Search results for: vital sign
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2217

Search results for: vital sign

2217 An Effective Noise Resistant Frequency Modulation Continuous-Wave Radar Vital Sign Signal Detection Method

Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng

Abstract:

To address the problem that the FM continuous-wave radar (FMCW) extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a new detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a BP neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise and accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal-to-noise ratio of the sign signals.

Keywords: frequency modulated continuous wave radar, ICEEMDAN, BP neural network, vital signs signal

Procedia PDF Downloads 165
2216 Irreducible Sign Patterns of Minimum Rank of 3 and Symmetric Sign Patterns That Allow Diagonalizability

Authors: Sriparna Bandopadhyay

Abstract:

It is known that irreducible sign patterns in general may not allow diagonalizability and in particular irreducible sign patterns with minimum rank greater than or equal to 4. It is also known that every irreducible sign pattern matrix with minimum rank of 2 allow diagonalizability with rank of 2 and the maximum rank of the sign pattern. In general sign patterns with minimum rank of 3 may not allow diagonalizability if the condition of irreducibility is dropped, but the problem of whether every irreducible sign pattern with minimum rank of 3 allows diagonalizability remains open. In this paper it is shown that irreducible sign patterns with minimum rank of 3 under certain conditions on the underlying graph allow diagonalizability. An alternate proof of the results that every sign pattern matrix with minimum rank of 2 and no zero lines allow diagonalizability with rank of 2 and also that every full sign pattern allows diagonalizability with all permissible ranks of the sign pattern is given. Some open problems regarding composite cycles in an irreducible symmetric sign pattern that support of a rank principal certificate are also answered.

Keywords: irreducible sign patterns, minimum rank, symmetric sign patterns, rank -principal certificate, allowing diagonalizability

Procedia PDF Downloads 97
2215 Smart Wheel Chair: A Design to Accommodate Vital Sign Monitoring

Authors: Stephanie Nihan, Jayson M. Fadrigalan, Pyay P. San, Steven M. Santos, Weihui Li

Abstract:

People of all ages who use wheelchairs are left with the inconvenience of not having an easy way to take their vital signs. Typically, patients are required to visit the hospital in order to take the vital signs. VitalGO is a wheel chair system that equipped with medical devices to take vital signs and then transmit data to a mobile application for convenient, long term health monitoring. The vital signs include oxygen saturation, heart rate, and blood pressure, breathing rate and body temperature. Oxygen saturation and heart rate are monitored through pulse oximeter. Blood pressure is taken through a radar sensor. Breathing rate is derived through thoracic impedance while body temperature is measured through an infrared thermometer. The application receives data through bluetooth and stores in a database for review in a simple graphical interface. The application will have the ability to display this data over various time intervals such as a day, week, month, 3 months, 6 months and a year. The final system for the mobile app can also provide an interface for both the user and their physician(s) to record notes or keep record of daily symptoms that a patient might be having. The user’s doctor will be granted access by the user to view the patient information for assistance with a more accurate diagnosis. Also, this wheelchair accessory conveniently includes a foldable table/desk as somewhere to place an electronic device that may be used to access the app. The foldable table will overall contribute to the wheelchair user’s increased comfort and will give them somewhere to place food, a book, or any other form of entertainment that would normally be hard to juggle on their lap.

Keywords: wheel chair, vital sign, mobile application, telemedicine

Procedia PDF Downloads 330
2214 TechWhiz: Empowering Deaf Students through Inclusive Education

Authors: Paula Escudeiro, Nuno Escudeiro, Márcia Campos, Francisca Escudeiro

Abstract:

In today's world, technical and scientific knowledge plays a vital role in education, research, and employment. Deaf students face unique challenges in educational settings, particularly when it comes to understanding technical and scientific terminology. The reliance on written and spoken languages can create barriers for deaf individuals who primarily communicate using sign language. This lack of accessibility can hinder their learning experience and compromise equity in education. To address this issue, the TechWhiz project has been developed as a comprehensive glossary of scientific and technical concepts explained in sign language. By providing deaf students with access to education in their first language, TechWhiz aims to enhance their learning achievements and promote inclusivity while also fostering equity in education for all students.

Keywords: deaf students, technical and scientific knowledge, automatic sign language, inclusive education

Procedia PDF Downloads 66
2213 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network

Authors: Marcio Leal, Marta Villamil

Abstract:

Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.

Keywords: artificial neural network, computer vision, dynamic time warping, infrared, sign language recognition

Procedia PDF Downloads 215
2212 Structural Analysis of Hole-Type Plate for Weight Lightening of Road Sign

Authors: Joon-Yeop Na, Sang-Keun Baik, Kyu-Soo Chong

Abstract:

Road sign sizes are related to their support and foundation, and the large-scale support that is generally installed at roadsides can cause inconvenience to pedestrians and damage the urban landscape. The most influential factor in determining the support and foundation of road signs is the wind load. In this study, we introduce a hole-type road sign to analyze its effects on reducing wind load. A hole-type road sign reduces the drag coefficient that is applied when considering the air and fluid resistance of a plate when the wind pressure is calculated, thus serving as an effective option for lightening the weights of road sign structures. A hole-type road sign is punctured with a perforator. Furthermore, the size of the holes and their distance is determined considering the damage to characters, the poor performance of reflective sheets, and legibility. For the calculation of the optimal specification of a hole-type road sign, we undertook a theoretical examination for reducing the wind loads on hole-type road signs, and analyzed the bending and reflectivity of sample road sign plates. The analytic results confirmed that a hole-type road sign sample that contains holes of 6 mm in diameter with a distance of 18 mm between the holes shows reflectivity closest to that of existing road signs; moreover, the average bending moment resulted in a reduction of 4.24%, and the support’s diameter is reduced by 40.2%.

Keywords: hole type, road sign, weight lightening, wind load

Procedia PDF Downloads 546
2211 Mouthing Patterns in Indian Sign Language

Authors: Neha Kulshreshtha

Abstract:

This paper examines the patterns of 'Mouthing', a non-manual marker, and its distribution in Indian Sign Language (ISL). Linguistic research in Indian Sign Language is an emerging field where much is needed to be done. The little research which has happened focuses on the structure of ISL in terms of physical or manual markers, therefore a study of mouthing patterns would give an insight into the distribution of this particular non-manual marker. Data has been collected with the help of native ISL users through various techniques in which natural signs can be captured, for example, storytelling, informal conversations etc. The aim of the study is to find out the various situations where mouthing is used. Sometimes, the mouthing is not actually the articulation of the word as spoken in the local languages. The paper aims to find out whether the mouthing patterns in ISL are influenced by any local language or they are independent of any influence from the local language or both. Mouthing patterns have been studied in many sign languages and an investigation into ISL will reveal whether it falls in pattern with the other sign languages.

Keywords: Indian sign language, mouthing, non-manual marker, spoken language influence

Procedia PDF Downloads 263
2210 Teaching Italian Sign Language in Higher Education

Authors: Maria Tagarelli De Monte

Abstract:

Since its formal recognition in 2021, Italian Sign Language (LIS) and interpreters’ education has become a topic for higher education in Italian universities. In April 2022, Italian universities have been invited to present their proposals to create sign language courses for interpreters’ training for both LIS and tactile LIS. As a result, a few universities have presented a three-year course leading candidate students from the introductory level to interpreters. In such a context, there is an open debate not only on the fact that three years may not be enough to prepare skillful interpreters but also on the need to refer to international standards in the definition of the training path to follow. Among these, are the Common European Framework of Reference (CEFR) for languages and Dublin’s descriptors. This contribution will discuss the potentials and the challenges given by LIS training in academic settings, by comparing traditional studies to the requests coming from universities. Particular attention will be given to the use of CEFR as a reference document for the Italian Sign Language Curriculum. Its use has given me the chance to reflect on how LIS can be taught in higher education, and the adaptations that need to be addressed to respect the visual-gestural nature of sign language and the formal requirements of academic settings.

Keywords: Italian sign language, higher education, sign language curriculum, interpreters education, CEFR

Procedia PDF Downloads 43
2209 Computerized Analysis of Phonological Structure of 10,400 Brazilian Sign Language Signs

Authors: Wanessa G. Oliveira, Fernando C. Capovilla

Abstract:

Capovilla and Raphael’s Libras Dictionary documents a corpus of 4,200 Brazilian Sign Language (Libras) signs. Duduchi and Capovilla’s software SignTracking permits users to retrieve signs even when ignoring the gloss corresponding to it and to discover the meaning of all 4,200 signs sign simply by clicking on graphic menus of the sign characteristics (phonemes). Duduchi and Capovilla have discovered that the ease with which any given sign can be retrieved is an inverse function of the average popularity of its component phonemes. Thus, signs composed of rare (distinct) phonemes are easier to retrieve than are those composed of common phonemes. SignTracking offers a means of computing the average popularity of the phonemes that make up each one of 4,200 signs. It provides a precise measure of the degree of ease with which signs can be retrieved, and sign meanings can be discovered. Duduchi and Capovilla’s logarithmic model proved valid: The degree with which any given sign can be retrieved is an inverse function of the arithmetic mean of the logarithm of the popularity of each component phoneme. Capovilla, Raphael and Mauricio’s New Libras Dictionary documents a corpus of 10,400 Libras signs. The present analysis revealed Libras DNA structure by mapping the incidence of 501 sign phonemes resulting from the layered distribution of five parameters: 163 handshape phonemes (CherEmes-ManusIculi); 34 finger shape phonemes (DactilEmes-DigitumIculi); 55 hand placement phonemes (ArtrotoToposEmes-ArticulatiLocusIculi); 173 movement dimension phonemes (CinesEmes-MotusIculi) pertaining to direction, frequency, and type; and 76 Facial Expression phonemes (MascarEmes-PersonalIculi).

Keywords: Brazilian sign language, lexical retrieval, libras sign, sign phonology

Procedia PDF Downloads 344
2208 Brazilian Sign Language: A Synthesis of the Research in the Period from 2000 to 2017

Authors: Maria da Gloria Guara-Tavares

Abstract:

This article reports a synthesis of the research in Brazilian Sign Language conducted from 2000 to 2017. The objective of the synthesis was to identify the most researched areas and the most used methodologies. Articles published in three Brazilian journals of Translation Studies, unpublished dissertations and theses were included in the analysis. Abstracts and the method sections of the papers were scrutinized. Sixty studies were analyzed, and overall results indicate that the research in Brazilian Sign Language has been fragmented in several areas such as linguistic aspects, facial expressions, subtitling, identity issues, bilingualism, and interpretation strategies. Concerning research methods, the synthesis reveals that most research is qualitative in nature. Moreover, results show that the cognitive aspects of Brazilian Sign Language seem to be poorly explored. Implications for a future research agenda are also discussed.

Keywords: Brazilian sign language, qualitative methods, research agenda, synthesis

Procedia PDF Downloads 239
2207 Segmentation of Korean Words on Korean Road Signs

Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon

Abstract:

This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.

Keywords: segmentation, road signs, characters, classification

Procedia PDF Downloads 443
2206 Comparison of Sign Language Skill and Academic Achievement of Deaf Students in Special and Inclusive Primary Schools of South Nation Nationalities People Region, Ethiopia

Authors: Tesfaye Basha

Abstract:

The purpose of this study was to examine the sign language and academic achievement of deaf students in special and inclusive primary schools of Southern Ethiopia. The study used a mixed-method to collect varied data. The study contained Signed Amharic and English skill tasks, questionnaire, 8th-grade Primary School Leaving Certificate Examination results, classroom observation, and interviews. For quantitative (n=70) deaf students and for qualitative data collection, 16 participants were involved. The finding revealed that the limitation of sign language is a problem in signing and academic achievements. This displays that schools are not linguistically rich to enable sign language achievement for deaf students. Moreover, the finding revealed that the contribution of Total Communication in the growth of natural sign language for deaf students was unsatisfactory. The results also indicated that special schools of deaf students performed better sign language skills and academic achievement than inclusive schools. In addition, the findings revealed that high signed skill group showed higher academic achievement than the low skill group. This displayed that sign language skill is highly associated with academic achievement. In addition, to qualify deaf students in sign language and academics, teacher institutions must produce competent teachers on how to teach deaf students with sign language and literacy skills.

Keywords: academic achievement, inclusive school, sign language, signed Amharic, signed English, special school, total communication

Procedia PDF Downloads 133
2205 Revitalization of Sign Language through Deaf Theatre: A Linguistic Analysis of an Art Form Which Combines Physical Theatre, Poetry, and Sign Language

Authors: Gal Belsitzman, Rose Stamp, Atay Citron, Wendy Sandler

Abstract:

Sign languages are considered endangered. The vitality of sign languages is compromised by its unique sociolinguistic situation, in which hearing parents that give birth to deaf children usually decide to cochlear implant their child. Therefore, these children don’t acquire their natural language – Sign Language. Despite this, many sign languages, such as Israeli Sign Language (ISL) are thriving. The continued survival of similar languages under threat has been associated with the remarkable resilience of the language community. In particular, deaf literary traditions are central in reminding the community of the importance of the language. One example of a deaf literary tradition which has received increased popularity in recent years is deaf theatre. The Ebisu Sign Language Theatre Laboratory, developed as part of the multidisciplinary Grammar of the Body Research Project, is the first deaf theatre company in Israel. Ebisu Theatre combines physical theatre and sign language research, to allow for a natural laboratory to analyze the creative use of the body. In this presentation, we focus on the recent theatre production called ‘Their language’ which tells of the struggle faced by the deaf community to use their own natural language in the education system. A thorough analysis unravels how linguistic properties are integrated with the use of poetic devices and physical theatre techniques in this performance, enabling wider access by both deaf and hearing audiences, without interpretation. Interviews with the audience illustrate the significance of this art form which serves a dual purpose, both as empowering for the deaf community and educational for the hearing and deaf audiences, by raising awareness of community-related issues.

Keywords: deaf theatre, empowerment, language revitalization, sign language

Procedia PDF Downloads 167
2204 Prototyping a Portable, Affordable Sign Language Glove

Authors: Vidhi Jain

Abstract:

Communication between speakers and non-speakers of American Sign Language (ASL) can be problematic, inconvenient, and expensive. This project attempts to bridge the communication gap by designing a portable glove that captures the user’s ASL gestures and outputs the translated text on a smartphone. The glove is equipped with flex sensors, contact sensors, and a gyroscope to measure the flexion of the fingers, the contact between fingers, and the rotation of the hand. The glove’s Arduino UNO microcontroller analyzes the sensor readings to identify the gesture from a library of learned gestures. The Bluetooth module transmits the gesture to a smartphone. Using this device, one day speakers of ASL may be able to communicate with others in an affordable and convenient way.

Keywords: sign language, morse code, convolutional neural network, American sign language, gesture recognition

Procedia PDF Downloads 61
2203 Inclusive Cultural Heritage Tourism Project

Authors: L. Cruz-Lopes, M. Sell, P. Escudeiro, B. Esteves

Abstract:

It might be difficult for deaf people to communicate since spoken and written languages are different from sign language. When it comes to getting information, going to places of cultural heritage, or using services and infrastructure, there is a clear lack of inclusiveness. By creating assistive technology that enables deaf individuals to get around communication hurdles and encourage inclusive tourism, the ICHT- Inclusive Cultural Heritage Tourism initiative hopes to increase knowledge of sign language. The purpose of the Inclusive Cultural Heritage Tourism (ICHT) project is to develop online and on-site sign language tools and material for usage at popular tourist destinations in the northern region of Portugal, including Torre dos Clérigos, the Lello bookstore, Maia Zoo, Porto wine cellars, and São Pedro do Sul (Viseu) thermae. The ICHT system consists of an application using holography, a mobile game, an online platform for collaboration with deaf and hearing users, and a collection of International Sign training courses. The project also offers a prospect for a more inclusive society by introducing a method of teaching sign languages to tourism industry professionals. As a result, the teaching and learning of sign language along with the assistive technology tools created by the project sets up an inclusive environment for the deaf community, producing results in the area of automatic sign language translation and aiding in the global recognition of the Portuguese tourism industry.

Keywords: inclusive tourism, games, international sign training, deaf community

Procedia PDF Downloads 115
2202 A Flexible Piezoelectric - Polymer Composite for Non-Invasive Detection of Multiple Vital Signs of Human

Authors: Sarah Pasala, Elizabeth Zacharias

Abstract:

Vital sign monitoring is crucial for both everyday health and medical diagnosis. A significant factor in assessing a human's health is their vital signs, which include heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings. Vital sign monitoring has been the focus of many system and method innovations recently. Piezoelectrics are materials that convert mechanical energy into electrical energy and can be used for vital sign monitoring. Piezoelectric energy harvesters that are stretchable and flexible can detect very low frequencies like airflow, heartbeat, etc. Current advancements in piezoelectric materials and flexible sensors have made it possible to create wearable and implantable medical devices that can continuously monitor physiological signals in humans. But because of their non-biocompatible nature, they also produce a large amount of e-waste and require another surgery to remove the implant. This paper presents a biocompatible and flexible piezoelectric composite material for wearable and implantable devices that offers a high-performance platform for seamless and continuous monitoring of human physiological signals and tactile stimuli. It also addresses the issue of e-waste and secondary surgery. A Lead-free piezoelectric, SrBi4Ti4O15, is found to be suitable for this application because the properties can be tailored by suitable substitutions and also by varying the synthesis temperature protocols. In the present work, SrBi4Ti4O15 modified by rare-earth has been synthesized and studied. Coupling factors are calculated from resonant (fr) and anti-resonant frequencies (fa). It is observed that Samarium substitution in SBT has increased the Curie temperature, dielectric and piezoelectric properties. From impedance spectroscopy studies, relaxation, and non-Debye type behaviour are observed. The composite of bioresorbable poly(l-lactide) and Lead-free rare earth modified Bismuth Layered Ferroelectrics leads to a flexible piezoelectric device for non-invasive measurement of vital signs, such as heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings and also artery pulse signals in near-surface arteries. These composites are suitable to detect slight movement of the muscles and joints. This Lead-free rare earth modified Bismuth Layered Ferroelectrics – polymer composite is synthesized using a ball mill and the solid-state double sintering method. XRD studies indicated the two phases in the composite. SEM studies revealed the grain size to be uniform and in the range of 100 nm. The electromechanical coupling factor is improved. The elastic constants are calculated and the mechanical flexibility is found to be improved as compared to the single-phase rare earth modified Bismuth Latered piezoelectric. The results indicate that this composite is suitable for the non-invasive detection of multiple vital signs of humans.

Keywords: composites, flexible, non-invasive, piezoelectric

Procedia PDF Downloads 37
2201 Development of Taiwanese Sign Language Receptive Skills Test for Deaf Children

Authors: Hsiu Tan Liu, Chun Jung Liu

Abstract:

It has multiple purposes to develop a sign language receptive skills test. For example, this test can be used to be an important tool for education and to understand the sign language ability of deaf children. There is no available test for these purposes in Taiwan. Through the discussion of experts and the references of standardized Taiwanese Sign Language Receptive Test for adults and adolescents, the frame of Taiwanese Sign Language Receptive Skills Test (TSL-RST) for deaf children was developed, and the items were further designed. After multiple times of pre-trials, discussions and corrections, TSL-RST is finally developed which can be conducted and scored online. There were 33 deaf children who agreed to be tested from all three deaf schools in Taiwan. Through item analysis, the items were picked out that have good discrimination index and fair difficulty index. Moreover, psychometric indexes of reliability and validity were established. Then, derived the regression formula was derived which can predict the sign language receptive skills of deaf children. The main results of this study are as follows. (1). TSL-RST includes three sub-test of vocabulary comprehension, syntax comprehension and paragraph comprehension. There are 21, 20, and 9 items in vocabulary comprehension, syntax comprehension, and paragraph comprehension, respectively. (2). TSL-RST can be conducted individually online. The sign language ability of deaf students can be calculated fast and objectively, so that they can get the feedback and results immediately. This can also contribute to both teaching and research. The most subjects can complete the test within 25 minutes. While the test procedure, they can answer the test questions without relying on their reading ability or memory capacity. (3). The sub-test of the vocabulary comprehension is the easiest one, syntax comprehension is harder than vocabulary comprehension and the paragraph comprehension is the hardest. Each of the three sub-test and the whole test are good in item discrimination index. (4). The psychometric indices are good, including the internal consistency reliability (Cronbach’s α coefficient), test-retest reliability, split-half reliability, and content validity. The sign language ability are significantly related to non-verbal IQ, the teachers’ rating to the students’ sign language ability and students’ self-rating to their own sign language ability. The results showed that the higher grade students have better performance than the lower grade students, and students with deaf parent perform better than those with hearing parent. These results made TLS-RST have great discriminant validity. (5). The predictors of sign language ability of primary deaf students are age and years of starting to learn sign language. The results of this study suggested that TSL-RST can effectively assess deaf student’s sign language ability. This study also proposed a model to develop a sign language tests.

Keywords: comprehension test, elementary school, sign language, Taiwan sign language

Procedia PDF Downloads 187
2200 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms

Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna

Abstract:

In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.

Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove

Procedia PDF Downloads 300
2199 A Copula-Based Approach for the Assessment of Severity of Illness and Probability of Mortality: An Exploratory Study Applied to Intensive Care Patients

Authors: Ainura Tursunalieva, Irene Hudson

Abstract:

Continuous improvement of both the quality and safety of health care is an important goal in Australia and internationally. The intensive care unit (ICU) receives patients with a wide variety of and severity of illnesses. Accurately identifying patients at risk of developing complications or dying is crucial to increasing healthcare efficiency. Thus, it is essential for clinicians and researchers to have a robust framework capable of evaluating the risk profile of a patient. ICU scoring systems provide such a framework. The Acute Physiology and Chronic Health Evaluation III and the Simplified Acute Physiology Score II are ICU scoring systems frequently used for assessing the severity of acute illness. These scoring systems collect multiple risk factors for each patient including physiological measurements then render the assessment outcomes of individual risk factors into a single numerical value. A higher score is related to a more severe patient condition. Furthermore, the Mortality Probability Model II uses logistic regression based on independent risk factors to predict a patient’s probability of mortality. An important overlooked limitation of SAPS II and MPM II is that they do not, to date, include interaction terms between a patient’s vital signs. This is a prominent oversight as it is likely there is an interplay among vital signs. The co-existence of certain conditions may pose a greater health risk than when these conditions exist independently. One barrier to including such interaction terms in predictive models is the dimensionality issue as it becomes difficult to use variable selection. We propose an innovative scoring system which takes into account a dependence structure among patient’s vital signs, such as systolic and diastolic blood pressures, heart rate, pulse interval, and peripheral oxygen saturation. Copulas will capture the dependence among normally distributed and skewed variables as some of the vital sign distributions are skewed. The estimated dependence parameter will then be incorporated into the traditional scoring systems to adjust the points allocated for the individual vital sign measurements. The same dependence parameter will also be used to create an alternative copula-based model for predicting a patient’s probability of mortality. The new copula-based approach will accommodate not only a patient’s trajectories of vital signs but also the joint dependence probabilities among the vital signs. We hypothesise that this approach will produce more stable assessments and lead to more time efficient and accurate predictions. We will use two data sets: (1) 250 ICU patients admitted once to the Chui Regional Hospital (Kyrgyzstan) and (2) 37 ICU patients’ agitation-sedation profiles collected by the Hunter Medical Research Institute (Australia). Both the traditional scoring approach and our copula-based approach will be evaluated using the Brier score to indicate overall model performance, the concordance (or c) statistic to indicate the discriminative ability (or area under the receiver operating characteristic (ROC) curve), and goodness-of-fit statistics for calibration. We will also report discrimination and calibration values and establish visualization of the copulas and high dimensional regions of risk interrelating two or three vital signs in so-called higher dimensional ROCs.

Keywords: copula, intensive unit scoring system, ROC curves, vital sign dependence

Procedia PDF Downloads 152
2198 Facial Expression Phoenix (FePh): An Annotated Sequenced Dataset for Facial and Emotion-Specified Expressions in Sign Language

Authors: Marie Alaghband, Niloofar Yousefi, Ivan Garibay

Abstract:

Facial expressions are important parts of both gesture and sign language recognition systems. Despite the recent advances in both fields, annotated facial expression datasets in the context of sign language are still scarce resources. In this manuscript, we introduce an annotated sequenced facial expression dataset in the context of sign language, comprising over 3000 facial images extracted from the daily news and weather forecast of the public tv-station PHOENIX. Unlike the majority of currently existing facial expression datasets, FePh provides sequenced semi-blurry facial images with different head poses, orientations, and movements. In addition, in the majority of images, identities are mouthing the words, which makes the data more challenging. To annotate this dataset we consider primary, secondary, and tertiary dyads of seven basic emotions of "sad", "surprise", "fear", "angry", "neutral", "disgust", and "happy". We also considered the "None" class if the image’s facial expression could not be described by any of the aforementioned emotions. Although we provide FePh as a facial expression dataset of signers in sign language, it has a wider application in gesture recognition and Human Computer Interaction (HCI) systems.

Keywords: annotated facial expression dataset, gesture recognition, sequenced facial expression dataset, sign language recognition

Procedia PDF Downloads 157
2197 Online Multilingual Dictionary Using Hamburg Notation for Avatar-Based Indian Sign Language Generation System

Authors: Sugandhi, Parteek Kumar, Sanmeet Kaur

Abstract:

Sign Language (SL) is used by deaf and other people who cannot speak but can hear or have a problem with spoken languages due to some disability. It is a visual gesture language that makes use of either one hand or both hands, arms, face, body to convey meanings and thoughts. SL automation system is an effective way which provides an interface to communicate with normal people using a computer. In this paper, an avatar based dictionary has been proposed for text to Indian Sign Language (ISL) generation system. This research work will also depict a literature review on SL corpus available for various SL s over the years. For ISL generation system, a written form of SL is required and there are certain techniques available for writing the SL. The system uses Hamburg sign language Notation System (HamNoSys) and Signing Gesture Mark-up Language (SiGML) for ISL generation. It is developed in PHP using Web Graphics Library (WebGL) technology for 3D avatar animation. A multilingual ISL dictionary is developed using HamNoSys for both English and Hindi Language. This dictionary will be used as a database to associate signs with words or phrases of a spoken language. It provides an interface for admin panel to manage the dictionary, i.e., modification, addition, or deletion of a word. Through this interface, HamNoSys can be developed and stored in a database and these notations can be converted into its corresponding SiGML file manually. The system takes natural language input sentence in English and Hindi language and generate 3D sign animation using an avatar. SL generation systems have potential applications in many domains such as healthcare sector, media, educational institutes, commercial sectors, transportation services etc. This research work will help the researchers to understand various techniques used for writing SL and generation of Sign Language systems.

Keywords: avatar, dictionary, HamNoSys, hearing impaired, Indian sign language (ISL), sign language

Procedia PDF Downloads 230
2196 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications

Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes

Abstract:

Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.

Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM

Procedia PDF Downloads 72
2195 Lithuanian Sign Language Literature: Metaphors at the Phonological Level

Authors: Anželika Teresė

Abstract:

In order to solve issues in sign language linguistics, address matters pertaining to maintaining high quality of sign language (SL) translation, contribute to dispelling misconceptions about SL and deaf people, and raise awareness and understanding of the deaf community heritage, this presentation discusses literature in Lithuanian Sign Language (LSL) and inherent metaphors that are created by using the phonological parameter –handshape, location, movement, palm orientation and nonmanual features. The study covered in this presentation is twofold, involving both the micro-level analysis of metaphors in terms of phonological parameters as a sub-lexical feature and the macro-level analysis of the poetic context. Cognitive theories underlie research of metaphors in sign language literature in a range of SL. The study follows this practice. The presentation covers the qualitative analysis of 34 pieces of LSL literature. The analysis employs ELAN software widely used in SL research. The target is to examine how specific types of each phonological parameter are used for the creation of metaphors in LSL literature and what metaphors are created. The results of the study show that LSL literature employs a range of metaphors created by using classifier signs and by modifying the established signs. The study also reveals that LSL literature tends to create reference metaphors indicating status and power. As the study shows, LSL poets metaphorically encode status by encoding another meaning in the same sign, which results in creating double metaphors. The metaphor of identity has been determined. Notably, the poetic context has revealed that the latter metaphor can also be identified as a metaphor for life. The study goes on to note that deaf poets create metaphors related to the importance of various phenomena significance of the lyrical subject. Notably, the study has allowed detecting locations, nonmanual features and etc., never mentioned in previous SL research as used for the creation of metaphors.

Keywords: Lithuanian sign language, sign language literature, sign language metaphor, metaphor at the phonological level, cognitive linguistics

Procedia PDF Downloads 135
2194 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks

Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy

Abstract:

This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.

Keywords: sign language, CNN, HCI, segmentation

Procedia PDF Downloads 157
2193 A New Sign Subband Adaptive Filter Based on Dynamic Selection of Subbands

Authors: Mohammad Shams Esfand Abadi, Mehrdad Zalaghi, Reza ebrahimpour

Abstract:

In this paper, we propose a sign adaptive filter algorithm with the ability of dynamic selection of subband filters which leads to low computational complexity compared with conventional sign subband adaptive filter (SSAF) algorithm. Dynamic selection criterion is based on largest reduction of the mean square deviation at each adaption. We demonstrate that this simple proposed algorithm has the same performance of the conventional SSAF and somewhat faster than it. In the presence of impulsive interferences robustness of the simple proposed algorithm as well as the conventional SSAF and outperform the conventional normalized subband adaptive filter (NSAF) algorithm. Therefore, it is preferred for environments under impulsive interferences. Simulation results are presented to verify these above considerations very well have been achieved.

Keywords: acoustic echo cancellation (AEC), normalized subband adaptive filter (NSAF), dynamic selection subband adaptive filter (DS-NSAF), sign subband adaptive filter (SSAF), impulsive noise, robust filtering

Procedia PDF Downloads 598
2192 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models

Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan

Abstract:

Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.

Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network

Procedia PDF Downloads 25
2191 Evaluation of Wind Fragility for Set Anchor Used in Sign Structure in Korea

Authors: WooYoung Jung, Buntheng Chhorn, Min-Gi Kim

Abstract:

Recently, damage to domestic facilities by strong winds and typhoons are growing. Therefore, this study focused on sign structure among various vulnerable facilities. The evaluation of the wind fragility was carried out considering the destruction of the anchor, which is one of the various failure modes of the sign structure. The performance evaluation of the anchor was carried out to derive the wind fragility. Two parameters were set and four anchor types were selected to perform the pull-out and shear tests. The resistance capacity was estimated based on the experimental results. Wind loads were estimated using Monte Carlo simulation method. Based on these results, we derived the wind fragility according to anchor type and wind exposure category. Finally, the evaluation of the wind fragility was performed according to the experimental parameters such as anchor length and anchor diameter. This study shows that the depth of anchor was more significant for the safety of structure compare to diameter of anchor.

Keywords: sign structure, wind fragility, set anchor, pull-out test, shear test, Monte Carlo simulation

Procedia PDF Downloads 286
2190 Pattern Recognition Based on Simulation of Chemical Senses (SCS)

Authors: Nermeen El Kashef, Yasser Fouad, Khaled Mahar

Abstract:

No AI-complete system can model the human brain or behavior, without looking at the totality of the whole situation and incorporating a combination of senses. This paper proposes a Pattern Recognition model based on Simulation of Chemical Senses (SCS) for separation and classification of sign language. The model based on human taste controlling strategy. The main idea of the introduced model is motivated by the facts that the tongue cluster input substance into its basic tastes first, and then the brain recognizes its flavor. To implement this strategy, two level architecture is proposed (this is inspired from taste system). The separation-level of the architecture focuses on hand posture cluster, while the classification-level of the architecture to recognizes the sign language. The efficiency of proposed model is demonstrated experimentally by recognizing American Sign Language (ASL) data set. The recognition accuracy obtained for numbers of ASL is 92.9 percent.

Keywords: artificial intelligence, biocybernetics, gustatory system, sign language recognition, taste sense

Procedia PDF Downloads 293
2189 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet

Authors: Ma Lei-Lei, Zhou You

Abstract:

Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.

Keywords: convolutional neural network, transformer, feature pyramid networks, loss function

Procedia PDF Downloads 96
2188 A Novel Combined Finger Counting and Finite State Machine Technique for ASL Translation Using Kinect

Authors: Rania Ahmed Kadry Abdel Gawad Birry, Mohamed El-Habrouk

Abstract:

This paper presents a brief survey of the techniques used for sign language recognition along with the types of sensors used to perform the task. It presents a modified method for identification of an isolated sign language gesture using Microsoft Kinect with the OpenNI framework. It presents the way of extracting robust features from the depth image provided by Microsoft Kinect and the OpenNI interface and to use them in creating a robust and accurate gesture recognition system, for the purpose of ASL translation. The Prime Sense’s Natural Interaction Technology for End-user - NITE™ - was also used in the C++ implementation of the system. The algorithm presents a simple finger counting algorithm for static signs as well as directional Finite State Machine (FSM) description of the hand motion in order to help in translating a sign language gesture. This includes both letters and numbers performed by a user, which in-turn may be used as an input for voice pronunciation systems.

Keywords: American sign language, finger counting, hand tracking, Microsoft Kinect

Procedia PDF Downloads 294