Search results for: voltage rise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2846

Search results for: voltage rise

2456 An Exploitation of Electrical Sensors in Monitoring Pool Chlorination

Authors: Fahad Alamoudi, Yaser Miaji

Abstract:

The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, water slides, and more recently, hydrotherapy and wave pools. In this research, a few simple equipment is used for test, detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, Rio 12HF and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates, the lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced.

Keywords: photometer, electrode, electrolysis, swimming pool chlorination

Procedia PDF Downloads 332
2455 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities

Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun

Abstract:

As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.

Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning

Procedia PDF Downloads 25
2454 Analysis and Design of Simultaneous Dual Band Harvesting System with Enhanced Efficiency

Authors: Zina Saheb, Ezz El-Masry, Jean-François Bousquet

Abstract:

This paper presents an enhanced efficiency simultaneous dual band energy harvesting system for wireless body area network. A bulk biasing is used to enhance the efficiency of the adapted rectifier design to reduce Vth of MOSFET. The presented circuit harvests the radio frequency (RF) energy from two frequency bands: 1 GHz and 2.4 GHz. It is designed with TSMC 65-nm CMOS technology and high quality factor dual matching network to boost the input voltage. Full circuit analysis and modeling is demonstrated. The simulation results demonstrate a harvester with an efficiency of 23% at 1 GHz and 46% at 2.4 GHz at an input power as low as -30 dBm.

Keywords: energy harvester, simultaneous, dual band, CMOS, differential rectifier, voltage boosting, TSMC 65nm

Procedia PDF Downloads 376
2453 Liquid Food Sterilization Using Pulsed Electric Field

Authors: Tanmaya Pradhan, K. Midhun, M. Joy Thomas

Abstract:

Increasing the shelf life and improving the quality are important objectives for the success of packaged liquid food industry. One of the methods by which this can be achieved is by deactivating the micro-organisms present in the liquid food through pasteurization. Pasteurization is done by heating, but some serious disadvantages such as the reduction in food quality, flavour, taste, colour, etc. were observed because of heat treatment, which leads to the development of newer methods instead of pasteurization such as treatment using UV radiation, high pressure, nuclear irradiation, pulsed electric field, etc. In recent years the use of the pulsed electric field (PEF) for inactivation of the microbial content in the food is gaining popularity. PEF uses a very high electric field for a short time for the inactivation of microorganisms, for which we require a high voltage pulsed power source. Pulsed power sources used for PEF treatments are usually in the range of 5kV to 50kV. Different pulse shapes are used, such as exponentially decaying and square wave pulses. Exponentially decaying pulses are generated by high power switches with only turn-on capacity and, therefore, discharge the total energy stored in the capacitor bank. These pulses have a sudden onset and, therefore, a high rate of rising but have a very slow decay, which yields extra heat, which is ineffective in microbial inactivation. Square pulses can be produced by an incomplete discharge of a capacitor with the help of a switch having both on/off control or by using a pulse forming network. In this work, a pulsed power-based system is designed with the help of high voltage capacitors and solid-state switches (IGBT) for the inactivation of pathogenic micro-organism in liquid food such as fruit juices. The high voltage generator is based on the Marx generator topology, which can produce variable amplitude, frequency, and pulse width according to the requirements. Liquid food is treated in a chamber where pulsed electric field is produced between stainless steel electrodes using the pulsed output voltage of the supply. Preliminary bacterial inactivation tests were performed by subjecting orange juice inoculated with Escherichia Coli bacteria. With the help of the developed pulsed power source and the chamber, the inoculated orange has been PEF treated. The voltage was varied to get a peak electric field up to 15kV/cm. For a total treatment time of 200µs, a 30% reduction in the bacterial count has been observed. The detailed results and analysis will be presented in the final paper.

Keywords: Escherichia coli bacteria, high voltage generator, microbial inactivation, pulsed electric field, pulsed forming line, solid-state switch

Procedia PDF Downloads 152
2452 Distribution Network Optimization by Optimal Placement of Photovoltaic-Based Distributed Generation: A Case Study of the Nigerian Power System

Authors: Edafe Lucky Okotie, Emmanuel Osawaru Omosigho

Abstract:

This paper examines the impacts of the introduction of distributed energy generation (DEG) technology into the Nigerian power system as an alternative means of energy generation at distribution ends using Otovwodo 15 MVA, 33/11kV injection substation as a case study. The overall idea is to increase the generated energy in the system, improve the voltage profile and reduce system losses. A photovoltaic-based distributed energy generator (PV-DEG) was considered and was optimally placed in the network using Genetic Algorithm (GA) in Mat. Lab/Simulink environment. The results of simulation obtained shows that the dynamic performance of the network was optimized with DEG-grid integration.

Keywords: distributed energy generation (DEG), genetic algorithm (GA), power quality, total load demand, voltage profile

Procedia PDF Downloads 55
2451 Simulation and Analytical Investigation of Different Combination of Single Phase Power Transformers

Authors: M. Salih Taci, N. Tayebi, I. Bozkır

Abstract:

In this paper, the equivalent circuit of the ideal single-phase power transformer with its appropriate voltage current measurement was presented. The calculated values of the voltages and currents of the different connections single phase normal transformer and the results of the simulation process are compared. As it can be seen, the calculated results are the same as the simulated results. This paper includes eight possible different transformer connections. Depending on the desired voltage level, step-down and step-up application transformer is considered. Modelling and analysis of a system consisting of an equivalent source, transformer (primary and secondary), and loads are performed to investigate the combinations. The obtained values are simulated in PSpice environment and then how the currents, voltages and phase angle are distributed between them is explained based on calculation.

Keywords: transformer, simulation, equivalent model, parallel series combinations

Procedia PDF Downloads 336
2450 Real-Time Measurement Approach for Tracking the ΔV10 Estimate Value of DC EAF

Authors: Jin-Lung Guan, Jyh-Cherng Gu, Chun-Wei Huang, Hsin-Hung Chang

Abstract:

This investigation develops a revisable method for estimating the estimate value of equivalent 10 Hz voltage flicker (DV10) of a DC Electric Arc Furnace (EAF). This study also discusses three 161kV DC EAFs by field measurement, with those results indicating that the estimated DV10 value is significantly smaller than the survey value. The key point is that the conventional means of estimating DV10 is inappropriate. There is a main cause as the assumed Qmax is too small. Although DC EAF is regularly operated in a constant MVA mode, the reactive power variation in the Main Transformer (MT) is more significant than that in the Furnace Transformer (FT). A substantial difference exists between estimated maximum reactive power fluctuation (DQmax) and the survey value from actual DC EAF operations. However, this study proposes a revisable method that can obtain a more accurate DV10 estimate than the conventional method.

Keywords: voltage flicker, dc EAF, estimate value, DV10

Procedia PDF Downloads 426
2449 Thermal and Starvation Effects on Lubricated Elliptical Contacts at High Rolling/Sliding Speeds

Authors: Vinod Kumar, Surjit Angra

Abstract:

The objective of this theoretical study is to develop simple design formulas for the prediction of minimum film thickness and maximum mean film temperature rise in lightly loaded high-speed rolling/sliding lubricated elliptical contacts incorporating starvation effect. Herein, the reported numerical analysis focuses on thermoelastohydrodynamically lubricated rolling/sliding elliptical contacts, considering the Newtonian rheology of lubricant for wide range of operating parameters, namely load characterized by Hertzian pressure (PH = 0.01 GPa to 0.10 GPa), rolling speed (>10 m/s), slip parameter (S varies up to 1.0), and ellipticity ratio (k = 1 to 5). Starvation is simulated by systematically reducing the inlet supply. This analysis reveals that influences of load, rolling speed, and level of starvation are significant on the minimum film thickness. However, the maximum mean film temperature rise is strongly influenced by slip in addition to load, rolling speed, and level of starvation. In the presence of starvation, reduction in minimum film thickness and increase in maximum mean film temperature are observed. Based on the results of this study, empirical relations are developed for the prediction of dimensionless minimum film thickness and dimensionless maximum mean film temperature rise at the contacts in terms of various operating parameters.

Keywords: starvation, lubrication, elliptical contact, traction, minimum film thickness

Procedia PDF Downloads 369
2448 Heat Distribution Simulation on Transformer Using FEMM Software

Authors: N. K. Mohd Affendi, T. A. R. Tuan Abdullah, S. A. Syed Mustaffa

Abstract:

In power industry transformer is an important component and most of us familiar by the functioning principle of a transformer electrically. There are many losses occur during the operation of a transformer that causes heat generation. This heat, if not dissipated properly will reduce the lifetime and effectiveness of the transformer. Transformer cooling helps in maintaining the temperature rise of various paths. This paper proposed to minimize the ambient temperature of the transformer room in order to lower down the temperature of the transformer. A simulation has been made using finite element methods programs called FEMM (Finite Elements Method Magnetics) to create a virtual model based on actual measurement of a transformer. The generalization of the two-dimensional (2D) FEMM results proves that by minimizing the ambient temperature, the heat of the transformer is decreased. The modeling process and of the transformer heat flow has been presented.

Keywords: heat generation, temperature rise, ambient temperature, FEMM

Procedia PDF Downloads 358
2447 Hypothesis on Annual Sea Level Variation and Increased Volume Transport in Korea Strait

Authors: Young-Taeg Kim, Gwang Ho Seo, Hyungju Oh, Ho Kyung Ha, Kuk Jin Kim

Abstract:

Kim et al., hypothesized an increase in volume transport in the Korea Strait based on the concurrent increase in water temperature and mean sea level observed by the Korea Hydrographic and Oceanographic Agency (KHOA) in the vicinity of the Korea Strait from 2000 to 2009. Since then, to our best knowledge, no definitive studies have been reported on the increase in volume transport through the Korea Strait, but the observed water temperature (2000-2021) and sea level (1989-2021) in the Korea Strait and East Sea have been found to be increasing. In particular, the rapid increase rate in the mean sea level rise (2.55~3.53 mm/y) in these areas cannot be explained by only steric effect due to the increased water temperature. It is more reasonable interpretation that the sea level rise is due to an increase in the volume transport of warm and salty currents. If the increase in the volume transport is explained by the geostrophic equation without considering the sea level rise in the Korea Strait, the current velocity should increase. However, up to now, there are no reports of an increase in current velocity from direct observations using ADCP (e.g., observations of Camellia) or from various numerical models. Therefore, the increase in volume transport cannot be explained by the geostrophic equation. Another possible explanation for the increase in the volume transport is the effect of wind. Although Korea is dominated by monsoon, it is affected by winds according to El Niño and La Niña, which have a cycle of about 3 to 4 years. During El Niño (La Niña), northerly winds (southerly winds) prevail in Korea. Consequently, it is inferred that the transported volume in the Korea Strait slowly increases interannually. However, in this study, it was difficult to find a clear correlation between annually-averaged mean sea level and El Niño (or La Niña) during 1989-2021. This is probably due to the interactions of the PDO (Pacific Decadal Oscillation) and AO (Arctic Oscillation) along with the ENSO (El niño-Southern Oscillation). However, it is clear that the interannual variability of winds is affecting the volume transport in the Korean Strait. On the other hand, the effect of global sea level rise on the volume transport in the Korea Strait is small compared to the interannual variability of the volume transport, but it seems to play a constant role.

Keywords: mean sea level, volume transport, El nino, La nina

Procedia PDF Downloads 43
2446 MPC of Single Phase Inverter for PV System

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: phase locked loop, voltage source inverter, single phase inverter, model predictive control, Matlab/Simulink

Procedia PDF Downloads 502
2445 Voltage Profile Enhancement in the Unbalanced Distribution Systems during Fault Conditions

Authors: K. Jithendra Gowd, Ch. Sai Babu, S. Sivanagaraju

Abstract:

Electric power systems are daily exposed to service interruption mainly due to faults and human accidental interference. Short circuit currents are responsible for several types of disturbances in power systems. The fault currents are high and the voltages are reduced at the time of fault. This paper presents two suitable methods, consideration of fault resistance and Distributed Generator are implemented and analyzed for the enhancement of voltage profile during fault conditions. Fault resistance is a critical parameter of electric power systems operation due to its stochastic nature. If not considered, this parameter may interfere in fault analysis studies and protection scheme efficiency. The effect of Distributed Generator is also considered. The proposed methods are tested on the IEEE 37 bus test systems and the results are compared.

Keywords: distributed generation, electrical distribution systems, fault resistance

Procedia PDF Downloads 490
2444 Energy Management System with Temperature Rise Prevention on Hybrid Ships

Authors: Asser S. Abdelwahab, Nabil H. Abbasy, Ragi A. Hamdy

Abstract:

Marine shipping has now become one of the major worldwide contributors to pollution and greenhouse gas emissions. Hybrid ships technology based on multiple energy sources has taken a great scope of research to get rid of ship emissions and cut down fuel expenses. Insufficiency between power generated and the demand load to withstand the transient behavior on ships during severe climate conditions will lead to a blackout. Thus, an efficient energy management system (EMS) is a mandatory scope for achieving higher system efficiency while enhancing the lifetime of the onboard storage systems is another salient EMS scope. Considering energy storage system conditions, both the battery state of charge (SOC) and temperature represent important parameters to prevent any malfunction of the storage system that eventually degrades the whole system. In this paper, a two battery packs ratio fuzzy logic control model is proposed. The overall aim is to control the charging/discharging current while including both the battery SOC and temperature in the energy management system. The full designs of the proposed controllers are described and simulated using Matlab. The results prove the successfulness of the proposed controller in stabilizing the system voltage during both loading and unloading while keeping the energy storage system in a healthy condition.

Keywords: energy storage system, power shipboard, hybrid ship, thermal runaway

Procedia PDF Downloads 167
2443 Stochastic Modeling of Secretion Dynamics in Inner Hair Cells of the Auditory Pathway

Authors: Jessica A. Soto-Bear, Virginia González-Vélez, Norma Castañeda-Villa, Amparo Gil

Abstract:

Glutamate release of the cochlear inner hair cell (IHC) ribbon synapse is a fundamental step in transferring sound information in the auditory pathway. Otoferlin is the calcium sensor in the IHC and its activity has been related to many auditory disorders. In order to simulate secretion dynamics occurring in the IHC in a few milliseconds timescale and with high spatial resolution, we proposed an active-zone model solved with Monte Carlo algorithms. We included models for calcium buffered diffusion, calcium-binding schemes for vesicle fusion, and L-type voltage-gated calcium channels. Our results indicate that calcium influx and calcium binding is managing IHC secretion as a function of voltage depolarization, which in turn mean that IHC response depends on sound intensity.

Keywords: inner hair cells, Monte Carlo algorithm, Otoferlin, secretion

Procedia PDF Downloads 193
2442 Real-Time Monitoring Approaches of Groundwater Conductivity and Level to Pre-Alert the Seawater Intrusion in Sand Coast of Liaodong Bay of China

Authors: Yuguang Wang, Chuanjun Wang

Abstract:

At present, many coastal areas around the world suffer from seawater intrusion. Seawater intrusion is the superimposed result of two factors which are nature and human social economical activities in particular area. In recent years, due to excessive exploitation of groundwater, the seawater intrusion phenomenon aggravate in coastal zone of the Bohai and Huanghai seas in our country. Moreover, with sea-level rising, the original hydrodynamic equilibrium between saltwater and freshwater has been damaged to a certain extent, and it will further aggravate seawater intrusion in the land plains. In addition, overexploitation of groundwater declined groundwater level and increase saltwater intrusion in coastal areas. Therefore, in view of the sensitivity and vulnerability of the impact of sea-level rise in the future, the risk of sea-level rise in coastal zone should be considered, reasonable exploitation, utilization and management of coastal zone’s groundwater should be formulated. The response mechanism of sea-level rise should be studied to prevent and reduce the harm of seawater intrusion, which has important theoretical and realistic significances. In this paper, through the long-term monitoring of groundwater level and conductibility in the transition region of seawater intrusion for the sand coast area, realtimely master the situation of seawater intrusion. Combined with the seasonal exploitation station of groundwater and sea level variation, early alert the seawater intrusion to prevent and reduce the harm of seawater intrusion.

Keywords: groundwater level, sea level, seawater intrusion, sand coast

Procedia PDF Downloads 424
2441 Design Considerations on Cathodic Protection for X65 Steel Tank Containing Fresh Water

Authors: A. M. Al-Sabagh, M. A. Deyab, M. N. Kroush

Abstract:

The present study focused on critical and detailed approach for using aluminum electrode as impressed current anode for cathodic protection of X65 steel tank containing fresh water. The impressed current design calculation showed 0.6 A of current demand and voltage of 0.33 V required to adequately protect the X65 steel tank with internal surface area of 421 m². We used here one transformer rectifier with current and voltage output of 25 A and 25 V, respectively. The data showed that the potentials ranged from -0.474 to -0.509 V (vs. Cu/CuSO₄), prior to the application of cathodic protection. When the potential was measured 1 h after the application of cathodic protection, the potential values showed considerable shift within protection range (-0.950 V vs. Cu/CuSO₄). The results confirmed that aluminum anode can be used in freshwater applications with high efficiency (current capacity) and low consumption rate.

Keywords: cathodic protection, aluminum, steel, fresh water

Procedia PDF Downloads 128
2440 Estimation of Harmonics in Three-Phase and Six-Phase-Phase (Multi-Phase) Load Circuits

Authors: Zakir Husain, Deepak Kumar

Abstract:

The harmonics are very harmful within an electrical system and can have serious consequences such as reducing the life of apparatus, stress on cable and equipment etc. This paper cites extensive analytical study of harmonic characteristics of multiphase (six-phase) and three-phase system equipped with two and three level inverters for non-linear loads. Multilevel inverter has elevated voltage capability with voltage limited devices, low harmonic distortion, abridged switching losses. Multiphase technology also pays a promising role in harmonic reduction. Matlab simulation is carried out to compare the advantage of multi-phase over three phase systems equipped with two or three level inverters for non-linear load harmonic reduction. The extensive simulation results are presented based on case studies.

Keywords: fast Fourier transform (FFT), harmonics, inverter, ripples, total harmonic distortion (THD)

Procedia PDF Downloads 525
2439 Dual Active Bridge Converter with Photovoltaic Arrays for DC Microgrids: Design and Analysis

Authors: Ahmed Atef, Mohamed Alhasheem, Eman Beshr

Abstract:

In this paper, an enhanced DC microgrid design is proposed using the DAB converter as a conversion unit in order to harvest the maximum power from the PV array. Each connected DAB converter is controlled with an enhanced control strategy. The controller is based on the artificial intelligence (AI) technique to regulate the terminal PV voltage through the phase shift angle of each DAB converter. In this manner, no need for a Maximum Power Point Tracking (MPPT) unit to set the reference of the PV terminal voltage. This strategy overcomes the stability issues of the DC microgrid as the response of converters is superior compared to the conventional strategies. The proposed PV interface system is modelled and simulated using MATLAB/SIMULINK. The simulation results reveal an accurate and fast response of the proposed design in case of irradiance changes.

Keywords: DC microgrid, DAB converter, parallel operation, artificial intelligence, fast response

Procedia PDF Downloads 753
2438 Static and Dynamic Analysis on a Buddhism Goddess Guanyin in Shuangyashan

Authors: Gong Kangming, Zhao Caiqi

Abstract:

High-rise special-shaped structure, such as main frame structure of the statues, is one of the structure forms in irregular structure widely used. Due to the complex shape of the statue structure, with a large aspect ratio, its wind load value and the overall mechanical properties are very different from the high-rise buildings with the general rules. The paper taking a certain 48 meters high main frame structure of the statue located in Shuangyashan City, Heilongjiang Province, static and dynamic properties are analyzed by the finite element software. Through static and dynamic analysis, it got a number of useful conclusions that have a certain reference value for the analysis and design of the future similar structure.

Keywords: a Buddhism goddess Guanyin body, wind load, dynamic analysis, bolster, node design

Procedia PDF Downloads 445
2437 An Approach for Modeling CMOS Gates

Authors: Spyridon Nikolaidis

Abstract:

A modeling approach for CMOS gates is presented based on the use of the equivalent inverter. A new model for the inverter has been developed using a simplified transistor current model which incorporates the nanoscale effects for the planar technology. Parametric expressions for the output voltage are provided as well as the values of the output and supply current to be compatible with the CCS technology. The model is parametric according the input signal slew, output load, transistor widths, supply voltage, temperature and process. The transistor widths of the equivalent inverter are determined by HSPICE simulations and parametric expressions are developed for that using a fitting procedure. Results for the NAND gate shows that the proposed approach offers sufficient accuracy with an average error in propagation delay about 5%.

Keywords: CMOS gate modeling, inverter modeling, transistor current mode, timing model

Procedia PDF Downloads 402
2436 Control Technique for Single Phase Bipolar H-Bridge Inverter Connected to the Grid

Authors: L. Hassaine, A. Mraoui, M. R. Bengourina

Abstract:

In photovoltaic system, connected to the grid, the main goal is to control the power that the inverter injects into the grid from the energy provided by the photovoltaic generator. This paper proposes a control technique for a photovoltaic system connected to the grid based on the digital pulse-width modulation (DSPWM) which can synchronise a sinusoidal current output with a grid voltage and generate power at unity power factor. This control is based on H-Bridge inverter controlled by bipolar PWM Switching. The electrical scheme of the system is presented. Simulations results of output voltage and current validate the impact of this method to determinate the appropriate control of the system. A digital design of a generator PWM using VHDL is proposed and implemented on a Xilinx FPGA.

Keywords: grid connected photovoltaic system, H-Bridge inverter, control, bipolar PWM

Procedia PDF Downloads 291
2435 Lookup Table Reduction and Its Error Analysis of Hall Sensor-Based Rotation Angle Measurement

Authors: Young-San Shin, Seongsoo Lee

Abstract:

Hall sensor is widely used to measure rotation angle. When the Hall voltage is measured for linear displacement, it is converted to angular displacement using arctangent function, which requires a large lookup table. In this paper, a lookup table reduction technique is presented for angle measurement. When the input of the lookup table is small within a certain threshold, the change of the outputs with respect to the change of the inputs is relatively small. Thus, several inputs can share same output, which significantly reduce the lookup table size. Its error analysis was also performed, and the threshold was determined so as to maintain the error less than 1°. When the Hall voltage has 11-bit resolution, the lookup table size is reduced from 1,024 samples to 279 samples.

Keywords: hall sensor, angle measurement, lookup table, arctangent

Procedia PDF Downloads 316
2434 Thin and Flexible Zn-Air Battery by Inexpensive Screen Printing Technique

Authors: Sira Suren, Soorathep Kheawhom

Abstract:

This work focuses the development of thin and flexible zinc-air battery. The battery with an overall thickness of about 300 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder and ZnO was used to prepare the anode electrode. Types of conductive materials (Bi2O3, Na2O3Si and carbon black) for the anode and its concentration were investigated. Results showed that the battery using 29% carbon black showed the best performance. The open-circuit voltage and energy density observed were 1.6 V and 694 Wh/kg, respectively. When the battery was discharged at 10 mA/cm2, the potential voltage observed was 1.35 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.

Keywords: flexible, Gel Electrolyte, screen printing, thin battery, Zn-Air battery

Procedia PDF Downloads 182
2433 Control Scheme for Single-Stage Boost Inverter for Grid-Connected Photovoltaic

Authors: Mohammad Reza Ebrahimi, Behnaz Mahdaviani

Abstract:

Increasing renewable sources such photovoltaic are the reason of environmental pollution. Because photovoltaic generates power in low voltage, first, generated power should increase. Usually, distributed generation injects their power to AC-Grid, hence after voltage increasing an inverter is needed to convert DC power to AC power. This results in utilization two series converter that grows cost, complexity, and low efficiency. In this paper a single stage inverter is utilized to boost and invert in one stage. Control of this scheme is easier, and its initial cost decreases comparing to conventional double stage inverters. A simple control scheme is used to control active power as well as minimum total harmonic distortion (THD) in injected current. Simulations in MATLAB demonstrate better outputs comparing with conventional approaches.

Keywords: maximum power point tracking, boost inverter, control strategy, three phase inverter

Procedia PDF Downloads 343
2432 Technico-Economical Study of a Rapeseed Based Biorefinery Using High Voltage Electrical Discharges and Ultrasounds as Pretreatment Technologies

Authors: Marwa Brahim, Nicolas Brosse, Nadia Boussetta, Nabil Grimi, Eugene Vorobiev

Abstract:

Rapeseed plant is an established product in France which is mainly dedicated to oil production. However, the economic potential of residues from this industry (rapeseed hulls, rapeseed cake, rapeseed straw etc.), has not been fully exploited. Currently, only low-grade applications are found in the market. As a consequence, it was deemed of interest to develop a technological platform aiming to convert rapeseed residues into value- added products. Specifically, a focus is given on the conversion of rapeseed straw into valuable molecules (e.g. lignin, glucose). Existing pretreatment technologies have many drawbacks mainly the production of sugar degradation products that limit the effectiveness of saccharification and fermentation steps in the overall scheme of the lignocellulosic biorefinery. In addition, the viability of fractionation strategies is a challenge in an environmental context increasingly standardized. Hence, the need to find cleaner alternatives with comparable efficiency by implementing physical phenomena that could destabilize the structural integrity of biomass without necessarily using chemical solvents. To meet environmental standards increasingly stringent, the present work aims to study the new pretreatment strategies involving lower consumption of chemicals with an attenuation of the severity of the treatment. These strategies consist on coupling physical treatments either high voltage electrical discharges or ultrasounds to conventional chemical pretreatments (soda and organosolv). Ultrasounds treatment is based on the cavitation phenomenon, and high voltage electrical discharges cause an electrical breakdown accompanied by many secondary phenomena. The choice of process was based on a technological feasibility study taking into account the economic profitability of the whole chain after products valorization. Priority was given to sugars valorization into bioethanol and lignin sale.

Keywords: high voltage electrical discharges, organosolv, pretreatment strategies, rapeseed straw, soda, ultrasounds

Procedia PDF Downloads 331
2431 Comparison between Continuous Genetic Algorithms and Particle Swarm Optimization for Distribution Network Reconfiguration

Authors: Linh Nguyen Tung, Anh Truong Viet, Nghien Nguyen Ba, Chuong Trinh Trong

Abstract:

This paper proposes a reconfiguration methodology based on a continuous genetic algorithm (CGA) and particle swarm optimization (PSO) for minimizing active power loss and minimizing voltage deviation. Both algorithms are adapted using graph theory to generate feasible individuals, and the modified crossover is used for continuous variable of CGA. To demonstrate the performance and effectiveness of the proposed methods, a comparative analysis of CGA with PSO for network reconfiguration, on 33-node and 119-bus radial distribution system is presented. The simulation results have shown that both CGA and PSO can be used in the distribution network reconfiguration and CGA outperformed PSO with significant success rate in finding optimal distribution network configuration.

Keywords: distribution network reconfiguration, particle swarm optimization, continuous genetic algorithm, power loss reduction, voltage deviation

Procedia PDF Downloads 154
2430 Swimming Pool Water Chlorination Detection System Utilizing TDSTestr

Authors: Fahad Alamoudi, Yaser Miaji, Fawzy Jalalah

Abstract:

The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, Waterslides and more recently, hydrotherapy and wave pools. In this research a few simple equipments are used for test, Detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, rio 12HF, and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates and The lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced.

Keywords: photometer, electrode, electrolysis, swimming pool chlorination

Procedia PDF Downloads 320
2429 Concepts in the Design of Lateral-Load Systems in High Rise Buildings to Reduce Operational Energy Consumption

Authors: Mohamed Ali MiladKrem Salem, Sergio F.Breña, Sanjay R. Arwade, Simi T. Hoque

Abstract:

The location of the main lateral‐load resisting system in high-rise buildings may have positive impacts on sustainability through a reduction in operational energy consumption, and this paper describes an assessment of the accompanying effects on structural performance. It is found that there is a strong influence of design for environmental performance on the structural performance the building, and that systems selected primarily with an eye towards energy use reduction may require substantial additional structural stiffening to meet safety and serviceability limits under lateral load cases. We present a framework for incorporating the environmental costs of meeting structural design requirements through the embodied energy of the core structural materials and also address the issue of economic cost brought on by incorporation of environmental concerns into the selection of the structural system. We address these issues through four case study high-rise buildings with differing structural morphologies (floor plan and core arrangement) and assess each of these building models for cost and embodied energy when the base structural system, which has been suggested by architect Kenneth Yeang based on environmental concerns, is augmented to meet lateral drift requirements under the wind loads prescribed by ASCE 7-10.

Keywords: sustainable, embodied, Outrigger, skyscraper, morphology, efficiency

Procedia PDF Downloads 442
2428 Monitoring Future Climate Changes Pattern over Major Cities in Ghana Using Coupled Modeled Intercomparison Project Phase 5, Support Vector Machine, and Random Forest Modeling

Authors: Stephen Dankwa, Zheng Wenfeng, Xiaolu Li

Abstract:

Climate change is recently gaining the attention of many countries across the world. Climate change, which is also known as global warming, referring to the increasing in average surface temperature has been a concern to the Environmental Protection Agency of Ghana. Recently, Ghana has become vulnerable to the effect of the climate change as a result of the dependence of the majority of the population on agriculture. The clearing down of trees to grow crops and burning of charcoal in the country has been a contributing factor to the rise in temperature nowadays in the country as a result of releasing of carbon dioxide and greenhouse gases into the air. Recently, petroleum stations across the cities have been on fire due to this climate changes and which have position Ghana in a way not able to withstand this climate event. As a result, the significant of this research paper is to project how the rise in the average surface temperature will be like at the end of the mid-21st century when agriculture and deforestation are allowed to continue for some time in the country. This study uses the Coupled Modeled Intercomparison Project phase 5 (CMIP5) experiment RCP 8.5 model output data to monitor the future climate changes from 2041-2050, at the end of the mid-21st century over the ten (10) major cities (Accra, Bolgatanga, Cape Coast, Koforidua, Kumasi, Sekondi-Takoradi, Sunyani, Ho, Tamale, Wa) in Ghana. In the models, Support Vector Machine and Random forest, where the cities as a function of heat wave metrics (minimum temperature, maximum temperature, mean temperature, heat wave duration and number of heat waves) assisted to provide more than 50% accuracy to predict and monitor the pattern of the surface air temperature. The findings identified were that the near-surface air temperature will rise between 1°C-2°C (degrees Celsius) over the coastal cities (Accra, Cape Coast, Sekondi-Takoradi). The temperature over Kumasi, Ho and Sunyani by the end of 2050 will rise by 1°C. In Koforidua, it will rise between 1°C-2°C. The temperature will rise in Bolgatanga, Tamale and Wa by 0.5°C by 2050. This indicates how the coastal and the southern part of the country are becoming hotter compared with the north, even though the northern part is the hottest. During heat waves from 2041-2050, Bolgatanga, Tamale, and Wa will experience the highest mean daily air temperature between 34°C-36°C. Kumasi, Koforidua, and Sunyani will experience about 34°C. The coastal cities (Accra, Cape Coast, Sekondi-Takoradi) will experience below 32°C. Even though, the coastal cities will experience the lowest mean temperature, they will have the highest number of heat waves about 62. Majority of the heat waves will last between 2 to 10 days with the maximum 30 days. The surface temperature will continue to rise by the end of the mid-21st century (2041-2050) over the major cities in Ghana and so needs to be addressed to the Environmental Protection Agency in Ghana in order to mitigate this problem.

Keywords: climate changes, CMIP5, Ghana, heat waves, random forest, SVM

Procedia PDF Downloads 174
2427 Thermal Analysis and Optimization of a High-Speed Permanent Magnet Synchronous Motor with Toroidal Windings

Authors: Yuan Wan, Shumei Cui, Shaopeng Wu

Abstract:

Toroidal windings were taken advantage of to reduce of axial length of the motor, so as to match the applications that have severe restrictions on the axial length. But slotting in the out edge of the stator will decrease the heat-dissipation capacity of the water cooling of the housing. Besides, the windings in the outer slots will increase the copper loss, which will further increase the difficult for heat dissipation of the motor. At present, carbon-fiber composite retaining sleeve are increasingly used to be mounted over the magnets to ensure the rotor strength at high speeds. Due to the poor thermal conductivity of carbon-fiber sleeve, the cooling of the rotor becomes very difficult, which may result in the irreversible demagnetization of magnets for the excessively high temperature. So it is necessary to analyze the temperature rise of such motor. This paper builds a computational fluid dynamic (CFD) model of a toroidal-winding high-speed permanent magnet synchronous motor (PMSM) with water cooling of housing and forced air cooling of rotor. Thermal analysis was carried out based on the model and the factors that affects the temperature rise were investigated. Then thermal optimization for the prototype was achieved. Finally, a small-size prototype was manufactured and the thermal analysis results were verified.

Keywords: thermal analysis, temperature rise, toroidal windings, high-speed PMSM, CFD

Procedia PDF Downloads 464