Search results for: unsaturated soil mechanics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3399

Search results for: unsaturated soil mechanics

3339 Numerical Analysis of Rapid Drawdown in Dams Based on Brazilian Standards

Authors: Renato Santos Paulinelli Raposo, Vinicius Resende Domingues, Manoel Porfirio Cordao Neto

Abstract:

Rapid drawdown is one of the cases referred to ground stability study in dam projects. Due to the complexity generated by the combination of loads and the difficulty in determining the parameters, analyses of rapid drawdown are usually performed considering the immediate reduction of water level upstream. The proposal of a simulation, considering the gradual reduction in water level upstream, requires knowledge of parameters about consolidation and those related to unsaturated soil. In this context, the purpose of this study is to understand the methodology of collection and analysis of parameters to simulate a rapid drawdown in dams. Using a numerical tool, the study is complemented with a hypothetical case study that can assist the practical use of data compiled. The referenced dam presents homogeneous section composed of clay soil, a height of 70 meters, a width of 12 meters, and upstream slope with inclination 1V:3H.

Keywords: dam, GeoStudio, rapid drawdown, stability analysis

Procedia PDF Downloads 231
3338 Improvement in Plasticity Index and Group Index of Black Cotton Soil Using Palm Kernel Shell Ash

Authors: Patel Darshan Shaileshkumar, M. G. Vanza

Abstract:

Black cotton soil is problematic soil for any construction work. Black cotton soil contains montmorillonite in its structure. Due to this mineral, black cotton soil will attain maximum swelling and shrinkage. Due to these volume changes, it is necessary to stabilize black cotton soil before the construction of the road. For soil stabilization use of pozzolanic waste is found to be a good solution by some researchers. The palm kernel shell ash (PKSA) is a pozzolanic material that can be used for soil stabilization. Basically, PKSA is a waste material, and it is available at a cheap cost. Palm kernel shell is a waste material generated in palm oil mills. Then palm kernel shell is used in industries instead of coal for power generation. After the burning of a palm kernel shell, ash is formed; the ash is called palm kernel shell ash (PKSA). The PKSA contains a free lime content that will react chemically with the silicate and aluminate of black cotton soil and forms a C-S-H and C-A-H gel which will bines soil particles together and reduce the plasticity of the soil. In this study, the PKSA is added to the soil. It was found that with the addition of PKSA content in the soil, the liquid limit of the soil is decreased, the plastic limit of the soil is increased, and the plasticity of the soil is decreased. The group index value of the soil is evaluated, and it was found that with the addition of PKSA GI value of the soil is decreased, which indicates the strength of the soil is improved.

Keywords: palm kernel shell ash, black cotton soil, liquid limit, group index, plastic limit, plasticity index

Procedia PDF Downloads 65
3337 Spectroscopy Study of Jatropha curcas Seed Oil for Pharmaceutical Applications

Authors: Bashar Mudhaffar Abdullah, Hasniza Zaman Huri, Nany Hairunisa

Abstract:

This study was carried out to determine the thermal properties and spectroscopy study of Malaysian Jatropha curcas seed oil. The J. curcas seed oil physicochemical properties such as free fatty acid (FFA %), acid value, saponification value, iodine value, unsaponifiable matter, and viscosity (cp) gave values of 1.89±0.10%, 3.76±0.07, 203.36±0.36 mg/g, 4.90±0.25, 1.76±0.03%, and 32, respectively. Gas chromatography (GC) was used to determine the fatty acids (FAs) composition. J. curcas seed oil is consisting of saturated FAs (19.55%) such as palmitic (13.19%), palmitoleic (0.40%), and stearic (6.36%) acids and unsaturated FAs (80.42%) such as oleic (43.32%) and linoleic (36.70%) acids. The thermal properties using differential scanning calorimetry (DSC) showed that crystallized TAG was observed at -6.79°C. The melting curves displayed three major exothermic regions of J. curcas seed oil, monounsaturated (lower-temperature peak) at -31.69°C, di-unsaturated (medium temperature peak) at -20.23°C and tri-unsaturated (higher temperature peak) at -12.72°C. The results of this study showed that the J. curcas seed oil is a plausible source of polyunsaturated fatty acid (PUFA) to be developed in the future for pharmaceutical applications.

Keywords: Jatropha curcas seed oil, thermal properties, crystallization, melting, spectroscopy

Procedia PDF Downloads 446
3336 Crosslinking of Unsaturated Elastomers in Presence of Aromatic Chlorine-Containing Compounds

Authors: Shiraz M. Mammadov, Elvin M. Aliyev, Adil A. Garibov

Abstract:

The role of the disulfochloride benzene in unsaturated rubbers (SKIN, SKN-26) which is in the systems of SKIN+disulfochloride benzene and SKN-26+disulfochloride benzene was studied by the radiation exposure. By the usage of physical, chemical and spectral methods the changes in the molecular structure of the rubber were shown after irradiation by y-rays at 300 kGy. The outputs and the emergence of the crosslinking in the elastomers for each system depending on absorbed dose were defined. It is suggested that the mechanism of radiation occurs by the heterogeneous transformation of elastomers in the presence of disulfochloride benzene.

Keywords: acrylonitrile-butadiene rubber, crosslinking, polyfunctional monomers, radiation, sensitizier, vulcanization

Procedia PDF Downloads 417
3335 Soil Salinity Mapping using Electromagnetic Induction Measurements

Authors: Fethi Bouksila, Nessrine Zemni, Fairouz Slama, Magnus Persson, Ronny Berndasson, Akissa Bahri

Abstract:

Electromagnetic sensor EM 38 was used to predict and map soil salinity (ECe) in arid oasis. Despite the high spatial variation of soil moisture and shallow watertable, significant ECe-EM relationships were developed. The low drainage network efficiency is the main factor of soil salinization

Keywords: soil salinity map, electromagnetic induction, EM38, oasis, shallow watertable

Procedia PDF Downloads 154
3334 Corellation between Soil Electrical Resistivity and Metal Corrosion Based on Soil Types for Structure Designs

Authors: L. O. A. Oyinkanola, J.A. Fajemiroye

Abstract:

Soil resistivity measurements are an important parameter employed in the designing earthing installations. Thus, The knowledge of soil resistivity with respect to how it varies with related parameters such as moisture content, Temperature and depth at the intended site is very vital to determine how the desired earth resistance value can be attained and sustained over the life of the installation with the lowest cost and effort. The relationship between corrosion and soil resistivity has been investigated in this work. Varios soil samples: Sand, Gravel, Loam, Clay and Silt were collected from different spot within the vicinity.

Keywords: Corrosion, resistivity, clay, hydraulic conductivity

Procedia PDF Downloads 530
3333 Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh

Authors: B. Hossen, Y. Helmut

Abstract:

Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh.

Keywords: soil salinity, EC, Landsat 8, salinity indices, linear regression, remote sensing

Procedia PDF Downloads 304
3332 Improvement of Sandy Clay Soils with the Addition of Rice Husk Ash and Expanded Polystyrene Beads

Authors: Alvaro Quino, Roger Trejo, Gary Duran, Jordy Viso

Abstract:

This article presents a study on the lightening and improvement of properties of soil extracted in the province of Talara in the department of Piura -Peru, to be used in filling in the construction of embankments for roads. This soft soil has a high percentage of elastic settlement and consolidation settlement. Currently, there are different methods that seek to mitigate the impact of this problem, which have achieved favorable results. As a contribution to these investigations, we propose the use of two lightening materials to be used in the filling of embankments; these materials are expanded polystyrene beads (EPS) and rice husk ash (RHA). Favorable results were obtained, such as a reduction of 14.34% of the volumetric weight, so the settlement will be reduced. In addition, it is observed that as the RHA dosage increases, the shear resistance increases. In this article, soil mechanics tests were performed to determine the effectiveness of this method in lightening and improving properties for the soil under study.

Keywords: sandy clay soils, rice husk ash, expanded polystyrene, soft soils

Procedia PDF Downloads 147
3331 Experimental Field for the Study of Soil-Atmosphere Interaction in Soft Soils

Authors: Andres Mejia-Ortiz, Catalina Lozada, German R. Santos, Rafael Angulo-Jaramillo, Bernardo Caicedo

Abstract:

The interaction between atmospheric variables and soil properties is a determining factor when evaluating the flow of water through the soil. This interaction situation directly determines the behavior of the soil and greatly influences the changes that occur in it. The atmospheric variations such as changes in the relative humidity, air temperature, wind velocity and precipitation, are the external variables that reflect a greater incidence in the changes that are generated in the subsoil, as a consequence of the water flow in descending and ascending conditions. These environmental variations have a major importance in the study of the soil because the conditions of humidity and temperature in the soil surface depend on them. In addition, these variations control the thickness of the unsaturated zone and the position of the water table with respect to the surface. However, understanding the relationship between the atmosphere and the soil is a somewhat complex aspect. This is mainly due to the difficulty involved in estimating the changes that occur in the soil from climate changes; since this is a coupled process where act processes of mass transfer and heat. In this research, an experimental field was implemented to study in-situ the interaction between the atmosphere and the soft soils of the city of Bogota, Colombia. The soil under study consists of a 60 cm layer composed of two silts of similar characteristics at the surface and a deep soft clay deposit located under the silky material. It should be noted that the vegetal layer and organic matter were removed to avoid the evapotranspiration phenomenon. Instrumentation was carried on in situ through a field disposal of many measuring devices such as soil moisture sensors, thermocouples, relative humidity sensors, wind velocity sensor, among others; which allow registering the variations of both the atmospheric variables and the properties of the soil. With the information collected through field monitoring, the water balances were made using the Hydrus-1D software to determine the flow conditions that developed in the soil during the study. Also, the moisture profile for different periods and time intervals was determined by the balance supplied by Hydrus 1D; this profile was validated by experimental measurements. As a boundary condition, the actual evaporation rate was included using the semi-empirical equations proposed by different authors. In this study, it was obtained for the rainy periods a descending flow that was governed by the infiltration capacity of the soil. On the other hand, during dry periods. An increase in the actual evaporation of the soil induces an upward flow of water, increasing suction due to the decrease in moisture content. Also, cracks were developed accelerating the evaporation process. This work concerns to the study of soil-atmosphere interaction through the experimental field and it is a very useful tool since it allows considering all the factors and parameters of the soil in its natural state and real values of the different environmental conditions.

Keywords: field monitoring, soil-atmosphere, soft soils, soil-water balance

Procedia PDF Downloads 111
3330 Development of an IoT System for Smart Crop Production

Authors: Oyenike M. Olanrewaju, Faith O. Echobu, Aderemi G. Adesoji, Emmy Danny Ajik, Joseph Nda Ndabula, Stephen Lucas

Abstract:

Nutrients are required for any soil with which plants thrive to improve efficient growth and productivity. Amongst these nutrients required for proper plant productivity are nitrogen, phosphorus and potassium (NPK). Due to factors like leaching, nutrients uptake by plants, soil erosion and evaporation, these elements tend to be in low quantity and the need to replenish them arises. But these replenishment of soil nutrients cannot be done without a timely soil test to enable farmers to know the amount of each element in short quantity and evaluate the amount required to be added. Though wet soil analysis is good but it comes with a lot of challenges ranging from soil test gargets availability to the technical knowledge of how to conduct such soil test by the common farmer. Internet of things test kit was developed to fill in the gaps created by wet soil analysis, as it can test for N, P, K, soil temperature and soil moisture in a given soil at the time of test. In this implementation, sample test was carried out within 0.2 hectares of land divided into smaller plots. The kits perform adequately well as the range of values obtained across the segments were within a very close range.

Keywords: Internet of Things, soil nutrients, test kit, soil temperature

Procedia PDF Downloads 42
3329 Heavy Metal Reduction in Plant Using Soil Amendment

Authors: C. Chaiyaraksa, T. Khamko

Abstract:

This study investigated the influence of limestone and sepiolite on heavy metals accumulation in the soil and soybean. The soil was synthesized to contaminate with zinc 150 mg/kg, copper 100 mg/kg, and cadmium 1 mg/kg. The contaminated soil was mixed with limestone and sepiolite at the ratio of 1:0, 0:1, 1:1, and 2:1. The amount of soil modifier added to soil was 0.2%, 0.4%, and 0.8%. The metals determination was performed on soil both before and after soybean planting and in the root, shoot, and seed of soybean after harvesting. The study was also on metal translocate from root to seed and on bioaccumulation factor. Using of limestone and sepiolite resulted in a reduction of metals accumulated in soybean. For soil containing a high concentration of copper, cadmium, and zinc, a mixture of limestone and sepiolite (1:1) was recommended to mix with soil with the amount of 0.2%. Zinc could translocate from root to seed more than copper, and cadmium. From studying the movement of metals from soil to accumulate in soybean, the result was that soybean could absorb the highest amount of cadmium, followed by zinc, and copper, respectively.

Keywords: heavy metals, limestone, sepiolite, soil, soybean

Procedia PDF Downloads 111
3328 Applying Massively Parallel Sequencing to Forensic Soil Bacterial Profiling

Authors: Hui Li, Xueying Zhao, Ke Ma, Yu Cao, Fan Yang, Qingwen Xu, Wenbin Liu

Abstract:

Soil can often link a person or item to a crime scene, which makes it a valuable evidence in forensic casework. Several techniques have been utilized in forensic soil discrimination in previous studies. Because soil contains a vast number of microbiomes, the analyse of soil microbiomes is expected to be a potential way to characterise soil evidence. In this study, we applied massively parallel sequencing (MPS) to soil bacterial profiling on the Ion Torrent Personal Genome Machine (PGM). Soils from different regions were collected repeatedly. V-region 3 and 4 of Bacterial 16S rRNA gene were detected by MPS. Operational taxonomic units (OTU, 97%) were used to analyse soil bacteria. Several bioinformatics methods (PCoA, NMDS, Metastats, LEfse, and Heatmap) were applied in bacterial profiles. Our results demonstrate that MPS can provide a more detailed picture of the soil microbiomes and the composition of soil bacterial components from different region was individualistic. In conclusion, the utility of soil bacterial profiling via MPS of the 16S rRNA gene has potential value in characterising soil evidences and associating them with their place of origin, which can play an important role in forensic science in the future.

Keywords: bacterial profiling, forensic, massively parallel sequencing, soil evidence

Procedia PDF Downloads 530
3327 The Effect of Soil Fractal Dimension on the Performance of Cement Stabilized Soil

Authors: Nkiru I. Ibeakuzie, Paul D. J. Watson, John F. Pescatore

Abstract:

In roadway construction, the cost of soil-cement stabilization per unit area is significantly influenced by the binder content, hence the need to optimise cement usage. This research work will characterize the influence of soil fractal geometry on properties of cement-stabilized soil, and strive to determine a correlation between mechanical proprieties of cement-stabilized soil and the mass fractal dimension Dₘ indicated by particle size distribution (PSD) of aggregate mixtures. Since strength development in cemented soil relies not only on cement content but also on soil PSD, this study will investigate the possibility of reducing cement content by changing the PSD of soil, without compromising on strength, reduced permeability, and compressibility. A series of soil aggregate mixes will be prepared in the laboratory. The mass fractal dimension Dₘ of each mix will be determined from sieve analysis data prior to stabilization with cement. Stabilized soil samples will be tested for strength, permeability, and compressibility.

Keywords: fractal dimension, particle size distribution, cement stabilization, cement content

Procedia PDF Downloads 184
3326 Soil Reinforcement by Fibers Using Triaxial Compression Test

Authors: Negadi Kheira, Arab Ahmed, Kamal Elbokl Mohamed, Setti Fatima

Abstract:

In order to evaluate influences of roots on soil shear strength, monotonic drained and undrained triaxial laboratory tests were carried out on reconstituted specimens at various confining pressure (σc’=50, 100, 200, 300, 400 kPa) and a constant relative density (Dr = 50%). Reinforcement of soil by fibrous roots is crucial for preventing soil erosion and degradation. Therefore, we investigated soil reinforcement by roots of acacia planted in the area of Chlef where shallow landslides and slope instability are frequent. These roots were distributed in soil in two forms: vertically and horizontally. The monotonic test results showed that roots have more impacts on the soil shear strength than the friction angle, and the presence of roots in soil substantially increased the soil shear strength. Also, the results showed that the contribution of roots on the shear strength mobilized increases with increase in the confining pressure.

Keywords: soil, monotonic, triaxial test, root fiber, undrained

Procedia PDF Downloads 382
3325 Experimental Simulation of Soil Boundary Condition for Dynamic Studies

Authors: Omar S. Qaftan, T. T. Sabbagh

Abstract:

This paper studies the free-field response by adopting a flexible membrane container as soil boundary for experimental shaking table tests. The influence of the soil container boundary on the soil behaviour and the dynamic soil properties under seismic effect were examined. A flexible container with 1/50 scale factor was adopted in the experimental tests, including construction, instrumentation, and determination of the results of dynamic tests on a shaking table. Horizontal face displacements and accelerations were analysed to determine the influence of the container boundary on the performance of the soil. The outputs results show that the flexible boundary container allows more displacement and larger accelerations. The soil in a rigid wall container cannot deform as similar as the soil in the real field does. Therefore, the response of flexible container tested is believed to be more reliable for soil boundary than that in the rigid container.

Keywords: soil, seismic, earthquake, interaction

Procedia PDF Downloads 270
3324 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions

Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi

Abstract:

This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.

Keywords: BNWF method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction

Procedia PDF Downloads 362
3323 The Effect of Soil Binder and Gypsum to the Changes of the Expansive Soil Shear Strength Parameters

Authors: Yulia Hastuti, Ratna Dewi, Muhammad Sandi

Abstract:

Many methods of soil stabilization that can be done such as by mixing chemicals. In this research, stabilization by mixing the soil using two types of chemical admixture, those are gypsum with a variation of 5%, 10%, and 15% and Soil binder with a concentration of 20 gr / lot of water, 25 gr / lot of water, and 30 gr / lot of water aimed to determine the effect on the soil plasticity index values and comparing the value of shear strength parameters of the mixture with the original soil conditions using a Triaxial UU test. Based on research done shows that with increasing variations in the mix, then the value of plasticity index decreased, which was originally 42% (very high degree of swelling) becomes worth 11.24% (lower Swelling degree) when a mixture of gypsum 15% and 30 gr / Lt water soil binder. As for the value shear, strength parameters increased in all variations of mixture. Admixture with the highest shear strength parameter's value is at 15% the mixture of gypsum and 20 gr / litre of water of soil binder with the 14 day treatment period, which has enhanced the cohesion value of 559.01%, the friction angle by 1157.14%. And a shear strength value of 568.49%. It can be concluded that the admixture of gypsum and soil binder correctly, can increase the value of shear strength parameters significantly and decrease the value of plasticity index of the soil.

Keywords: expansive soil, gypsum, soil binder, shear strength

Procedia PDF Downloads 440
3322 Experimental Investigation of Soil Corrosion and Electrical Resistance in Depth by Geoelectrical Method

Authors: Seyed Abolhassan Naeini, Maedeh Akhavan Tavakkoli

Abstract:

Determining soil engineering properties is essential for geotechnical problems. In addition to high cost, invasive soil survey methods can be time-consuming, so geophysical methods can be an excellent choice to determine soil characteristics. In this study, geoelectric investigation using the Wenner arrangement method has been used to determine the amount of soil corrosion in soil layers in a project site as a case study. This study aims to assess the degree of corrosion of soil layers to a depth of 5 meters and find the variation of soil electrical resistance versus depth. For this purpose, the desired points in the study area were marked and specified, and all withdrawals were made within the specified points. The collected data have been processed by standard and accepted methods, and the results have been presented in the form of calculation tables and curves of electrical resistivity with depth.

Keywords: Wenner array, geoelectric, soil corrosion, electrical soil resistance

Procedia PDF Downloads 65
3321 Effect of Various Tillage Systems on Soil Compaction

Authors: Sushil Kumar, Mukesh Jain, Vijaya Rani, Vinod Kumar

Abstract:

The prime importance of tillage is that it prepares the land where the seed easily germinate and later the plant can well establish. Using different types of equipments driven manually or by powered, machines make the soil suitable to place the seeds into the desirable depth. Moreover, tillage loosens the compacted layers. Heavy equipment and tillage implements can cause damage to the soil structure. Effect of various tillage methods on soil compaction was studied in Rabi season of 2013-14 at village Ladwa, Hisar, Haryana (India). The experiments studied the effect of six tillage treatments i.e. no tillage or zero tillage (T1), tillage with rotavator (T2), disc harrow (T3), rotavator + sub soiler (T4), disc harrow + sub soiler (T5) and power harrow (T6) on soil compaction. Soil compaction was measured before tillage and after sowing at 0, 30, 60 and 90 days after sowing. No change in soil resistance was recorded before and after no tillage treatment. Maximum soil resistance was found in zero tillage followed by disc harrow up to 150 mm soil depth. Minimum soil resistance was found in rotavator immediately after the tillage treatment. However, the soil resistance approached the same level as it had been before the tillage after the soil strata where the implement cannot reach.

Keywords: tillage, no tillage, rotavator, subsoiler, compaction

Procedia PDF Downloads 285
3320 Scale Prototype to Estimate the Resistance to Lateral Displacement Buried Pipes and submerged in non-Cohesive Soils

Authors: Enrique Castañeda, Tomas Hernadez, Mario Ulloa

Abstract:

Recent studies related to submarine pipelines under high pressure, temperature and buried, forces us to make bibliographical and documentary research to make us of references applicable to our problem. This paper presents an experimental methodology to the implementation of results obtained in a scale model, bibliography soil mechanics and finite element simulation. The model consists of a tank of 0.60 x 0.90 x 0.60 basis equipped high side windows, tires and digital hardware devices for measuring different variables to be applied to the model, where the mechanical properties of the soil are determined, simulation of drag a pipeline buried in a non-cohesive seafloor of the Gulf of Mexico, estimate the failure surface and application of each of the variables for the determination of mechanical elements.

Keywords: static friction coefficient, maximum passive force resistant soil, normal, tangential stress

Procedia PDF Downloads 329
3319 Assessment the Influence of Bitumen Emulsion PAHs Content in Arid Land

Authors: Jalil Badamfirooz

Abstract:

Soil wind erosion has a negative impact on the environment. Mulching is one of the most efficient soil protection techniques. Bitumen emulsion has recently been utilized as a soil cover that is sprayed directly over the soil and forms a thin film. The thin coating of bitumen emulsion prevents soil erosion and keeps moisture in the soil. Besides, some compounds release into the soil and cause environmental problems. In the present study, the effect of bitumen emulsion on the release of polycyclic aromatic hydrocarbons (PAHs) into the soil is studied in an arid land located in the central part of Iran. The soil was Loamy-Sand and saline with a pH of 8.03. Bitumen emulsion was used in this study as mulch at a rate of 4 L m2. The effect of this mulch on soil properties was investigated after 6 months of mulch application. Then PAHs concentrations were determined in samples collected from different depths in bitumen emulsion sprayed and control soils. In general, bitumen emulsion application on soil led to a significant increase in some PAHs, which was higher than soil pollution standards critical level of pollution for commerce, groundwater protection, pasture forest, and park and residence uses.

Keywords: mulch, bitumen emulsion, arid land, PAH

Procedia PDF Downloads 54
3318 Soil Compaction by a Forwarder in Timber Harvesting

Authors: Juang R. Matangaran, Erianto I. Putra, Iis Diatin, Muhammad Mujahid, Qi Adlan

Abstract:

Industrial plantation forest is the producer of logs in Indonesia. Several companies of industrial plantation forest have been successfully planted with fast-growing species, and it entered their annual harvesting period. Heavy machines such as forwarders are used in timber harvesting to extract logs from stump to landing site. The negative impact of using such machines are loss of topsoil and soil compaction. Compacted soil is considered unfavorable for plant growth. The research objectives were to analyze the soil bulk density, rut, and cone index of the soil caused by a forwarder passes, to analyze the relation between several times of forwarder passes to the increase of soil bulk density. A Valmet forwarder was used in this research. Soil bulk density at soil surface and cone index from the soil surface to the 50 cm depth of soil were measured at the harvested area. The result showed that soil bulk density increase with the increase of the Valmet forwarder passes. Maximum soil bulk density occurred after 5 times forwarder Valmet passed. The cone index tended to increase from the surface until 50 cm depth of soil. Rut formed and high soil bulk density indicated the soil compaction occurred by the forwarder operation.

Keywords: bulk density, forwarder Valmet, plantation forest, soil compaction, timber harvesting

Procedia PDF Downloads 116
3317 Effect of Treated Peat Soil on the Plasticity Index and Hardening Time

Authors: Siti Nur Aida Mario, Farah Hafifee Ahmad, Rudy Tawie

Abstract:

Soil Stabilization has been widely implemented in the construction industry nowadays. Peat soil is well known as one of the most problematic soil among the engineers. The procedures need to take into account both physical and engineering properties of the stabilized peat soil. This paper presents a result of plasticity index and hardening of treated peat soil with various dosage of additives. In order to determine plasticity of the treated peat soil, atterberg limit test which comprises plastic limit and liquid limit test has been conducted. Determination of liquid limit in this experimental study is by using cone penetrometer. Vicat testing apparatus has been used in the hardening test which the penetration of the plunger is recorded every one hour for 24 hours. The results show that the plasticity index of peat soil stabilized with 80% FAAC and 20% OPC has the lowest plasticity index and recorded the fastest initial setting time. The significant of this study is to promote greener solution for future soil stabilization industry.

Keywords: additives, hardening, peat soil, plasticity index, soil stabilization

Procedia PDF Downloads 294
3316 Acidity and Aridity: Soil Carbon Storage and Myeloablation

Authors: Tom Spears, Zotique Laframboise

Abstract:

Soil inorganic carbon is the most common form of carbon in arid and semiarid regions, and has a very long turnover time. However, little is known about dissolved inorganic carbon storage and its turnover time in these soils. With 81 arid soil samples taken from 6 profiles in the Nepean Desert, Canada, we investigated the soil inorganic carbon (SIC) and the soil dissolved inorganic carbon (SDIC) in whole profiles of saline and alkaline soils by analyzing their contents and ages with radiocarbon dating. The results showed that there is considerable SDIC content in SIC, and the variations of SDIC and SIC contents in the saline soil profile were much larger than that in the alkaline profile. We investigated the possible implications for tectonic platelet activity but identified none.

Keywords: soil, carbon storage, acidity, soil inorganic carbon (SIC)

Procedia PDF Downloads 451
3315 Analytical Development of a Failure Limit and Iso-Uplift Curves for Eccentrically Loaded Shallow Foundations

Authors: N. Abbas, S. Lagomarsino, S. Cattari

Abstract:

Examining existing experimental results for shallow rigid foundations subjected to vertical centric load (N), accompanied or not with a bending moment (M), two main non-linear mechanisms governing the cyclic ‎response of the soil-foundation system can be distinguished: foundation uplift and soil yielding. A soil-foundation failure limit, is defined as a domain of resistance in the two dimensional (2D) load space (N, M) inside of which lie all the admissible combinations of loads; these latter correspond to a pure elastic, non-linear elastic or plastic behavior of the soil-foundation system, while the points lying on the failure limit correspond to a combination of loads leading to a failure of the soil-foundation system. In this study, the proposed resistance domain is constructed analytically based on mechanics. Original elastic limit, uplift initiation ‎limit and iso-uplift limits are constructed inside this domain. These limits give a prediction ‎of the mechanisms activated for each combination of loads applied to the ‎foundation. A comparison of the proposed failure limit with experimental tests existing in the literature shows interesting results. Also, the developed uplift initiation limit and iso-uplift curves are confronted with others already proposed in the literature and widely used due to the absence of other alternatives, and remarkable differences are noted, showing evident errors in the past proposals and relevant accuracy for those given in the present work.

Keywords: foundation uplift, iso-uplift curves, resistance domain, soil yield

Procedia PDF Downloads 356
3314 Bioremediation Influence on Shear Strength of Contaminated Soils

Authors: Tawar Mahmoodzadeh

Abstract:

Today soil contamination is an unavoidable issue; Irrespective of environmental impact, which happens during the soil contaminating and remediating process, the influence of this phenomenon on soil has not been searched thoroughly. In this study, unconfined compression and compaction tests were done on samples, contaminated and treated soil after 50 days of bio-treatment. The results show that rising in the amount of oil, cause decreased optimum water content and maximum dry density and increased strength. However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent.

Keywords: oil contamination soil, shear strength, compaction, bioremediation

Procedia PDF Downloads 119
3313 Studying the Impact of Soil Characteristics in Displacement of Retaining Walls Using Finite Element

Authors: Mojtaba Ahmadabadi, Akbar Masoudi, Morteza Rezai

Abstract:

In this paper, using the finite element method, the effect of soil and wall characteristics was investigated. Thirty and two different models were studied by different parameters. These studies could calculate displacement at any height of the wall for frictional-cohesive soils. The main purpose of this research is to determine the most effective soil characteristics in reducing the wall displacement. Comparing different models showed that the overall increase in internal friction angle, angle of friction between soil and wall and modulus of elasticity reduce the replacement of the wall. In addition, increase in special weight of soil will increase the wall displacement. Based on results, it can be said that all wall displacements were overturning and in the backfill, soil was bulging. Results show that the highest impact is seen in reducing wall displacement, internal friction angle, and the angle friction between soil and wall. One of the advantages of this study is taking into account all the parameters of the soil and walls replacement distribution in wall and backfill soil. In this paper, using the finite element method and considering all parameters of the soil, we investigated the impact of soil parameter in wall displacement. The aim of this study is to provide the best conditions in reducing the wall displacement and displacement wall and soil distribution.

Keywords: retaining wall, fem, soil and wall interaction, angle of internal friction of the soil, wall displacement

Procedia PDF Downloads 363
3312 Contribution to the Study of the Rill Density Effects on Soil Erosion: Laboratory Experiments

Authors: L. Mouzai, M. Bouhadef

Abstract:

Rills begin to be generated once overland flow shear capacity overcomes the soil surface resistance. This resistance depends on soil texture, the arrangement of soil particles and on chemical and physical properties. The rill density could affect soil erosion, especially when the distance between the rills (interrill) contributes to the variation of the rill characteristics, and consequently on sediment concentration. To investigate this point, agricultural sandy soil, a soil tray of 0.2x1x3m³ and a piece of hardwood rectangular in shape to build up rills were the base of this work. The results have shown that small lines have been developed between the rills and the flow acceleration increased in comparison to the flow on the flat surface (interrill). Sediment concentration increased with increasing rill number (density).

Keywords: artificial rainfall, experiments, rills, soil erosion, transport capacity

Procedia PDF Downloads 130
3311 Comparison of Mean Monthly Soil Temperature at (5 and 30 cm) Depths at Compton Experimental Site, West Midlands (UK), between 1976-2008

Authors: Aminu Mansur

Abstract:

A comparison of soil temperature at (5 and 30 cm) depths at a research site over the period (1976-2008) was analyzed. Based on the statistical analysis of the database of (12,045) days of individual soil temperature measurements in sandy-loam of the (salwick series) soils, the mean soil temperature revealed a statistically significant increase of about -1.1 to 10.9°C at 5 cm depth in 1976 compared to 2008. Similarly, soil temperature at 30 cm depth increased by -0.1 to 2.1°C in 2008 compared to 1976. Although, rapid increase in soil temperature at all depths was observed during that period, but a thorough assessment of these conditions suggested that the soil temperature at 5 cm depth are progressively increasing over time. A typical example of those increases in soil temperature was provided for agriculture where Miscanthus (elephant) plant that grows within the study area is adversely affected by the mean soil temperature increase. The study concluded that these observations contribute to the growing mass of evidence of global warming and knowledge on secular trends. Therefore, there was statistically significant increase in soil temperature at Compton Experimental Site between 1976-2008.

Keywords: soil temperature, warming trend, environment science, climate and atmospheric sciences

Procedia PDF Downloads 273
3310 Microbiological Analysis of Soil from Onu-Ebonyi Contaminated with Inorganic Fertilizer

Authors: M. N. Alo, U. C. C. Egbule, J. O. Orji, C. J. Aneke

Abstract:

Microbiological analysis of soil from Onu-Ebonyi Izzi local government area of Ebonyi State, Nigeria contaminated with inorganic fertilizer was carried out with a view to determine the effect of the fertilizer on the microbial flora of the soil. soil samples were analyzed for microbial burden. the result showed that the following organisms were isolated with their frequency of their occurrence as follows:pseudomonas species (33.3%) and aspergillus species (54.4%) had the highest frequncy of occurence in the whole sample of batches, while streptococcus species had 6.0% and Geotrichum species (5.3%) had the least and other predominant microorganism isolated: bacillus species,staphylococcus species and vibrio species, Escherichia species, rhzizopus species, mucor species and fusaruim species. From the result, it could be concluded that the soil was contaminated and this could affect adversely the fertility of the soil .

Keywords: soil, bacteria, fungi, inorganic fertilizer, Onu- Ebonyi

Procedia PDF Downloads 478