Search results for: virtual coordinates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1435

Search results for: virtual coordinates

235 Solving a Micromouse Maze Using an Ant-Inspired Algorithm

Authors: Rolando Barradas, Salviano Soares, António Valente, José Alberto Lencastre, Paulo Oliveira

Abstract:

This article reviews the Ant Colony Optimization, a nature-inspired algorithm, and its implementation in the Scratch/m-Block programming environment. The Ant Colony Optimization is a part of Swarm Intelligence-based algorithms and is a subset of biological-inspired algorithms. Starting with a problem in which one has a maze and needs to find its path to the center and return to the starting position. This is similar to an ant looking for a path to a food source and returning to its nest. Starting with the implementation of a simple wall follower simulator, the proposed solution uses a dynamic graphical interface that allows young students to observe the ants’ movement while the algorithm optimizes the routes to the maze’s center. Things like interface usability, Data structures, and the conversion of algorithmic language to Scratch syntax were some of the details addressed during this implementation. This gives young students an easier way to understand the computational concepts of sequences, loops, parallelism, data, events, and conditionals, as they are used through all the implemented algorithms. Future work includes the simulation results with real contest mazes and two different pheromone update methods and the comparison with the optimized results of the winners of each one of the editions of the contest. It will also include the creation of a Digital Twin relating the virtual simulator with a real micromouse in a full-size maze. The first test results show that the algorithm found the same optimized solutions that were found by the winners of each one of the editions of the Micromouse contest making this a good solution for maze pathfinding.

Keywords: nature inspired algorithms, scratch, micromouse, problem-solving, computational thinking

Procedia PDF Downloads 98
234 Ground Short Circuit Contributions of a MV Distribution Line Equipped with PWMSC

Authors: Mohamed Zellagui, Heba Ahmed Hassan

Abstract:

This paper proposes a new approach for the calculation of short-circuit parameters in the presence of Pulse Width Modulated based Series Compensator (PWMSC). PWMSC is a newly Flexible Alternating Current Transmission System (FACTS) device that can modulate the impedance of a transmission line through applying a variation to the duty cycle (D) of a train of pulses with fixed frequency. This results in an improvement of the system performance as it provides virtual compensation of distribution line impedance by injecting controllable apparent reactance in series with the distribution line. This controllable reactance can operate in both capacitive and inductive modes and this makes PWMSC highly effective in controlling the power flow and increasing system stability in the system. The purpose of this work is to study the impact of fault resistance (RF) which varies between 0 to 30 Ω on the fault current calculations in case of a ground fault and a fixed fault location. The case study is for a medium voltage (MV) Algerian distribution line which is compensated by PWMSC in the 30 kV Algerian distribution power network. The analysis is based on symmetrical components method which involves the calculations of symmetrical components of currents and voltages, without and with PWMSC in both cases of maximum and minimum duty cycle value for capacitive and inductive modes. The paper presents simulation results which are verified by the theoretical analysis.

Keywords: pulse width modulated series compensator (pwmsc), duty cycle, distribution line, short-circuit calculations, ground fault, symmetrical components method

Procedia PDF Downloads 476
233 Adapting an Accurate Reverse-time Migration Method to USCT Imaging

Authors: Brayden Mi

Abstract:

Reverse time migration has been widely used in the Petroleum exploration industry to reveal subsurface images and to detect rock and fluid properties since the early 1980s. The seismic technology involves the construction of a velocity model through interpretive model construction, seismic tomography, or full waveform inversion, and the application of the reverse-time propagation of acquired seismic data and the original wavelet used in the acquisition. The methodology has matured from 2D, simple media to present-day to handle full 3D imaging challenges in extremely complex geological conditions. Conventional Ultrasound computed tomography (USCT) utilize travel-time-inversion to reconstruct the velocity structure of an organ. With the velocity structure, USCT data can be migrated with the “bend-ray” method, also known as migration. Its seismic application counterpart is called Kirchhoff depth migration, in which the source of reflective energy is traced by ray-tracing and summed to produce a subsurface image. It is well known that ray-tracing-based migration has severe limitations in strongly heterogeneous media and irregular acquisition geometries. Reverse time migration (RTM), on the other hand, fully accounts for the wave phenomena, including multiple arrives and turning rays due to complex velocity structure. It has the capability to fully reconstruct the image detectable in its acquisition aperture. The RTM algorithms typically require a rather accurate velocity model and demand high computing powers, and may not be applicable to real-time imaging as normally required in day-to-day medical operations. However, with the improvement of computing technology, such a computational bottleneck may not present a challenge in the near future. The present-day (RTM) algorithms are typically implemented from a flat datum for the seismic industry. It can be modified to accommodate any acquisition geometry and aperture, as long as sufficient illumination is provided. Such flexibility of RTM can be conveniently implemented for the application in USCT imaging if the spatial coordinates of the transmitters and receivers are known and enough data is collected to provide full illumination. This paper proposes an implementation of a full 3D RTM algorithm for USCT imaging to produce an accurate 3D acoustic image based on the Phase-shift-plus-interpolation (PSPI) method for wavefield extrapolation. In this method, each acquired data set (shot) is propagated back in time, and a known ultrasound wavelet is propagated forward in time, with PSPI wavefield extrapolation and a piece-wise constant velocity model of the organ (breast). The imaging condition is then applied to produce a partial image. Although each image is subject to the limitation of its own illumination aperture, the stack of multiple partial images will produce a full image of the organ, with a much-reduced noise level if compared with individual partial images.

Keywords: illumination, reverse time migration (RTM), ultrasound computed tomography (USCT), wavefield extrapolation

Procedia PDF Downloads 50
232 A Step Magnitude Haptic Feedback Device and Platform for Better Way to Review Kinesthetic Vibrotactile 3D Design in Professional Training

Authors: Biki Sarmah, Priyanko Raj Mudiar

Abstract:

In the modern world of remotely interactive virtual reality-based learning and teaching, including professional skill-building training and acquisition practices, as well as data acquisition and robotic systems, the revolutionary application or implementation of field-programmable neurostimulator aids and first-hand interactive sensitisation techniques into 3D holographic audio-visual platforms have been a coveted dream of many scholars, professionals, scientists, and students. Integration of 'kinaesthetic vibrotactile haptic perception' along with an actuated step magnitude contact profiloscopy in augmented reality-based learning platforms and professional training can be implemented by using an extremely calculated and well-coordinated image telemetry including remote data mining and control technique. A real-time, computer-aided (PLC-SCADA) field calibration based algorithm must be designed for the purpose. But most importantly, in order to actually realise, as well as to 'interact' with some 3D holographic models displayed over a remote screen using remote laser image telemetry and control, all spatio-physical parameters like cardinal alignment, gyroscopic compensation, as well as surface profile and thermal compositions, must be implemented using zero-order type 1 actuators (or transducers) because they provide zero hystereses, zero backlashes, low deadtime as well as providing a linear, absolutely controllable, intrinsically observable and smooth performance with the least amount of error compensation while ensuring the best ergonomic comfort ever possible for the users.

Keywords: haptic feedback, kinaesthetic vibrotactile 3D design, medical simulation training, piezo diaphragm based actuator

Procedia PDF Downloads 130
231 Hub Traveler Guidance Signage Evaluation via Panoramic Visualization Using Entropy Weight Method and TOPSIS

Authors: Si-yang Zhang, Chi Zhao

Abstract:

Comprehensive transportation hubs are important nodes of the transportation network, and their internal signage the functions as guidance and distribution assistance, which directly affects the operational efficiency of traffic in and around the hubs. Reasonably installed signage effectively attracts the visual focus of travelers and improves wayfinding efficiency. Among the elements of signage, the visual guidance effect is the key factor affecting the information conveyance, whom should be evaluated during design and optimization process. However, existing evaluation methods mostly focus on the layout, and are not able to fully understand if signage caters travelers’ need. This study conducted field investigations and developed panoramic videos for multiple transportation hubs in China, and designed survey accordingly. Human subjects are recruited to watch panoramic videos via virtual reality (VR) and respond to the surveys. In this paper, Pudong Airport and Xi'an North Railway Station were studied and compared as examples due to their high traveler volume and relatively well-developed traveler service systems. Visual attention was captured by eye tracker and subjective satisfaction ratings were collected through surveys. Entropy Weight Method (EWM) was utilized to evaluate the effectiveness of signage elements and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was used to further rank the importance of the elements. The results show that the degree of visual attention of travelers significantly affects the evaluation results of guidance signage. Key factors affecting visual attention include accurate legibility, obstruction and defacement rates, informativeness, and whether signage is set up in a hierarchical manner.

Keywords: traveler guidance signage, panoramic video, visual attention, entropy weight method, TOPSIS

Procedia PDF Downloads 35
230 3D Dentofacial Surgery Full Planning Procedures

Authors: Oliveira M., Gonçalves L., Francisco I., Caramelo F., Vale F., Sanz D., Domingues M., Lopes M., Moreia D., Lopes T., Santos T., Cardoso H.

Abstract:

The ARTHUR project consists of a platform that allows the virtual performance of maxillofacial surgeries, offering, in a photorealistic concept, the possibility for the patient to have an idea of the surgical changes before they are performed on their face. For this, the system brings together several image formats, dicoms and objs that, after loading, will generate the bone volume, soft tissues and hard tissues. The system also incorporates the patient's stereophotogrammetry, in addition to their data and clinical history. After loading and inserting data, the clinician can virtually perform the surgical operation and present the final result to the patient, generating a new facial surface that contemplates the changes made in the bone and tissues of the maxillary area. This tool acts in different situations that require facial reconstruction, however this project focuses specifically on two types of use cases: bone congenital disfigurement and acquired disfiguration such as oral cancer with bone attainment. Being developed a cloud based solution, with mobile support, the tool aims to reduce the decision time window of patient. Because the current simulations are not realistic or, if realistic, need time due to the need of building plaster models, patient rates on decision, rely on a long time window (1,2 months), because they don’t identify themselves with the presented surgical outcome. On the other hand, this planning was performed time based on average estimated values of the position of the maxilla and mandible. The team was based on averages of the facial measurements of the population, without specifying racial variability, so the proposed solution was not adjusted to the real individual physiognomic needs.

Keywords: 3D computing, image processing, image registry, image reconstruction

Procedia PDF Downloads 173
229 I Post Therefore I Am! Construction of Gendered Identities in Facebook Communication of Pakistani Male and Female Users

Authors: Rauha Salam

Abstract:

In Pakistan, over the past decade, the notion of what counts as a true ‘masculine and feminine’ behaviour has become more complicated with the inspection of social media. Given its strong religious and socio-cultural norms, patriarchal values are entrenched in the local and cultural traditions of the Pakistani society and regulate the social value of gender. However, the increasing use of internet among Pakistani men and women, especially in the form of social media uses by the youth, is increasingly becoming disruptive and challenging to the strict modes of behavioural monitoring and control both at familial and state level. Facebook, being the prime social media communication platform in Pakistan, provide its users a relatively ‘safe’ place to embrace how they want to be perceived by their audience. Moreover, the availability of an array of semiotic resources (e.g. the videos, audios, visuals and gifs) on Facebook makes it possible for the users to create a virtual identity that allows them to describe themselves in detail. By making use of Multimodal Discourse Analysis, I aimed to investigate how men and women in Pakistan construct their gendered identities multimodally (visually and linguistically) through their Facebook posts and how these semiotic modes are interconnected to communicate specific meanings. In case of the female data, the analysis showed an ambivalence as females were found to be conforming to the existing socio-cultural norms of the society and they were also employing social media platforms to deviate from traditional gendered patterns and to voice their opinions simultaneously. Similarly, the male data highlighted the reproduction of the prevalent cultural models of masculinity. However, there were instances in the data that showed a digression from the standard norms and there is a (re)negotiation of the traditional patriarchal representations.

Keywords: Facebook, Gendered Identities, Multimodal Discourse Analysis, Pakistan

Procedia PDF Downloads 92
228 Assessment of Soil Quality Indicators in Rice Soil of Tamil Nadu

Authors: Kaleeswari R. K., Seevagan L .

Abstract:

Soil quality in an agroecosystem is influenced by the cropping system, water and soil fertility management. A valid soil quality index would help to assess the soil and crop management practices for desired productivity and soil health. The soil quality indices also provide an early indication of soil degradation and needy remedial and rehabilitation measures. Imbalanced fertilization and inadequate organic carbon dynamics deteriorate soil quality in an intensive cropping system. The rice soil ecosystem is different from other arable systems since rice is grown under submergence, which requires a different set of key soil attributes for enhancing soil quality and productivity. Assessment of the soil quality index involves indicator selection, indicator scoring and comprehensive score into one index. The most appropriate indicator to evaluate soil quality can be selected by establishing the minimum data set, which can be screened by linear and multiple regression factor analysis and score function. This investigation was carried out in intensive rice cultivating regions (having >1.0 lakh hectares) of Tamil Nadu viz., Thanjavur, Thiruvarur, Nagapattinam, Villupuram, Thiruvannamalai, Cuddalore and Ramanathapuram districts. In each district, intensive rice growing block was identified. In each block, two sampling grids (10 x 10 sq.km) were used with a sampling depth of 10 – 15 cm. Using GIS coordinates, and soil sampling was carried out at various locations in the study area. The number of soil sampling points were 41, 28, 28, 32, 37, 29 and 29 in Thanjavur, Thiruvarur, Nagapattinam, Cuddalore, Villupuram, Thiruvannamalai and Ramanathapuram districts, respectively. Principal Component Analysis is a data reduction tool to select some of the potential indicators. Principal Component is a linear combination of different variables that represents the maximum variance of the dataset. Principal Component that has eigenvalues equal or higher than 1.0 was taken as the minimum data set. Principal Component Analysis was used to select the representative soil quality indicators in rice soils based on factor loading values and contribution percent values. Variables having significant differences within the production system were used for the preparation of the minimum data set. Each Principal Component explained a certain amount of variation (%) in the total dataset. This percentage provided the weight for variables. The final Principal Component Analysis based soil quality equation is SQI = ∑ i=1 (W ᵢ x S ᵢ); where S- score for the subscripted variable; W-weighing factor derived from PCA. Higher index scores meant better soil quality. Soil respiration, Soil available Nitrogen and Potentially Mineralizable Nitrogen were assessed as soil quality indicators in rice soil of the Cauvery Delta zone covering Thanjavur, Thiruvavur and Nagapattinam districts. Soil available phosphorus could be used as a soil quality indicator of rice soils in the Cuddalore district. In rain-fed rice ecosystems of coastal sandy soil, DTPA – Zn could be used as an effective soil quality indicator. Among the soil parameters selected from Principal Component Analysis, Microbial Biomass Nitrogen could be used quality indicator for rice soils of the Villupuram district. Cauvery Delta zone has better SQI as compared with other intensive rice growing zone of Tamil Nadu.

Keywords: soil quality index, soil attributes, soil mapping, and rice soil

Procedia PDF Downloads 55
227 Solution Thermodynamics, Photophysical and Computational Studies of TACH2OX, a C-3 Symmetric 8-Hydroxyquinoline: Abiotic Siderophore Analogue of Enterobactin

Authors: B. K. Kanungo, Monika Thakur, Minati Baral

Abstract:

8-hydroxyquinoline, (8HQ), experiences a renaissance due to its utility as a building block in metallosupramolecular chemistry and its versatile use of its derivatives in various fields of analytical chemistry, materials science, and pharmaceutics. It forms stable complexes with a variety of metal ions. Assembly of more than one such unit to form a polydentate chelator enhances its coordinating ability and the related properties due to the chelate effect resulting in high stability constant. Keeping in view the above, a nonadentate chelator N-[3,5-bis(8-hydroxyquinoline-2-amido)cyclohexyl]-8-hydroxyquinoline-2-carboxamide, (TACH2OX), containing a central cis,cis-1,3,5-triaminocyclohexane appended to three 8-hydroxyquinoline at 2-position through amide linkage is developed, and its solution thermodynamics, photophysical and Density Functional Theory (DFT) studies were undertaken. The synthesis of TACH2OX was carried out by condensation of cis,cis-1,3,5-triaminocyclohexane, (TACH) with 8‐hydroxyquinoline‐2‐carboxylic acid. The brown colored solid has been fully characterized through melting point, infrared, nuclear magnetic resonance, electrospray ionization mass and electronic spectroscopy. In solution, TACH2OX forms protonated complexes below pH 3.4, which consecutively deprotonates to generate trinegative ion with the rise of pH. Nine protonation constants for the ligand were obtained that ranges between 2.26 to 7.28. The interaction of the chelator with two trivalent metal ion Fe3+ and Al3+ were studied in aqueous solution at 298 K. The metal-ligand formation constants (ML) obtained by potentiometric and spectrophotometric method agree with each other. The protonated and hydrolyzed species were also detected in the system. The in-silico studies of the ligand, as well as the complexes including their protonated and deprotonated species assessed by density functional theory technique, gave an accurate correlation with each observed properties such as the protonation constants, stability constants, infra-red, nmr, electronic absorption and emission spectral bands. The nature of electronic and emission spectral bands in terms of number and type were ascertained from time-dependent density functional theory study and the natural transition orbitals (NTO). The global reactivity indices parameters were used for comparison of the reactivity of the ligand and the complex molecules. The natural bonding orbital (NBO) analysis could successfully describe the structure and bonding of the metal-ligand complexes specifying the percentage of contribution in atomic orbitals in the creation of molecular orbitals. The obtained high value of metal-ligand formation constants indicates that the newly synthesized chelator is a very powerful synthetic chelator. The minimum energy molecular modeling structure of the ligand suggests that the ligand, TACH2OX, in a tripodal fashion firmly coordinates to the metal ion as hexa-coordinated chelate displaying distorted octahedral geometry by binding through three sets of N, O- donor atoms, present in each pendant arm of the central tris-cyclohexaneamine tripod.

Keywords: complexes, DFT, formation constant, TACH2OX

Procedia PDF Downloads 118
226 Frank Norris’ McTeague: An Entropic Melodrama

Authors: Mohsen Masoomi, Fazel Asadi Amjad, Monireh Arvin

Abstract:

According to Naturalistic principles, human destiny in the form of blind chance and determinism, entraps the individual, so man is a defenceless creature unable to escape from the ruthless paws of a stoical universe. In Naturalism; nonetheless, melodrama mirrors a conscious alternative with a peculiar function. A typical American Naturalistic character thus cannot be a subject for social criticism of American society since they are not victims of the ongoing virtual slavery, capitalist system, nor of a ruined milieu, but of their own volition, and more importantly, their character frailty. Through a Postmodern viewpoint, each Naturalistic work can encompass some entropic trends and changes culminating in an entire failure and devastation. Frank Norris in McTeague displays the futile struggles of ordinary men and how they end up brutes. McTeague encompasses intoxication, abuse, violation, and ruthless homicides. Norris’ depictions of the falling individual as a demon represent the entropic dimension of Naturalistic novels. McTeague’s defeat is somewhat his own fault, the result of his own blunders and resolution, not the result of sheer accident. Throughout the novel, each character is a kind of insane quester indicating McTeague’s decadence and, by inference, the decadence of Western civilisation. McTeague seems to designate Norris’ solicitude for a community fabricated by the elements of human negative demeanours and conducts hauling acute symptoms of infectious dehumanisation. The aim of this article is to illustrate how one specific negative human disposition gradually, like a running fire, can spread everywhere and burn everything in itself. The author applies the concept of entropy metaphorically to describe the individual devolutions that necessarily comprise community entropy in McTeague, a dying universe.

Keywords: animal imagery, entropy, Gypsy, melodrama

Procedia PDF Downloads 257
225 Design & Development of a Static-Thrust Test-Bench for Aviation/UAV Based Piston Engines

Authors: Syed Muhammad Basit Ali, Usama Saleem, Irtiza Ali

Abstract:

Internal combustion engines have been pioneers in the aviation industry, use of piston engines for aircraft propulsion, from propeller-driven bi-planes to turbo-prop, commercial, and cargo airliners. To provide an adequate amount of thrust piston engine rotates the propeller at a specific rpm, allowing enough mass airflow. Thrust is the only forward-acting force of an aircraft that helps heavier than air bodies to fly, depending on the mathematical model and variables included in that with the correct measurement. Test-benches have been a bench-mark in the aerospace industry to analyse the results before a flight, having paramount significance in reliability and safety engineering, depending on the mathematical model and variables included in that with the correct measurement. Calculation of thrust from a piston engine also depends on environmental changes, the diameter of the propeller, and the density of air. The project would be centered on piston engines used in the aviation industry for light aircraft and UAVs. A static thrust test bench involves various units, each performing a designed purpose to monitor and display. Static thrust tests are performed on the ground, and safety concerns hold paramount importance. The execution of this study involves research, design, manufacturing, and results based on reverse engineering initiating from virtual design, analytical analysis, and simulations. The final evaluation of results gathered from various methods such as co-relation between conventional mass-spring and digital loadcell. On average, we received 17.5kg of thrust (25+ engine run-ups – around 40 hours of engine run), only 10% deviation from analytically calculated thrust –providing 90% accuracy.

Keywords: aviation, aeronautics, static thrust, test bench, aircraft maintenance

Procedia PDF Downloads 351
224 Single Cell and Spatial Transcriptomics: A Beginners Viewpoint from the Conceptual Pipeline

Authors: Leo Nnamdi Ozurumba-Dwight

Abstract:

Messenger ribooxynucleic acid (mRNA) molecules are compositional, protein-based. These proteins, encoding mRNA molecules (which collectively connote the transcriptome), when analyzed by RNA sequencing (RNAseq), unveils the nature of gene expression in the RNA. The obtained gene expression provides clues of cellular traits and their dynamics in presentations. These can be studied in relation to function and responses. RNAseq is a practical concept in Genomics as it enables detection and quantitative analysis of mRNA molecules. Single cell and spatial transcriptomics both present varying avenues for expositions in genomic characteristics of single cells and pooled cells in disease conditions such as cancer, auto-immune diseases, hematopoietic based diseases, among others, from investigated biological tissue samples. Single cell transcriptomics helps conduct a direct assessment of each building unit of tissues (the cell) during diagnosis and molecular gene expressional studies. A typical technique to achieve this is through the use of a single-cell RNA sequencer (scRNAseq), which helps in conducting high throughput genomic expressional studies. However, this technique generates expressional gene data for several cells which lack presentations on the cells’ positional coordinates within the tissue. As science is developmental, the use of complimentary pre-established tissue reference maps using molecular and bioinformatics techniques has innovatively sprung-forth and is now used to resolve this set back to produce both levels of data in one shot of scRNAseq analysis. This is an emerging conceptual approach in methodology for integrative and progressively dependable transcriptomics analysis. This can support in-situ fashioned analysis for better understanding of tissue functional organization, unveil new biomarkers for early-stage detection of diseases, biomarkers for therapeutic targets in drug development, and exposit nature of cell-to-cell interactions. Also, these are vital genomic signatures and characterizations of clinical applications. Over the past decades, RNAseq has generated a wide array of information that is igniting bespoke breakthroughs and innovations in Biomedicine. On the other side, spatial transcriptomics is tissue level based and utilized to study biological specimens having heterogeneous features. It exposits the gross identity of investigated mammalian tissues, which can then be used to study cell differentiation, track cell line trajectory patterns and behavior, and regulatory homeostasis in disease states. Also, it requires referenced positional analysis to make up of genomic signatures that will be sassed from the single cells in the tissue sample. Given these two presented approaches to RNA transcriptomics study in varying quantities of cell lines, with avenues for appropriate resolutions, both approaches have made the study of gene expression from mRNA molecules interesting, progressive, developmental, and helping to tackle health challenges head-on.

Keywords: transcriptomics, RNA sequencing, single cell, spatial, gene expression.

Procedia PDF Downloads 100
223 Low Cost LiDAR-GNSS-UAV Technology Development for PT Garam’s Three Dimensional Stockpile Modeling Needs

Authors: Mohkammad Nur Cahyadi, Imam Wahyu Farid, Ronny Mardianto, Agung Budi Cahyono, Eko Yuli Handoko, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan

Abstract:

Unmanned aerial vehicle (UAV) technology has cost efficiency and data retrieval time advantages. Using technologies such as UAV, GNSS, and LiDAR will later be combined into one of the newest technologies to cover each other's deficiencies. This integration system aims to increase the accuracy of calculating the volume of the land stockpile of PT. Garam (Salt Company). The use of UAV applications to obtain geometric data and capture textures that characterize the structure of objects. This study uses the Taror 650 Iron Man drone with four propellers, which can fly for 15 minutes. LiDAR can classify based on the number of image acquisitions processed in the software, utilizing photogrammetry and structural science principles from Motion point cloud technology. LiDAR can perform data acquisition that enables the creation of point clouds, three-dimensional models, Digital Surface Models, Contours, and orthomosaics with high accuracy. LiDAR has a drawback in the form of coordinate data positions that have local references. Therefore, researchers use GNSS, LiDAR, and drone multi-sensor technology to map the stockpile of salt on open land and warehouses every year, carried out by PT. Garam twice, where the previous process used terrestrial methods and manual calculations with sacks. Research with LiDAR needs to be combined with UAV to overcome data acquisition limitations because it only passes through the right and left sides of the object, mainly when applied to a salt stockpile. The UAV is flown to assist data acquisition with a wide coverage with the help of integration of the 200-gram LiDAR system so that the flying angle taken can be optimal during the flight process. Using LiDAR for low-cost mapping surveys will make it easier for surveyors and academics to obtain pretty accurate data at a more economical price. As a survey tool, LiDAR is included in a tool with a low price, around 999 USD; this device can produce detailed data. Therefore, to minimize the operational costs of using LiDAR, surveyors can use Low-Cost LiDAR, GNSS, and UAV at a price of around 638 USD. The data generated by this sensor is in the form of a visualization of an object shape made in three dimensions. This study aims to combine Low-Cost GPS measurements with Low-Cost LiDAR, which are processed using free user software. GPS Low Cost generates data in the form of position-determining latitude and longitude coordinates. The data generates X, Y, and Z values to help georeferencing process the detected object. This research will also produce LiDAR, which can detect objects, including the height of the entire environment in that location. The results of the data obtained are calibrated with pitch, roll, and yaw to get the vertical height of the existing contours. This study conducted an experimental process on the roof of a building with a radius of approximately 30 meters.

Keywords: LiDAR, unmanned aerial vehicle, low-cost GNSS, contour

Procedia PDF Downloads 58
222 Experimental Simulations of Aerosol Effect to Landfalling Tropical Cyclones over Philippine Coast: Virtual Seeding Using WRF Model

Authors: Bhenjamin Jordan L. Ona

Abstract:

Weather modification is an act of altering weather systems that catches interest on scientific studies. Cloud seeding is a common form of weather alteration. On the same principle, tropical cyclone mitigation experiment follows the methods of cloud seeding with intensity to account for. This study will present the effects of aerosol to tropical cyclone cloud microphysics and intensity. The framework of Weather Research and Forecasting (WRF) model incorporated with Thompson aerosol-aware scheme is the prime host to support the aerosol-cloud microphysics calculations of cloud condensation nuclei (CCN) ingested into the tropical cyclones before making landfall over the Philippine coast. The coupled microphysical and radiative effects of aerosols will be analyzed using numerical data conditions of Tropical Storm Ketsana (2009), Tropical Storm Washi (2011), and Typhoon Haiyan (2013) associated with varying CCN number concentrations per simulation per typhoon: clean maritime, polluted, and very polluted having 300 cm-3, 1000 cm-3, and 2000 cm-3 aerosol number initial concentrations, respectively. Aerosol species like sulphates, sea salts, black carbon, and organic carbon will be used as cloud nuclei and mineral dust as ice nuclei (IN). To make the study as realistic as possible, investigation during the biomass burning due to forest fire in Indonesia starting October 2015 as Typhoons Mujigae/Kabayan and Koppu/Lando had been seeded with aerosol emissions mainly comprises with black carbon and organic carbon, will be considered. Emission data that will be used is from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). The physical mechanism/s of intensification or deintensification of tropical cyclones will be determined after the seeding experiment analyses.

Keywords: aerosol, CCN, IN, tropical cylone

Procedia PDF Downloads 267
221 Comparative Analysis of Climate Mitigation Strategies Adopted by Farmers of Pakistan and the USA

Authors: Gulfam Hasan, Ijaz Ashraf, Saleem Ashraf, Muhammad Rafay Muzammil, Salman Asghar, Shafiq-Ur-Rehman Zia

Abstract:

The word “climate change” has become the most popular term when anyone observes any uncertain climate variation in their respective region. Asian countries are more prone to the impact of this phenomenon, and Pakistan is the leading affected country. Last few years, governments all over the world have been trying to cater to this issue for the best entrust of their population, especially agriculture. Now the farmers in Pakistan are fully aware of the term “climate change” and are more concerned about its solutions. On the other hand, developed countries like the USA are setting a benchmark for developing countries in every sphere of life. Based on cultural and other variations, the research was carried out to identify the behavior of farmers regarding the same issue. Cross-sectional survey research was designed for an in-depth study of relevant research questions. Face-to-face interviews were conducted in Pakistan, while virtual and face-to-face interviews were conducted in the Indiana State of the USA. The results of the present study and the responses of farmers were very interesting. The common climate change mitigation strategies suggested by farmers of both countries were less use of motor vehicles (replacement with bicycles in the circle of 10 Km), less dependency on chemical fertilizers (increased use of Manure, Bio-fertilizer, Compost), and plantation of the tree. The difference of opinion was in less government interest, lack of farmers’ education, political instability (views of Pakistani farmers), awareness of local communities, self-satisfaction, and economic disparities (views of USA farmers). Based on the given evidence, it was recommended that there is a dire need to address the climate change issue all over the world without discrimination of race, color, region, or religion. Because it will affect not only agriculture but also the real effect will be on HUMANITY.

Keywords: climate change, mitigation strategies, forests, biodiversity

Procedia PDF Downloads 95
220 Learning the History of a Tuscan Village: A Serious Game Using Geolocation Augmented Reality

Authors: Irene Capecchi, Tommaso Borghini, Iacopo Bernetti

Abstract:

An important tool for the enhancement of cultural sites is serious games (SG), i.e., games designed for educational purposes; SG is applied in cultural sites through trivia, puzzles, and mini-games for participation in interactive exhibitions, mobile applications, and simulations of past events. The combination of Augmented Reality (AR) and digital cultural content has also produced examples of cultural heritage recovery and revitalization around the world. Through AR, the user perceives the information of the visited place in a more real and interactive way. Another interesting technological development for the revitalization of cultural sites is the combination of AR and Global Positioning System (GPS), which integrated have the ability to enhance the user's perception of reality by providing historical and architectural information linked to specific locations organized on a route. To the author’s best knowledge, there are currently no applications that combine GPS AR and SG for cultural heritage revitalization. The present research focused on the development of an SG based on GPS and AR. The study area is the village of Caldana in Tuscany, Italy. Caldana is a fortified Renaissance village; the most important architectures are the walls, the church of San Biagio, the rectory, and the marquis' palace. The historical information is derived from extensive research by the Department of Architecture at the University of Florence. The storyboard of the SG is based on the history of the three characters who built the village: marquis Marcello Agostini, who was commissioned by Cosimo I de Medici, Grand Duke of Tuscany, to build the village, his son Ippolito and his architect Lorenzo Pomarelli. The three historical characters were modeled in 3D using the freeware MakeHuman and imported into Blender and Mixamo to associate a skeleton and blend shapes to have gestural animations and reproduce lip movement during speech. The Unity Rhubarb Lip Syncer plugin was used for the lip sync animation. The historical costumes were created by Marvelous Designer. The application was developed using the Unity 3D graphics and game engine. The AR+GPS Location plugin was used to position the 3D historical characters based on GPS coordinates. The ARFoundation library was used to display AR content. The SG is available in two versions: for children and adults. the children's version consists of finding a digital treasure consisting of valuable items and historical rarities. Players must find 9 village locations where 3D AR models of historical figures explaining the history of the village provide clues. To stimulate players, there are 3 levels of rewards for every 3 clues discovered. The rewards consist of AR masks for archaeologist, professor, and explorer. At the adult level, the SG consists of finding the 16 historical landmarks in the village, and learning historical and architectural information interactively and engagingly. The application is being tested on a sample of adults and children. Test subjects will be surveyed on a Likert scale to find out their perceptions of using the app and the learning experience between the guided tour and interaction with the app.

Keywords: augmented reality, cultural heritage, GPS, serious game

Procedia PDF Downloads 66
219 The Biomechanical Analysis of Pelvic Osteotomies Applied for Developmental Dysplasia of the Hip Treatment in Pediatric Patients

Authors: Suvorov Vasyl, Filipchuk Viktor

Abstract:

Developmental Dysplasia of the Hip (DDH) is a frequent pathology in pediatric orthopedist’s practice. Neglected or residual cases of DDH in walking patients are usually treated using pelvic osteotomies. Plastic changes take place in hinge points due to acetabulum reorientation during surgery. Classically described hinge points and a traditional division of pelvic osteotomies on reshaping and reorientation are currently debated. The purpose of this article was to evaluate biomechanical changes during the most commonly used pelvic osteotomies (Salter, Dega, Pemberton) for DDH treatment in pediatric patients. Methods: virtual pelvic models of 2- and 6-years old patients were created, material properties were assigned, pelvic osteotomies were simulated and biomechanical changes were evaluated using finite element analysis (FEA). Results: it was revealed that the patient's age has an impact on pelvic bones and cartilages density (in younger patients the pelvic elements are more pliable - p<0.05). Stress distribution after each of the abovementioned pelvic osteotomy was assessed in 2- and 6-years old patients’ pelvic models; hinge points were evaluated. The new term "restriction point" was introduced, which means a place where restriction of acetabular deformity correction occurs. Pelvic ligaments attachment points were mainly these restriction points. Conclusions: it was found out that there are no purely reshaping and reorientation pelvic osteotomies as previously believed; the pelvic ring acts as a unit in carrying out the applied load. Biomechanical overload of triradiate cartilage during Salter osteotomy in 2-years old patient and in 2- and 6-years old patients during Pemberton osteotomy was revealed; overload of the posterior cortical layer in the greater sciatic notch in 2-years old patient during Dega osteotomy was revealed. Level of Evidence – Level IV, prognostic.

Keywords: developmental dysplasia of the hip, pelvic osteotomy, finite element analysis, hinge point, biomechanics

Procedia PDF Downloads 64
218 An AI-generated Semantic Communication Platform in HCI Course

Authors: Yi Yang, Jiasong Sun

Abstract:

Almost every aspect of our daily lives is now intertwined with some degree of human-computer interaction (HCI). HCI courses draw on knowledge from disciplines as diverse as computer science, psychology, design principles, anthropology, and more. Our HCI courses, named the Media and Cognition course, are constantly updated to reflect state-of-the-art technological advancements such as virtual reality, augmented reality, and artificial intelligence-based interactions. For more than a decade, our course has used an interest-based approach to teaching, in which students proactively propose some research-based questions and collaborate with teachers, using course knowledge to explore potential solutions. Semantic communication plays a key role in facilitating understanding and interaction between users and computer systems, ultimately enhancing system usability and user experience. The advancements in AI-generated technology, which have gained significant attention from both academia and industry in recent years, are exemplified by language models like GPT-3 that generate human-like dialogues from given prompts. Our latest version of the Human-Computer Interaction course practices a semantic communication platform based on AI-generated techniques. The purpose of this semantic communication is twofold: to extract and transmit task-specific information while ensuring efficient end-to-end communication with minimal latency. An AI-generated semantic communication platform evaluates the retention of signal sources and converts low-retain ability visual signals into textual prompts. These data are transmitted through AI-generated techniques and reconstructed at the receiving end; on the other hand, visual signals with a high retain ability rate are compressed and transmitted according to their respective regions. The platform and associated research are a testament to our students' growing ability to independently investigate state-of-the-art technologies.

Keywords: human-computer interaction, media and cognition course, semantic communication, retainability, prompts

Procedia PDF Downloads 78
217 Stoa: Urban Community-Building Social Experiment through Mixed Reality Game Environment

Authors: Radek Richtr, Petr Pauš

Abstract:

Social media nowadays connects people more tightly and intensively than ever, but simultaneously, some sort of social distance, incomprehension, lost of social integrity appears. People can be strongly connected to the person on the other side of the world but unaware of neighbours in the same district or street. The Stoa is a type of application from the ”serious games” genre- it is research augmented reality experiment masked as a gaming environment. In the Stoa environment, the player can plant and grow virtual (organic) structure, a Pillar, that represent the whole suburb. Everybody has their own idea of what is an acceptable, admirable or harmful visual intervention in the area they live in; the purpose of this research experiment is to find and/or define residents shared subconscious spirit, genius loci of the Pillars vicinity, where residents live in. The appearance and evolution of Stoa’s Pillars reflect the real world as perceived by not only the creator but also by other residents/players, who, with their actions, refine the environment. Squares, parks, patios and streets get their living avatar depictions; investors and urban planners obtain information on the occurrence and level of motivation for reshaping the public space. As the project is in product conceptual design phase, the function is one of its most important factors. Function-based modelling makes design problem modular and structured and thus decompose it into sub-functions or function-cells. Paper discuss the current conceptual model for Stoa project, the using of different organic structure textures and models, user interface design, UX study and project’s developing to the final state.

Keywords: augmented reality, urban computing, interaction design, mixed reality, social engineering

Procedia PDF Downloads 191
216 A Pedagogical Approach of Children’s Learning by Toys, Perspective: Bangladesh

Authors: Muktadir Ahmed, Sayed Akhlakur Rahaman, Mridha Shihab Mahmud

Abstract:

The parents of Bangladesh have scarcity of knowledge about children play. Most of them do not know which toys are perfect for their children. Appropriate toys for playing is one of the most significant parts of children development from early age, besides for proper amelioration of children’s mental growth and brain capacities, toys play an emergent role. So selection of proper toy for children is very important. A toy forms the sagacity of a child and instructs child’s attitude. In this era of globalization to keep pace with everything children toys are also going forward but in a deleterious way. Maximum toys are now battery-driven and for this psychological developments of children are not increasing in effective way; therefore, pedagogical toys are proper selection. This type of toy inspires the wisdom and helps a child to reveal himself/herself. Pedagogical toys are attractive to children and help to stimulate their imagination. Pedagogical toys help them to build senso-motoric skills and hand-eye coordination. In this study, some children divided into two groups, one group played with pedagogical toys and another group played with conventional toys. This study is going to exhibit the difference between pedagogical and conventional toys for kids. The main aim of this study is to reveal the potency of pedagogical toy for children. To implement this study two Daycare Centers (DCC) Projapoti 1 & 3 of Mymensingh city had chosen. Every DCC having 1.5-6 years old children but for this study 2-5 years old children had been selected. The children of Projapoti-1 played with pedagogical toys and the children of Projapoti-2 played with conventional toys. After 6 weeks of study, the children of Projapoti-1 proved that they have improved their skills more than those children of Projapoti-3 who were playing with conventional toys. The children of Projapoti-1 have developed their touch sensation, muscular movement, imitation power, hand-eye coordination whereas the children of Projapoti-3 have only developed their muscular movement fairly (while running after battery driven toys) which is not better than those children of Projapoti-1. They cannot imitate like the children of Projapoti-1. They just had fun from playing virtual games, battery driven toys, watching cartoons etc. Actually, it is not possible to develop a child’s brain without pedagogical toy.

Keywords: brain development, mental growth, pedagogical toys, play for children

Procedia PDF Downloads 297
215 Savinglife®: An Educational Technology for Basic and Advanced Cardiovascular Life Support

Authors: Naz Najma, Grace T. M. Dal Sasso, Maria de Lourdes de Souza

Abstract:

The development of information and communication technologies and the accessibility of mobile devices has increased the possibilities of the teaching and learning process anywhere and anytime. Mobile and web application allows the production of constructive teaching and learning models in various educational settings, showing the potential for active learning in nursing. The objective of this study was to present the development of an educational technology (Savinglife®, an app) for learning cardiopulmonary resuscitation and advanced cardiovascular life support training. Savinglife® is a technological production, based on the concept of virtual learning and problem-based learning approach. The study was developed from January 2016 to November 2016, using five phases (analyze, design, develop, implement, evaluate) of the instructional systems development process. The technology presented 10 scenarios and 12 simulations, covering different aspects of basic and advanced cardiac life support. The contents can be accessed in a non-linear way leaving the students free to build their knowledge based on their previous experience. Each scenario is presented through interactive tools such as scenario description, assessment, diagnose, intervention and reevaluation. Animated ECG rhythms, text documents, images and videos are provided to support procedural and active learning considering real life situation. Accessible equally on small to large devices with or without an internet connection, Savinglife® offers a dynamic, interactive and flexible tool, placing students at the center of the learning process. Savinglife® can contribute to the student’s learning in the assessment and management of basic and advanced cardiac life support in a safe and ethical way.

Keywords: problem-based learning, cardiopulmonary resuscitation, nursing education, advanced cardiac life support, educational technology

Procedia PDF Downloads 281
214 AI Peer Review Challenge: Standard Model of Physics vs 4D GEM EOS

Authors: David A. Harness

Abstract:

Natural evolution of ATP cognitive systems is to meet AI peer review standards. ATP process of axiom selection from Mizar to prove a conjecture would be further refined, as in all human and machine learning, by solving the real world problem of the proposed AI peer review challenge: Determine which conjecture forms the higher confidence level constructive proof between Standard Model of Physics SU(n) lattice gauge group operation vs. present non-standard 4D GEM EOS SU(n) lattice gauge group spatially extended operation in which the photon and electron are the first two trace angular momentum invariants of a gravitoelectromagnetic (GEM) energy momentum density tensor wavetrain integration spin-stress pressure-volume equation of state (EOS), initiated via 32 lines of Mathematica code. Resulting gravitoelectromagnetic spectrum ranges from compressive through rarefactive of the central cosmological constant vacuum energy density in units of pascals. Said self-adjoint group operation exclusively operates on the stress energy momentum tensor of the Einstein field equations, introducing quantization directly on the 4D spacetime level, essentially reformulating the Yang-Mills virtual superpositioned particle compounded lattice gauge groups quantization of the vacuum—into a single hyper-complex multi-valued GEM U(1) × SU(1,3) lattice gauge group Planck spacetime mesh quantization of the vacuum. Thus the Mizar corpus already contains all of the axioms required for relevant DeepMath premise selection and unambiguous formal natural language parsing in context deep learning.

Keywords: automated theorem proving, constructive quantum field theory, information theory, neural networks

Procedia PDF Downloads 153
213 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India

Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah

Abstract:

Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.

Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method

Procedia PDF Downloads 211
212 Cuban's Supply Chains Development Model: Qualitative and Quantitative Impact on Final Consumers

Authors: Teresita Lopez Joy, Jose A. Acevedo Suarez, Martha I. Gomez Acosta, Ana Julia Acevedo Urquiaga

Abstract:

Current trends in business competitiveness indicate the need to manage businesses as supply chains and not in isolation. The use of strategies aimed at maximum satisfaction of customers in a network and based on inter-company cooperation; contribute to obtaining successful joint results. In the Cuban economic context, the development of productive linkages to achieve integrated management of supply chains is considering a key aspect. In order to achieve this jump, it is necessary to develop acting capabilities in the entities that make up the chains through a systematic procedure that allows arriving at a management model in consonance with the environment. The objective of the research focuses on: designing a model and procedure for the development of integrated management of supply chains in economic entities. The results obtained are: the Model and the Procedure for the Development of the Supply Chains Integrated Management (MP-SCIM). The Model is based on the development of logistics in the network actors, the joint work between companies, collaborative planning and the monitoring of a main indicator according to the end customers. The application Procedure starts from the well-founded need for development in a supply chain and focuses on training entrepreneurs as doers. The characterization and diagnosis is done to later define the design of the network and the relationships between the companies. It takes into account the feedback as a method of updating the conditions and way to focus the objectives according to the final customers. The MP-SCIM is the result of systematic work with a supply chain approach in companies that have consolidated as coordinators of their network. The cases of the edible oil chain and explosives for construction sector reflect results of more remarkable advances since they have applied this approach for more than 5 years and maintain it as a general strategy of successful development. The edible oil trading company experienced a jump in sales. In 2006, the company started the analysis in order to define the supply chain, apply diagnosis techniques, define problems and implement solutions. The involvement of the management and the progressive formation of performance capacities in the personnel allowed the application of tools according to the context. The company that coordinates the explosives chain for construction sector shows adequate training with independence and opportunity in the face of different situations and variations of their business environment. The appropriation of tools and techniques for the analysis and implementation of proposals is a characteristic feature of this case. The coordinating entity applies integrated supply chain management to its decisions based on the timely training of the necessary action capabilities for each situation. Other cases of study and application that validate these tools are also detailed in this paper, and they highlight the results of generalization in the quantitative and qualitative improvement according to the final clients. These cases are: teaching literature in universities, agricultural products of local scope and medicine supply chains.

Keywords: integrated management, logistic system, supply chain management, tactical-operative planning

Procedia PDF Downloads 124
211 The Impact of Hybrid Working Models on Employee Engagement

Authors: Sibylle Tellenbach, Julie Haddock-Millar, Francis Bidault

Abstract:

The aim of this research is to understand the extent to which hybrid working models have influenced employee engagement in the Swiss financial sector. The context for this research is the transition out of the pandemic and the changes that have occurred between 2020 and 2023. Since the pandemic, many financial services companies have had to rethink their working model for office-based employees, as this group of employees has been able to experience a new way of working and, thus, greater freedom and flexibility. For a large number of companies, it was a huge change to shift from the traditional office-based to a new hybrid working model. A heightened focus on employee engagement has become a necessity in order to understand and respond to the challenges presented by the shift in a working model. This new way of working, partly office-based and partly virtual, has led to ambiguities about the impact on the engagement of hybrid teams. Therefore, the research question is: How hybrid working models have influenced employee engagement to what extent? The methodological approach is a narrative inquiry with four similar functional teams within four Swiss financial companies. Semi-structured interviews will be conducted with managers from middle management and their individual team members. The findings will demonstrate whether this shift in the working model influenced individual team members’ engagement and to what extent. The contribution of this research is two-fold. First, the research makes a theoretical contribution, presenting evidence of the impact of hybrid working on individual team members’ engagement in a specific sector and context, enhancing current knowledge on the challenges in working model transition. Second, this research will make a practice-based contribution, recommending ways to enhance the engagement of hybrid teams in a specific context. These recommendations may be applied in wider sectors and teams.

Keywords: employee engagement, hybrid teams, hybrid working models, Swiss financial sector, team engagement

Procedia PDF Downloads 70
210 Urban Retrofitting Application Based on Social-Media to Model the Malioboro Smart Central Business Design through Statistical Regression Approach

Authors: Muhammad Hardyan Prastyanto, Aisah Azhari Marwangi, Yulinda Rizky Pratiwi

Abstract:

Globalization has become a driving force for the current technological developments. The presence of the Virtual Space provides opportunities for people to self-actualization through access to a wider world, quickly and easily. Cities that are part of the existence of life, witness the history of civilization over time, also has been the major object to upgrading on technological sector. A smart city is one where the government and citizenry are using the best available means, including ICT, to achieve their shared goals. This often includes economic development, environmental sustainability, and improved quality of life for citizens. Thus theory is the basis for research of this study. This study aimed to know the implementation of the Urban Retrofitting at Malioboro area based on Information and Communication Technologies. The method of this study is by reviewing the effectiveness of the E-commerce uses as a major system to identification the Malioboro Smart Central Business District. By using a significance level of 5 %, it can be concluded that addresses have a significant influence on the ratings obtained, namely regarding the location of the hotel establishment. But despite the use of the website does not have a significant influence on the rating of the hotel, using the website still has influence significantly on the rating, because the p -value (Sig.) of the variable website is not so much different from the significance level determined by the researcher. In the interpretation, if a hotel is located on the Pasar Kembang streets and not to use the website, so the hotel is likely to have a rating of the constant value which is 3.183. However, if a hotel located on the Sosrowijayan streets, so the hotel rating will be increased by 0,302. Then if a hotel has been using a website, so the hotel rating will increase by 0,264. It is possible to conclude the effectiveness of ICT’s (Website) uses and location to identification the urban retrofitting through increasing of building rating in Malioboro Central Business District.

Keywords: urban retrofitting, e-commerce, information and communication technology, statistic regression, SCBD, Malioboro

Procedia PDF Downloads 265
209 Guidelines for Enhancing the Learning Environment by the Integration of Design Flexibility and Immersive Technology: The Case of the British University in Egypt’s Classrooms

Authors: Eman Ayman, Gehan Nagy

Abstract:

The learning environment has four main parameters that affect its efficiency which they are: pedagogy, user, technology, and space. According to Morrone, enhancing these parameters to be adaptable for future developments is essential. The educational organization will be in need of developing its learning spaces. Flexibility of design an immersive technology could be used as tools for this development. when flexible design concepts are used, learning spaces that can accommodate a variety of teaching and learning activities are created. To accommodate the various needs and interests of students, these learning spaces are easily reconfigurable and customizable. The immersive learning opportunities offered by technologies like virtual reality, augmented reality, and interactive displays, on the other hand, transcend beyond the confines of the traditional classroom. These technological advancements could improve learning. This thesis highlights the problem of the lack of innovative, flexible learning spaces in educational institutions. It aims to develop guidelines for enhancing the learning environment by the integration of flexible design and immersive technology. This research uses a mixed method approach, both qualitative and quantitative: the qualitative section is related to the literature review theories and case studies analysis. On the other hand, the quantitative section will be identified by the results of the applied studies of the effectiveness of redesigning a learning space from its traditional current state to a flexible technological contemporary space that will be adaptable to many changes and educational needs. Research findings determine the importance of flexibility in learning spaces' internal design as it enhances the space optimization and capability to accommodate the changes and record the significant contribution of immersive technology that assists the process of designing. It will be summarized by the questionnaire results and comparative analysis, which will be the last step of finalizing the guidelines.

Keywords: flexibility, learning space, immersive technology, learning environment, interior design

Procedia PDF Downloads 52
208 A Serious Game to Upgrade the Learning of Organizational Skills in Nursing Schools

Authors: Benoit Landi, Hervé Pingaud, Jean-Benoit Culie, Michel Galaup

Abstract:

Serious games have been widely disseminated in the field of digital learning. They have proved their utility in improving skills through virtual environments that simulate the field where new competencies have to be improved and assessed. This paper describes how we created CLONE, a serious game whose purpose is to help nurses create an efficient work plan in a hospital care unit. In CLONE, the number of patients to take care of is similar to the reality of their job, going far beyond what is currently practiced in nurse school classrooms. This similarity with the operational field increases proportionally the number of activities to be scheduled. Moreover, very often, the team of nurses is composed of regular nurses and nurse assistants that must share the work with respect to the regulatory obligations. Therefore, on the one hand, building a short-term planning is a complex task with a large amount of data to deal with, and on the other, good clinical practices have to be systematically applied. We present how reference planning has been defined by addressing an optimization problem formulation using the expertise of teachers. This formulation ensures the gameplay feasibility for the scenario that has been produced and enhanced throughout the game design process. It was also crucial to steer a player toward a specific gaming strategy. As one of our most important learning outcomes is a clear understanding of the workload concept, its factual calculation for each caregiver along time and its inclusion in the nurse reasoning during planning elaboration are focal points. We will demonstrate how to modify the game scenario to create a digital environment in which these somewhat abstract principles can be understood and applied. Finally, we give input on an experience we had on a pilot of a thousand undergraduate nursing students.

Keywords: care planning, workload, game design, hospital nurse, organizational skills, digital learning, serious game

Procedia PDF Downloads 158
207 Phylogenetic Relationships between the Whole Sets of Individual Flow Sorted U, M, S and C Chromosomes of Aegilops and Wheat as Revealed by COS Markers

Authors: András Farkas, István Molnár, Jan Vrána, Veronika Burešová, Petr Cápal, András Cseh, Márta Molnár-Láng, Jaroslav Doležel

Abstract:

Species of Aegilops played a central role in the evolution of wheat and are sources of traits related to yield quality and tolerance against biotic and abiotic stresses. These wild genes and alleles are desirable to use in crop improvement programs via introgressive hybridization. However, the success of chromosome mediated gene transfer to wheat are hampered by the pour knowledge on the genome structure of Aegilops relative to wheat and by the low number of cost-effective molecular markers specific for Aegilops chromosomes. The COS markers specific for genes conserved throughout evolution in both sequence and copy number between Triticeae/Aegilops taxa and define orthologous regions, thus enabling the comparison of regions on the chromosomes of related species. The present study compared individual chromosomes of Aegilops umbellulata (UU), Ae. comosa (MM), Ae. speltoides (SS) and Ae. caudata (CC) purified by flourescent labelling with oligonucleotid SSR repeats and biparametric flow cytometry with wheat by identifying orthologous chromosomal regions by COS markers. The linear order of bin-mapped COS markers along the wheat D chromosomes was identified by the use of chromosome-specific sequence data and virtual gene order. Syntenic regions of wheat identifying genome rearrangements differentiating the U, M, S or C genomes from the D genome of wheat were detected. The conserved orthologous set markers assigned to Aegilops chromosomes promise to accelerate gene introgression by facilitating the identification of alien chromatin. The syntenic relationships between the Aegilops species and wheat will facilitate the targeted development of new markers specific for U, M, S and C genomic regions and will contribute to the understanding of molecular processes related to the evolution of Aegilops.

Keywords: Aegilops, cos-markers, flow-sorting, wheat

Procedia PDF Downloads 470
206 A Robust Visual Simultaneous Localization and Mapping for Indoor Dynamic Environment

Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to collect information in unknown environments to realize simultaneous localization and environment map construction, which has a wide range of applications in autonomous driving, virtual reality and other related fields. At present, the related research achievements about VSLAM can maintain high accuracy in static environment. But in dynamic environment, due to the presence of moving objects in the scene, the movement of these objects will reduce the stability of VSLAM system, resulting in inaccurate localization and mapping, or even failure. In this paper, a robust VSLAM method was proposed to effectively deal with the problem in dynamic environment. We proposed a dynamic region removal scheme based on semantic segmentation neural networks and geometric constraints. Firstly, semantic extraction neural network is used to extract prior active motion region, prior static region and prior passive motion region in the environment. Then, the light weight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static region and dynamic region. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under high dynamic environment.

Keywords: dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM

Procedia PDF Downloads 78