), which achieves 1.31% when deploying one additional sensor. Moreover, the proposed algorithm is more time efficient.

Keywords: Wireless Sensor Networks (WSN), harmony search algorithms, K-Coverage, Mobile WSN

Procedia PDF Downloads 494