Search results for: virtual machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3798

Search results for: virtual machine

648 Using Wearable Device with Neuron Network to Classify Severity of Sleep Disorder

Authors: Ru-Yin Yang, Chi Wu, Cheng-Yu Tsai, Yin-Tzu Lin, Wen-Te Liu

Abstract:

Background: Sleep breathing disorder (SDB) is a condition demonstrated by recurrent episodes of the airway obstruction leading to intermittent hypoxia and quality fragmentation during sleep time. However, the procedures for SDB severity examination remain complicated and costly. Objective: The objective of this study is to establish a simplified examination method for SDB by the respiratory impendence pattern sensor combining the signal processing and machine learning model. Methodologies: We records heart rate variability by the electrocardiogram and respiratory pattern by impendence. After the polysomnography (PSG) been done with the diagnosis of SDB by the apnea and hypopnea index (AHI), we calculate the episodes with the absence of flow and arousal index (AI) from device record. Subjects were divided into training and testing groups. Neuron network was used to establish a prediction model to classify the severity of the SDB by the AI, episodes, and body profiles. The performance was evaluated by classification in the testing group compared with PSG. Results: In this study, we enrolled 66 subjects (Male/Female: 37/29; Age:49.9±13.2) with the diagnosis of SDB in a sleep center in Taipei city, Taiwan, from 2015 to 2016. The accuracy from the confusion matrix on the test group by NN is 71.94 %. Conclusion: Based on the models, we established a prediction model for SDB by means of the wearable sensor. With more cases incoming and training, this system may be used to rapidly and automatically screen the risk of SDB in the future.

Keywords: sleep breathing disorder, apnea and hypopnea index, body parameters, neuron network

Procedia PDF Downloads 118
647 Depth of Field: Photographs, Narrative and Reflective Learning Resource for Health Professions Educators

Authors: Gabrielle Brand, Christopher Etherton-Beer

Abstract:

The learning landscape of higher education environment is changing, with an increased focus over the past decade on how educators might begin to cultivate reflective skills in health professions students. In addition, changing professional requirements demand that health professionals are adequately prepared to practice in today’s complex Australian health care systems, including responding to changing demographics of population ageing. To counteract a widespread perception of health professions students’ disinterest in caring for older persons, the authors will report on an exploratory, mixed method research study that used photographs, narrative and small group work to enhance medical and nursing students’ reflective learning experience. An innovative photo-elicitation technique and reflective questioning prompts were used to increase engagement, and challenge students to consider new perspectives (around ageing) by constructing shared storylines in small groups. The qualitative themes revealed how photographs, narratives and small group work created learning spaces for reflection whereby students could safely explore their own personal and professional values, beliefs and perspectives around ageing. By providing the space for reflection, the students reported how they found connection and meaning in their own learning through a process of self-exploration that often challenged their assumptions of both older people and themselves as future health professionals. By integrating cognitive and affective elements into the learning process, this research demonstrates the importance of embedding visual methodologies that enhance reflection and transformative learning. The findings highlight the importance of integrating the arts into predominantly empirically driven health professional curricula and can be used as a catalyst for individual and/or collective reflection which can potentially enhance empathy, insight and understanding of the lived experiences of older patients. Based on these findings, the authors have developed ‘Depth of Field: Exploring Ageing’ an innovative, interprofessional, digital reflective learning resource that uses Prezi Inc. software (storytelling tool that presents ideas on a virtual canvas) to enhance students’ reflective capacity in the higher education environment.

Keywords: narrative, photo-elicitation, reflective learning, qualitative research

Procedia PDF Downloads 253
646 A Controlled Natural Language Assisted Approach for the Design and Automated Processing of Service Level Agreements

Authors: Christopher Schwarz, Katrin Riegler, Erwin Zinser

Abstract:

The management of outsourcing relationships between IT service providers and their customers proofs to be a critical issue that has to be stipulated by means of Service Level Agreements (SLAs). Since service requirements differ from customer to customer, SLA content and language structures vary largely, standardized SLA templates may not be used and an automated processing of SLA content is not possible. Hence, SLA management is usually a time-consuming and inefficient manual process. For overcoming these challenges, this paper presents an innovative and ITIL V3-conform approach for automated SLA design and management using controlled natural language in enterprise collaboration portals. The proposed novel concept is based on a self-developed controlled natural language that follows a subject-predicate-object approach to specify well-defined SLA content structures that act as templates for customized contracts and support automated SLA processing. The derived results eventually enable IT service providers to automate several SLA request, approval and negotiation processes by means of workflows and business rules within an enterprise collaboration portal. The illustrated prototypical realization gives evidence of the practical relevance in service-oriented scenarios as well as the high flexibility and adaptability of the presented model. Thus, the prototype enables the automated creation of well defined, customized SLA documents, providing a knowledge representation that is both human understandable and machine processable.

Keywords: automated processing, controlled natural language, knowledge representation, information technology outsourcing, service level management

Procedia PDF Downloads 399
645 Status of Production, Distribution and Determinants of Biomass Briquette Acceptability in Kampala, Uganda

Authors: David B. Kisakye, Paul Mugabi

Abstract:

Biomass briquettes have been identified as a plausible and close alternative to commonly used energy fuels such as charcoal and firewood, whose prices are escalating due to the dwindling natural resource base. However, briquettes do not seem to be as popular as would be expected. This study assessed the production, distribution, and acceptability of the briquettes in the Kampala district. A total of 60 respondents, 50 of whom were briquette users and 10 briquette producers, were sampled from five divisions of Kampala district to evaluate consumer acceptability, preference for briquette type and shape. Households and institutions were identified to be the major consumers of briquettes, while community-based organizations were the major distributors of briquettes. The Chi-square test of independence showed a significant association between briquette acceptability and briquette attributes of substitutability and low cost (p < 0,05). The Kruskal Wallis test showed that low-income class people preferred non-carbonized briquettes. Gender, marital status, and income level also cause variation in preference for spherical, stick, and honeycomb briquettes (p < 0,05). The major challenges faced by briquette users in Kampala were; production of a lot of ash, frequent crushing, and limited access to briquettes. The producers of briquettes were mainly challenged by regular machine breakdown, raw material scarcity, and poor carbonizing units. It was concluded that briquettes have a market and are generally accepted in Kampala. However, user preferences need to be taken into account by briquette produces, suitable cookstoves should be availed to users, and there is a need for standards to ensure the quality of briquettes.

Keywords: consumer acceptability, biomass residues, briquettes, briquette producers, distribution, fuel, marketability, wood fuel

Procedia PDF Downloads 108
644 Feminising Football and Its Fandom: The Ideological Construction of Women's Super League

Authors: Donna Woodhouse, Beth Fielding-Lloyd, Ruth Sequerra

Abstract:

This paper explores the structure and culture of the English Football Association (FA) the governing body of soccer in England, in relation to the development of the FA Women’s Super League (WSL). In doing so, it examines the organisation’s journey from banning the sport in 1921 to establishing the country’s first semi professional female soccer league in 2011. As the FA has a virtual monopoly on defining the structures of the elite game, we attempted to understand its behaviour in the context of broader issues of power, control and resistance by giving voice to the experiences of those affected by its decisions. Observations were carried out at 39 matches over three years. Semi structured interviews with 17 people involved in the women’s game, identified via snowball sampling, were also carried out. Transcripts accompanied detailed field notes and were inductively coded to identify themes. What emerged was the governing body’s desire to create a new product, jettisoning the long history of the women’s game in order to shape and control the sport in a way it is no longer able to, with the elite male club game. The League created was also shaped by traditional conceptualisations of gender, in terms of the portrayal of its style of play and target audience, setting increased participation and spectatorship targets as measures of ‘success’. The national governing body has demonstrated pseudo inclusion and a lack of enthusiasm for the implementation of equity reforms, driven by a belief that the organisation is already representative, fair and accessible. Despite a consistent external pressure, the Football Association is still dominated at its most senior levels by males. Via claiming to hold a monopoly on expertise around the sport, maintaining complex committee structures and procedures, and with membership rules rooted in the amateur game, it remains a deeply gendered organisation, resistant to structural and cultural change. In WSL, the FA's structure and culture have created a franchise over which it retains almost complete control, dictating the terms of conditions of entry and marginalising alternative voices. The organisation presents a feminised version of both play and spectatorship, portraying the sport as a distinct, and lesser, version of soccer.

Keywords: football association, organisational culture, soccer, women’s super league

Procedia PDF Downloads 332
643 The Evolution of the Israel Defence Forces’ Information Operations: A Case Study of the Israel Defence Forces' Activities in the Information Domain 2006–2014

Authors: Teemu Saressalo

Abstract:

This article examines the evolution of the Israel Defence Forces’ information operation activities during an eight-year timespan from the 2006 war with Hezbollah to more recent operations such as Pillar of Defence and Protective Edge. To this end, the case study will show a change in the Israel Defence Forces’ activities in the information domain. In the 2006 war with Hezbollah in Lebanon, Israel inflicted enormous damage on the Lebanese infrastructure, leaving more than 1,200 people dead and 4,400 injured. Casualties among Hezbollah, Israel’s main adversary, were estimated to range from 250 to 700 fighters. Damage to the Lebanese infrastructure was estimated at over USD 2.5bn, with almost 2,000 houses and buildings damaged and destroyed. Even this amount of destruction did not force Hezbollah to yield and while both sides were claiming victory in the war, Israel paid a heavier price in political backlashes and loss of reputation, mainly due to failures in the media and the way in which the war was portrayed and perceived in Israel and abroad. Much of this can be credited to Hezbollah’s efficient use of the media, and Israel’s failure to do so. Israel managed the next conflict it was engaged in completely differently – it had learnt its lessons and built up new ways to counter its adversary’s propaganda and media operations. In Operation Cast Lead at the turn of 2009, Hamas, Israel’s adversary and Gaza’s dominating faction, was not able to utilize the media in the same way that Hezbollah had. By creating a virtual and physical barrier around the Gaza Strip, Israel almost totally denied its adversary access to the worldwide media, and by restricting the movement of journalists in the area, Israel could let its voice be heard above all. The operation Cast Lead began with a deception operation, which caught Hamas totally off guard. The 21-day campaign left the Gaza Strip devastated, but did not cause as much protest in Israel during the operation as the 2006 war did, mainly due to almost total Israeli dominance in the information dimension. The most important outcome from the Israeli perspective was the fact that Operation Cast Lead was assessed to be a success and the operation enjoyed domestic support along with support from many western nations, which had condemned Israeli actions in the 2006 war. Later conflicts have shown the same tendency towards virtually total dominance in the information domain, which has had an impact on target audiences across the world. Thus, it is clear that well-planned and conducted information operations are able to shape public opinion and influence decision-makers, although Israel might have been outpaced by its rivals.

Keywords: Hamas, Hezbollah, information operations, Israel Defence Forces

Procedia PDF Downloads 210
642 Theoretical-Experimental Investigations on Free Vibration of Glass Fiber/Polyester Composite Conical Shells Containing Fluid

Authors: Tran Ich Thinh, Nguyen Manh Cuong

Abstract:

Free vibrations of partial fluid-filled composite truncated conical shells are investigated using the Dynamic Stiffness Method (DSM) or Continuous Element Method (CEM) based on the First Order Shear Deformation Theory (FSDT) and non-viscous incompressible fluid equations. Numerical examples are given for analyzing natural frequencies and harmonic responses of clamped-free conical shells partially and completely filled with fluid. To compare with the theoretical results, detailed experimental results have been obtained on the free vibration of a clamped-free conical shells partially filled with water by using a multi-vibration measuring machine (DEWEBOOK-DASYLab 5.61.10). Three glass fiber/polyester composite truncated cones with the radius of the larger end 285 mm, thickness 2 mm, and the cone lengths along the generators are 285 mm, 427.5 mm and 570 mm with the semi-vertex angles 27, 14 and 9 degrees respectively were used, and the filling ratio of the contained water was 0, 0.25, 0.50, 0.75 and 1.0. The results calculated by proposed computational model for studied composite conical shells are in good agreement with experiments. Obtained results indicate that the fluid filling can reduce significantly the natural frequencies of composite conical shells. Parametric studies including circumferential wave number, fluid depth and cone angles are carried out.

Keywords: dynamic stiffness method, experimental study, free vibration, fluid-shell interaction, glass fiber/polyester composite conical shell

Procedia PDF Downloads 470
641 Exclusive Value Adding by iCenter Analytics on Transient Condition

Authors: Zhu Weimin, Allegorico Carmine, Ruggiero Gionata

Abstract:

During decades of Baker Hughes (BH) iCenter experience, it is demonstrated that in addition to conventional insights on equipment steady operation conditions, insights on transient conditions can add significant and exclusive value for anomaly detection, downtime saving, and predictive maintenance. Our work shows examples from the BH iCenter experience to introduce the advantages and features of using transient condition analytics: (i) Operation under critical engine conditions: e.g., high level or high change rate of temperature, pressure, flow, vibration, etc., that would not be reachable in normal operation, (ii) Management of dedicated sub-systems or components, many of which are often bottlenecks for reliability and maintenance, (iii) Indirect detection of anomalies in the absence of instrumentation, (iv) Repetitive sequences: if data is properly processed, the engineering features of transients provide not only anomaly detection but also problem characterization and prognostic indicators for predictive maintenance, (v) Engine variables accounting for fatigue analysis. iCenter has been developing and deploying a series of analytics based on transient conditions. They are contributing to exclusive value adding in the following areas: (i) Reliability improvement, (ii) Startup reliability improvement, (iii) Predictive maintenance, (iv) Repair/overhaul cost down. Illustrative examples for each of the above areas are presented in our study, focusing on challenges and adopted techniques ranging from purely statistical approaches to the implementation of machine learning algorithms. The obtained results demonstrate how the value is obtained using transient condition analytics in the BH iCenter experience.

Keywords: analytics, diagnostics, monitoring, turbomachinery

Procedia PDF Downloads 48
640 Site-based Internship Experiences: From Research to Implementation and Community Collaboration

Authors: Jamie Sundvall, Lisa Jennings

Abstract:

Site based field internship learning (SBL) is an educational approach within a Master’s of Social Work (MSW) university field placement department that promotes a more streamlined approach to the integration of theory and evidence based practices for social work students. The SBL model is founded on research in the field, consideration of current work force needs, United States national trends of MSW graduate skill and knowledge deficits, educational trends in students pursing a master’s degree in social work, and current social problems that require unique problem solving skills. This study explores the use of site-based learning in a hybrid social work program. In this setting, site based learning pairs online education courses and social work field education to create training opportunities for social work students within their own community and cultural context. Students engage in coursework in an online setting with both synchronous and asynchronous features that facilitate development of core competencies for MSW students. Through the SBL model, students are then partnered with faculty in a virtual course room and a university vetted site within their community. The study explores how this model of learning creates community partnerships, through which students engage in a learning loop to develop social work skills, while preparing students to address current community, social, and global issues with the engagement of technology. The goal of SBL is to more effectively equip social work students for practice according to current workforce demands, provide access to education and care to populations who have limited access, and create self-sustainable partnerships. Further, the model helps students learn integration of evidence based practices and helps instructors more effectively teach integration of ethics into practice. The study found that the SBL model increases the influence and professional relevance of the social work profession, and ultimately facilitates stronger approaches to integrating theory into practice. Current implementation of the practice in the United States will be presented in the study. dditionally, future research conceptualization of SBL models will be presented, in order to collaborate on advancing best approaches of translating theory into practice, according to the current needs of the profession and needs of social work students.

Keywords: collaboration, fieldwork, research, site-based learning, technology

Procedia PDF Downloads 103
639 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks

Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas

Abstract:

Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.

Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model

Procedia PDF Downloads 15
638 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets

Authors: Kothuri Sriraman, Mattupalli Komal Teja

Abstract:

In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).

Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm

Procedia PDF Downloads 311
637 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model

Procedia PDF Downloads 121
636 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining

Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie

Abstract:

With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.

Keywords: classification, data mining, machine learning, online shopping, WEKA

Procedia PDF Downloads 330
635 Normal Meniscal Extrusion Using Ultrasonography during the Different Range of Motion Running Head: Sonography for Meniscal Extrusion

Authors: Arash Sharafat Vaziri, Leila Aghaghazvini, Soodeh Jahangiri, Mohammad Tahami, Roham Borazjani, Mohammad Naghi Tahmasebi, Hamid Rabie, Hesan Jelodari Mamaghani, Fardis Vosoughi, Maryam Salimi

Abstract:

Aims: It is essential to know the normal extrusion measures in order to detect pathological ones. In this study, we aimed to define some normal reference values for meniscal extrusion in the normal knees during different ranges of motion. Methods: The amount of anterior and posterior portion of meniscal extrusion among twenty-one asymptomatic volunteers (42 knees) were tracked at 0, 45, and 90 degrees of knee flexion using an ultrasound machine. The repeated measures analysis of variance (ANOVA) was used to show the interaction between the amounts of meniscal extrusion and the different degrees of knee flexion. Result: The anterior portion of the lateral menisci at full knee extension (0.59±1.40) and the posterior portion of the medial menisci during 90° flexion (3.06±2.36) showed the smallest and the highest mean amount of extrusion, respectively. The normal average amounts of anterior extrusion were 1.12± 1.17 mm and 0.99± 1.34 mm for medial and lateral menisci, respectively. The posterior meniscal normal extrusions were significantly increasing in both medial and lateral menisci during the survey (F= 20.250 and 11.298; both P-values< 0.001) as they were measured at 2.37± 2.16 mm and 1.53± 2.18 mm in order. Conclusion: The medial meniscus can extrude 1.74± 1.84 mm normally, while this amount was 1.26± 1.82 mm for the lateral meniscus. These measures commonly increased with the rising of knee flexion motion. Likewise, the posterior portion showed more extrusion than the anterior portion on both sides. These measures commonly increased with higher knee flexion.

Keywords: meniscal extrusion, ultrasonography, knee

Procedia PDF Downloads 70
634 Determination of the Stability of Haloperidol Tablets and Phenytoin Capsules Stored in the Inpatient Dispensary System (Swisslog) by the Respective HPLC and Raman Spectroscopy Assay

Authors: Carol Yue-En Ong, Angelina Hui-Min Tan, Quan Liu, Paul Chi-Lui Ho

Abstract:

A public general hospital in Singapore has recently implemented an automated unit-dose machine in their inpatient dispensary, Swisslog, with the objective of reducing human error and improving patient safety. However, a concern in stability arises as tablets are removed from their original packaging (bottled loose tablets/capsules) and are repackaged into individual, clear plastic wrappers as unit doses in the system. Drugs that are light-sensitive and hygroscopic would be more susceptible to degradation as the wrapper does not offer full protection. Hence, this study was carried out to study the stability of haloperidol tablets and phenytoin capsules that are light-sensitive and hygroscopic respectively. Validated HPLC-UV assays were first established for quantification of these two compounds. The medications involved were put in the Swisslog and sampled every week for one month. The collected data was analysed and showed no degradation over time. This study also explored an alternative approach for drug stability determination-Raman spectroscopy. The advantage of Raman spectroscopy is its high time efficiency and non-destructive nature. The results suggest that drug degradation can indeed be detected using Raman microscopy, but further research is needed to establish this approach for quantification or qualification of compounds. NanoRam®, a portable Raman spectrocope was also used alongside Raman microscopy but was unsuccessful in detecting degradation in this study.

Keywords: drug stability, haloperidol, HPLC, phenytoin, raman spectroscopy, Swisslog

Procedia PDF Downloads 317
633 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia PDF Downloads 131
632 Spatial Architecture Impact in Mediation Open Circuit Voltage Control of Quantum Solar Cell Recovery Systems

Authors: Moustafa Osman Mohammed

Abstract:

The photocurrent generations are influencing ultra-high efficiency solar cells based on self-assembled quantum dot (QD) nanostructures. Nanocrystal quantum dots (QD) provide a great enhancement toward solar cell efficiencies through the use of quantum confinement to tune absorbance across the solar spectrum enabled multi-exciton generation. Based on theoretical predictions, QDs have potential to improve systems efficiency in approximate regular electrons excitation intensity greater than 50%. In solar cell devices, an intermediate band formed by the electron levels in quantum dot systems. The spatial architecture is exploring how can solar cell integrate and produce not only high open circuit voltage (> 1.7 eV) but also large short-circuit currents due to the efficient absorption of sub-bandgap photons. In the proposed QD system, the structure allows barrier material to absorb wavelengths below 700 nm while multi-photon processes in the used quantum dots to absorb wavelengths up to 2 µm. The assembly of the electronic model is flexible to demonstrate the atoms and molecules structure and material properties to tune control energy bandgap of the barrier quantum dot to their respective optimum values. In terms of energy virtual conversion, the efficiency and cost of the electronic structure are unified outperform a pair of multi-junction solar cell that obtained in the rigorous test to quantify the errors. The milestone toward achieving the claimed high-efficiency solar cell device is controlling the edge causes of energy bandgap between the barrier material and quantum dot systems according to the media design limits. Despite this remarkable potential for high photocurrent generation, the achievable open-circuit voltage (Voc) is fundamentally limited due to non-radiative recombination processes in QD solar cells. The orientation of voltage recovery system is compared theoretically with experimental Voc variation in mediation upper–limit obtained one diode modeling form at the cells with different bandgap (Eg) as classified in the proposed spatial architecture. The opportunity for improvement Voc is valued approximately greater than 1V by using smaller QDs through QD solar cell recovery systems as confined to other micro and nano operations states.

Keywords: nanotechnology, photovoltaic solar cell, quantum systems, renewable energy, environmental modeling

Procedia PDF Downloads 124
631 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics

Authors: Ewa M. Laskowska, Jorn Vatn

Abstract:

Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.

Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL

Procedia PDF Downloads 67
630 Online Think–Pair–Share in a Third-Age Information and Communication Technology Course

Authors: Daniele Traversaro

Abstract:

Problem: Senior citizens have been facing a challenging reality as a result of strict public health measures designed to protect people from the COVID-19 outbreak. These include the risk of social isolation due to the inability of the elderly to integrate with technology. Never before have information and communication technology (ICT) skills become essential for their everyday life. Although third-age ICT education and lifelong learning are widely supported by universities and governments, there is a lack of literature on which teaching strategy/methodology to adopt in an entirely online ICT course aimed at third-age learners. This contribution aims to present an application of the Think-Pair-Share (TPS) learning method in an ICT third-age virtual classroom with an intergenerational approach to conducting online group labs and review activities. This collaborative strategy can help increase student engagement, promote active learning and online social interaction. Research Question: Is collaborative learning applicable and effective, in terms of student engagement and learning outcomes, for an entirely online third-age ICT introductory course? Methods: In the TPS strategy, a problem is posed by the teacher, students have time to think about it individually, and then they work in pairs (or small groups) to solve the problem and share their ideas with the entire class. We performed four experiments in the ICT course of the University of the Third Age of Genova (University of Genova, Italy) on the Microsoft Teams platform. The study cohort consisted of 26 students over the age of 45. Data were collected through online questionnaires. Two have been proposed, one at the end of the first activity and another at the end of the course. They consisted of five and three close-ended questions, respectively. The answers were on a Likert scale (from 1 to 4) except two questions (which asked the number of correct answers given individually and in groups) and the field for free comments/suggestions. Results: Results show that groups perform better than individual students (with scores greater than one order of magnitude) and that most students found it helpful to work in groups and interact with their peers. Insights: From these early results, it appears that TPS is applicable to an online third-age ICT classroom and useful for promoting discussion and active learning. Despite this, our experimentation has a number of limitations. First of all, the results highlight the need for more data to be able to perform a statistical analysis in order to determine the effectiveness of this methodology in terms of student engagement and learning outcomes as a future direction.

Keywords: collaborative learning, information technology education, lifelong learning, older adult education, think-pair-share

Procedia PDF Downloads 163
629 Perception of Eco-Music From the Contents the Earth’s Sound Ecosystem

Authors: Joni Asitashvili, Eka Chabashvili, Maya Virsaladze, Alexander Chokhonelidze

Abstract:

Studying the soundscape is a major challenge in many countries of the civilized world today. The sound environment and music itself are part of the Earth's ecosystem. Therefore, researching its positive or negative impact is important for a clean and healthy environment. The acoustics of nature gave people many musical ideas, and people enriched musical features and performance skills with the ability to imitate the surrounding sound. For example, a population surrounded by mountains invented the technique of antiphonal singing, which mimics the effect of an echo. Canadian composer Raymond Murray Schafer viewed the world as a kind of musical instrument with ever-renewing tuning. He coined the term "Soundscape" as a name of a natural environmental sound, including the sound field of the Earth. It can be said that from which the “music of nature” is constructed. In the 21st century, a new field–Ecomusicology–has emerged in the field of musical art to study the sound ecosystem and various issues related to it. Ecomusicology considers the interconnections between music, culture, and nature–According to the Aaron Allen. Eco-music is a field of ecomusicology concerning with the depiction and realization of practical processes using modern composition techniques. Finding an artificial sound source (instrumental or electronic) for the piece that will blend into the soundscape of Sound Oases. Creating a composition, which sounds in harmony with the vibrations of human, nature, environment, and micro- macrocosm as a whole; Currently, we are exploring the ambient sound of the Georgian urban and suburban environment to discover “Sound Oases" and compose Eco-music works. We called “Sound Oases" an environment with a specific sound of the ecosystem to use in the musical piece as an instrument. The most interesting examples of Eco-music are the round dances, which were already created in the BC era. In round dances people would feel the united energy. This urge to get united revealed itself in our age too, manifesting itself in a variety of social media. The virtual world, however, is not enough for a healthy interaction; we created plan of “contemporary round dance” in sound oasis, found during expedition in Georgian caves, where people interacted with cave's soundscape and eco-music, they feel each other sharing energy and listen to earth sound. This project could be considered a contemporary round dance, a long improvisation, particular type of art therapy, where everyone can participate in an artistic process. We would like to present research result of our eco-music experimental performance.

Keywords: eco-music, environment, sound, oasis

Procedia PDF Downloads 39
628 In silico Designing of Imidazo [4,5-b] Pyridine as a Probable Lead for Potent Decaprenyl Phosphoryl-β-D-Ribose 2′-Epimerase (DprE1) Inhibitors as Antitubercular Agents

Authors: Jineetkumar Gawad, Chandrakant Bonde

Abstract:

Tuberculosis (TB) is a major worldwide concern whose control has been exacerbated by HIV, the rise of multidrug-resistance (MDR-TB) and extensively drug resistance (XDR-TB) strains of Mycobacterium tuberculosis. The interest for newer and faster acting antitubercular drugs are more remarkable than any time. To search potent compounds is need and challenge for researchers. Here, we tried to design lead for inhibition of Decaprenyl phosphoryl-β-D-ribose 2′-epimerase (DprE1) enzyme. Arabinose is an essential constituent of mycobacterial cell wall. DprE1 is a flavoenzyme that converts decaprenylphosphoryl-D-ribose into decaprenylphosphoryl-2-keto-ribose, which is intermediate in biosynthetic pathway of arabinose. Latter, DprE2 converts keto-ribose into decaprenylphosphoryl-D-arabinose. We had a selection of 23 compounds from azaindole series for computational study, and they were drawn using marvisketch. Ligands were prepared using Maestro molecular modeling interface, Schrodinger, v10.5. Common pharmacophore hypotheses were developed by applying dataset thresholds to yield active and inactive set of compounds. There were 326 hypotheses were developed. On the basis of survival score, ADRRR (Survival Score: 5.453) was selected. Selected pharmacophore hypotheses were subjected to virtual screening results into 1000 hits. Hits were prepared and docked with protein 4KW5 (oxydoreductase inhibitor) was downloaded in .pdb format from RCSB Protein Data Bank. Protein was prepared using protein preparation wizard. Protein was preprocessed, the workspace was analyzed using force field OPLS 2005. Glide grid was generated by picking single atom in molecule. Prepared ligands were docked with prepared protein 4KW5 using Glide docking. After docking, on the basis of glide score top-five compounds were selected, (5223, 5812, 0661, 0662, and 2945) and the glide docking score (-8.928, -8.534, -8.412, -8.411, -8.351) respectively. There were interactions of ligand and protein, specifically HIS 132, LYS 418, TRY 230, ASN 385. Pi-pi stacking was observed in few compounds with basic Imidazo [4,5-b] pyridine ring. We had basic azaindole ring in parent compounds, but after glide docking, we received compounds with Imidazo [4,5-b] pyridine as a basic ring. That might be the new lead in the process of drug discovery.

Keywords: DprE1 inhibitors, in silico drug designing, imidazo [4, 5-b] pyridine, lead, tuberculosis

Procedia PDF Downloads 129
627 Study of the Performances of an Environmental Concrete Based on Recycled Aggregates and Marble Waste Fillers Addition

Authors: Larbi Belagraa, Miloud Beddar, Abderrazak Bouzid

Abstract:

The needs of the construction sector still increasing for concrete. However, the shortage of natural resources of aggregate could be a problem for the concrete industry, in addition to the negative impact on the environment due to the demolition wastes. Recycling aggregate from construction and demolition (C&D) waste presents a major interest for users and researchers of concrete since this constituent can occupies more than 70% of concrete volume. The aim of the study here in is to assess the effect of sulfate resistant cement combined with the local mineral addition of marble waste fillers on the mechanical behavior of a recycled aggregate concrete (RAC). Physical and mechanical properties of RAC including the density, the flexural and the compressive strength were studied. The non destructive test methods (pulse-velocity, rebound hammer) were performed . The results obtained were compared to crushed aggregate concrete (CAC) using the normal compressive testing machine test method. The optimal content of 5% marble fillers showed an improvement for both used test methods (compression, flexion and NDT). Non-destructive methods (ultrasonic and rebound hammer test) can be used to assess the strength of RAC, but a correction coefficient is required to obtain a similar value to the compressive strength given by the compression tests. The study emphasizes that these waste materials can be successfully and economically utilized as additional inert filler in RAC formulation within similar performances compared to a conventional concrete.

Keywords: marble waste fillers, mechanical strength, natural aggregate, non-destructive testing (NDT), recycled aggregate concrete

Procedia PDF Downloads 284
626 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: computer vision, deep learning, object detection, semiconductor

Procedia PDF Downloads 110
625 Biaxial Fatigue Specimen Design and Testing Rig Development

Authors: Ahmed H. Elkholy

Abstract:

An elastic analysis is developed to obtain the distribution of stresses, strains, bending moment and deformation for a thin hollow, variable thickness cylindrical specimen when subjected to different biaxial loadings. The specimen was subjected to a combination of internal pressure, axial tensile loading and external pressure. Several axial to circumferential stress ratios were investigated in detail. The analytical model was then validated using experimental results obtained from a test rig using several biaxial loadings. Based on the preliminary results obtained, the specimen was then modified geometrically to ensure uniform strain distribution through its wall thickness and along its gauge length. The new design of the specimen has a higher buckling strength and a maximum value of equivalent stress according to the maximum distortion energy theory. A cyclic function generator of the standard servo-controlled, electro-hydraulic testing machine is used to generate a specific signal shape (sine, square,…) at a certain frequency. The two independent controllers of the electronic circuit cause an independent movement to each servo-valve piston. The movement of each piston pressurizes the upper and lower sides of the actuators alternately. So, the specimen will be subjected to axial and diametral loads independent of each other. The hydraulic system has two different pressures: one pressure will be responsible for axial stress produced in the specimen and the other will be responsible for the tangential stress. Changing the two pressure ratios will change the stress ratios accordingly. The only restriction on the maximum stress obtained is the capacity of the testing system and specimen instability due to buckling.

Keywords: biaxial, fatigue, stress, testing

Procedia PDF Downloads 103
624 The Life Skills Project: Client-Centered Approaches to Life Skills Acquisition for Homeless and At-Risk Populations

Authors: Leah Burton, Sara Cumming, Julianne DiSanto

Abstract:

Homelessness is a widespread and complex problem in Canada and around the globe. Many Canadians will face homelessness at least once in their lifetime, with several experiencing subsequent bouts or cyclical patterns of housing precarity. While a Housing First approach to homelessness is a long-standing and widely accepted best practice, it is also recognized that the acquisition of life skills is an effective way to reduce cycles of homelessness. Indeed, when individuals are provided with a range of life skills—such as (but not limited to) financial literacy, household management, interpersonal skills, critical thinking, and resource management—they are given the tools required to maintain long-term Housing for a lifetime; thus reducing a repetitive need for services. However, there is limited research regarding the best ways to teach life skills, a problem that has been further complicated in a post-pandemic world, where services are being delivered online or in a hybrid model of care. More than this, it is difficult to provide life skills on a large scale without losing a client-centered approach to services. This lack of client-centeredness is also seen in the lack of attention to culturally sensitive life skills, which consider the diverse needs of individuals and imbed equity, diversity, and inclusion (EDI) within the skills being taught. This study aims to fill these identified gaps in the literature by employing a community-engaged (CER) approach. Academic, government, funders, front-line staff, and clients at 15 not-for-profits from across the Greater Toronto Area in Ontario, Canada, collaborated to co-create a virtual, client-centric, EDI-informed life skill learning management system. A triangulation methodology was utilized for this research. An environmental scan was conducted for current best practices, and over 100 front-line staff (including workers, managers, and executive directors who work with homeless populations) participated in two separate Creative Problem Solving Sessions. Over 200 individuals with experience in homelessness completed quantitative and open-ended surveys. All sections of this research aimed to discover the areas of skills that individuals need to maintain Housing and to ascertain what a more client-driven EDI approach to life skills training should include. This presentation will showcase the findings on which life skills are deemed essential for homeless and precariously housed individuals.

Keywords: homelessness, housing first, life skills, community engaged research, client- centered

Procedia PDF Downloads 76
623 Multiscale Entropy Analysis of Electroencephalogram (EEG) of Alcoholic and Control Subjects

Authors: Lal Hussain, Wajid Aziz, Imtiaz Ahmed Awan, Sharjeel Saeed

Abstract:

Multiscale entropy analysis (MSE) is a useful technique recently developed to quantify the dynamics of physiological signals at different time scales. This study is aimed at investigating the electroencephalogram (EEG) signals to analyze the background activity of alcoholic and control subjects by inspecting various coarse-grained sequences formed at different time scales. EEG recordings of alcoholic and control subjects were taken from the publically available machine learning repository of University of California (UCI) acquired using 64 electrodes. The MSE analysis was performed on the EEG data acquired from all the electrodes of alcoholic and control subjects. Mann-Whitney rank test was used to find significant differences between the groups and result were considered statistically significant for p-values<0.05. The area under receiver operator curve was computed to find the degree separation between the groups. The mean ranks of MSE values at all the times scales for all electrodes were higher control subject as compared to alcoholic subjects. Higher mean ranks represent higher complexity and vice versa. The finding indicated that EEG signals acquired through electrodes C3, C4, F3, F7, F8, O1, O2, P3, T7 showed significant differences between alcoholic and control subjects at time scales 1 to 5. Moreover, all electrodes exhibit significance level at different time scales. Likewise, the highest accuracy and separation was obtained at the central region (C3 and C4), front polar regions (P3, O1, F3, F7, F8 and T8) while other electrodes such asFp1, Fp2, P4 and F4 shows no significant results.

Keywords: electroencephalogram (EEG), multiscale sample entropy (MSE), Mann-Whitney test (MMT), Receiver Operator Curve (ROC), complexity analysis

Procedia PDF Downloads 352
622 Tensile Behavior of Oil Palm Fiber Concrete (OPFC) with Different Fiber Volume

Authors: Khairul Zahreen Mohd Arof, Rahimah Muhamad

Abstract:

Oil palm fiber (OPF) is a fibrous material produced from the waste of palm oil industry which is suitable to be used in construction industry. The applications of OPF in concrete can reduce the material costs and enhance concrete behavior. Dog-bone test provides significant results for investigating the behavior of fiber reinforced concrete under tensile loading. It is able to provide stress-strain profile, modulus of elasticity, stress at cracking point and total crack width. In this research, dog-bone tests have been conducted to analyze total crack width, stress-strain profile, and modulus of elasticity of OPFC. Specimens are in a dog-bone shape with a long notch in the middle as compared to the end, to ensure cracks occur only within the notch. Tests were instrumented using a universal testing machine Shimadzu 300kN, a linear variable differential transformer and two strain gauges. A total of nine specimens with different fibers at fiber volume fractions of 0.75%, 1.00%, and 1.25% have been tested to analyze the behavior under tensile loading. Also, three specimens of plain concrete fiber have been tested as control specimens. The tensile test of all specimens have been carried out for concrete age exceed 28 days. It shows that OPFC able to reduce total crack width. In addition, OPFC has higher cracking stress than plain concrete. The study shows plain concrete can be improved with the addition of OPF.

Keywords: cracks, crack width, dog-bone test, oil palm fiber concrete

Procedia PDF Downloads 308
621 A Human Centered Design of an Exoskeleton Using Multibody Simulation

Authors: Sebastian Kölbl, Thomas Reitmaier, Mathias Hartmann

Abstract:

Trial and error approaches to adapt wearable support structures to human physiology are time consuming and elaborate. However, during preliminary design, the focus lies on understanding the interaction between exoskeleton and the human body in terms of forces and moments, namely body mechanics. For the study at hand, a multi-body simulation approach has been enhanced to evaluate actual forces and moments in a human dummy model with and without a digital mock-up of an active exoskeleton. Therefore, different motion data have been gathered and processed to perform a musculosceletal analysis. The motion data are ground reaction forces, electromyography data (EMG) and human motion data recorded with a marker-based motion capture system. Based on the experimental data, the response of the human dummy model has been calibrated. Subsequently, the scalable human dummy model, in conjunction with the motion data, is connected with the exoskeleton structure. The results of the human-machine interaction (HMI) simulation platform are in particular resulting contact forces and human joint forces to compare with admissible values with regard to the human physiology. Furthermore, it provides feedback for the sizing of the exoskeleton structure in terms of resulting interface forces (stress justification) and the effect of its compliance. A stepwise approach for the setup and validation of the modeling strategy is presented and the potential for a more time and cost-effective development of wearable support structures is outlined.

Keywords: assistive devices, ergonomic design, inverse dynamics, inverse kinematics, multibody simulation

Procedia PDF Downloads 134
620 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design

Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong

Abstract:

This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.

Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring

Procedia PDF Downloads 58
619 Integrated Free Space Optical Communication and Optical Sensor Network System with Artificial Intelligence Techniques

Authors: Yibeltal Chanie Manie, Zebider Asire Munyelet

Abstract:

5G and 6G technology offers enhanced quality of service with high data transmission rates, which necessitates the implementation of the Internet of Things (IoT) in 5G/6G architecture. In this paper, we proposed the integration of free space optical communication (FSO) with fiber sensor networks for IoT applications. Recently, free-space optical communications (FSO) are gaining popularity as an effective alternative technology to the limited availability of radio frequency (RF) spectrum. FSO is gaining popularity due to flexibility, high achievable optical bandwidth, and low power consumption in several applications of communications, such as disaster recovery, last-mile connectivity, drones, surveillance, backhaul, and satellite communications. Hence, high-speed FSO is an optimal choice for wireless networks to satisfy the full potential of 5G/6G technology, offering 100 Gbit/s or more speed in IoT applications. Moreover, machine learning must be integrated into the design, planning, and optimization of future optical wireless communication networks in order to actualize this vision of intelligent processing and operation. In addition, fiber sensors are important to achieve real-time, accurate, and smart monitoring in IoT applications. Moreover, we proposed deep learning techniques to estimate the strain changes and peak wavelength of multiple Fiber Bragg grating (FBG) sensors using only the spectrum of FBGs obtained from the real experiment.

Keywords: optical sensor, artificial Intelligence, Internet of Things, free-space optics

Procedia PDF Downloads 34