Search results for: ultrasonic methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14899

Search results for: ultrasonic methods

14689 Efficacy of Crystalline Admixtures in Self-Healing Capacity of Fibre Reinforced Concrete

Authors: Evangelia Tsampali, Evangelos Yfantidis, Andreas Ioakim, Maria Stefanidou

Abstract:

The purpose of this paper is the characterization of the effects of crystalline admixtures on concrete. Crystallites, aided by the presence of humidity, form idiomorphic crystals that block cracks and pores resulting in reduced porosity. In this project, two types of crystallines have been employed. The hydrophilic nature of crystalline admixtures helps the components to react with water and cement particles in the concrete to form calcium silicate hydrates and pore-blocking precipitates in the existing micro-cracks and capillaries. The underlying mechanism relies on the formation of calcium silicate hydrates and the resulting deposits of these crystals become integrally bound with the hydrated cement paste. The crystalline admixtures continue to activate throughout the life of the composite material when in the presence of moisture entering the concrete through hairline cracks, sealing additional gaps. The resulting concrete exhibits significantly increased resistance to water penetration under stress. Admixtures of calcium aluminates can also contribute to this healing mechanism in the same manner. However, this contribution is negligible compared to the calcium silicate hydrates due to the abundance of the latter. These crystalline deposits occur throughout the concrete volume and are a permanent part of the concrete mass. High-performance fibre reinforced cementitious composite (HPFRCC) were produced in the laboratory. The specimens were exposed in three healing conditions: water immersion until testing at 15 °C, sea water immersion until testing at 15 °C, and wet/dry cycles (immersion in tap water for 3 days and drying for 4 days). Specimens were pre-cracked at 28 days, and the achieved cracks width were in the range of 0.10–0.50 mm. Furthermore, microstructure observations and Ultrasonic Pulse Velocity tests have been conducted. Based on the outcomes, self-healing related indicators have also been defined. The results show almost perfect healing capability for specimens healed under seawater, better than for specimens healed in water while inadequate for the wet/dry exposure in both of the crystalline types.

Keywords: autogenous self-healing, concrete, crystalline admixtures, ultrasonic pulse velocity test

Procedia PDF Downloads 102
14688 Methods of Detoxification of Nuts With Aflatoxin B1 Contamination

Authors: Auteleyeva Laura, Maikanov Balgabai, Smagulova Ayana

Abstract:

In order to find and select detoxification methods, patent and information research was conducted, as a result of which 68 patents for inventions were found, among them from the near abroad - 14 (Russia), from far abroad: China – 27, USA - 6, South Korea–1, Germany - 2, Mexico – 4, Yugoslavia – 7, Austria, Taiwan, Belarus, Denmark, Italy, Japan, Canada for 1 security document. Aflatoxin B₁ in various nuts was determined by two methods: enzyme immunoassay "RIDASCREEN ® FAST Aflatoxin" with determination of optical density on a microplate spectrophotometer RIDA®ABSORPTION 96 with RIDASOFT® software Win.NET (Germany) and the method of high-performance liquid chromatography (HPLC Corporation Water, USA) according to GOST 307112001. For experimental contamination of nuts, the cultivation of strain A was carried out. flavus KWIK-STIK on the medium of Chapek (France) with subsequent infection of various nuts (peanuts, peanuts with shells, badam, walnuts with and without shells, pistachios).Based on our research, we have selected 2 detoxification methods: method 1 – combined (5% citric acid solution + microwave for 640 W for 3 min + UV for 20 min) and a chemical method with various leaves of plants: Artemisia terra-albae, Thymus vulgaris, Callogonum affilium, collected in the territory of Akmola region (Artemisia terra-albae, Thymus vulgaris) and Western Kazakhstan (Callogonum affilium). The first stage was the production of ethanol extracts of Artemisia terraea-albae, Thymus vulgaris, Callogonum affilium. To obtain them, 100 g of vegetable raw materials were taken, which was dissolved in 70% ethyl alcohol. Extraction was carried out for 2 hours at the boiling point of the solvent with a reverse refrigerator using an ultrasonic bath "Sapphire". The obtained extracts were evaporated on a rotary evaporator IKA RV 10. At the second stage, the three samples obtained were tested for antimicrobial and antifungal activity. Extracts of Thymus vulgaris and Callogonum affilium showed high antimicrobial and antifungal activity. Artemisia terraea-albae extract showed high antimicrobial activity and low antifungal activity. When testing method 1, it was found that in the first and third experimental groups there was a decrease in the concentration of aflatoxin B1 in walnut samples by 63 and 65%, respectively, but these values also exceeded the maximum permissible concentrations, while the nuts in the second and third experimental groups had a tart lemon flavor; When testing method 2, a decrease in the concentration of aflatoxin B1 to a safe level was observed by 91% (0.0038 mg/kg) in nuts of the 1st and 2nd experimental groups (Artemisia terra-albae, Thymus vulgaris), while in samples of the 2nd and 3rd experimental groups, a decrease in the amount of aflatoxin in 1 to a safe level was observed.

Keywords: nuts, aflatoxin B1, my, mycotoxins

Procedia PDF Downloads 54
14687 Bio-Grouting Applications in Caprock Sealing for Geological CO2 Storage

Authors: Guijie Sang, Geo Davis, Momchil Terziev

Abstract:

Geological CO2 storage has been regarded as a promising strategy to mitigate the emission of greenhouse gas generated from traditional power stations and energy-intensive industry. Caprocks with very low permeability and ultra-fine pores create viscous and capillary barriers to guarantee CO2 sealing efficiency. However, caprock fractures, either naturally existing or artificially induced due to injection, could provide preferential paths for CO₂ escaping. Seeking an efficient technique to seal and strengthen caprock fractures is crucial. We apply microbial-induced-calcite-precipitation (MICP) technique for sealing and strengthening caprock fractures in the laboratory scale. The MICP bio-grouting technique has several advantages over conventional cement grouting methods, including its low viscosity, micron-size microbes (accessible to fine apertures), and low carbon footprint, among others. Different injection strategies are tested to achieve relatively homogenous calcite precipitation along the fractures, which is monitored dynamically based on laser ultrasonic technique. The MICP process in caprock fractures, which integrates the coupled flow and bio-chemical precipitation, is also modeled and validated through the experiment. The study could provide an effective bio-mediated grouting strategy for caprock sealing and thus ensuring a long-term safe geological CO2 storage.

Keywords: caprock sealing, geological CO2 storage, grouting strategy, microbial induced calcite precipitation

Procedia PDF Downloads 147
14686 High Order Block Implicit Multi-Step (Hobim) Methods for the Solution of Stiff Ordinary Differential Equations

Authors: J. P. Chollom, G. M. Kumleng, S. Longwap

Abstract:

The search for higher order A-stable linear multi-step methods has been the interest of many numerical analysts and has been realized through either higher derivatives of the solution or by inserting additional off step points, supper future points and the likes. These methods are suitable for the solution of stiff differential equations which exhibit characteristics that place a severe restriction on the choice of step size. It becomes necessary that only methods with large regions of absolute stability remain suitable for such equations. In this paper, high order block implicit multi-step methods of the hybrid form up to order twelve have been constructed using the multi-step collocation approach by inserting one or more off step points in the multi-step method. The accuracy and stability properties of the new methods are investigated and are shown to yield A-stable methods, a property desirable of methods suitable for the solution of stiff ODE’s. The new High Order Block Implicit Multistep methods used as block integrators are tested on stiff differential systems and the results reveal that the new methods are efficient and compete favourably with the state of the art Matlab ode23 code.

Keywords: block linear multistep methods, high order, implicit, stiff differential equations

Procedia PDF Downloads 333
14685 Effect of Magnetic Field in Treatment of Lower Back Myofascial Pain Syndrome: A Randomized Controlled Trial

Authors: Ahmed M. F. El Shiwi

Abstract:

Background: Low back pain affects about 60% to 90% of the working-age population in modern industrial society. Myofascial pain syndrome is a condition characterized by muscles shortening with increased tone and associated with trigger points that aggravated with the activity of daily living. Purpose: To examine the effects of magnetic field therapy in patients with lower back myofascial pain syndrome. Methods: Thirty patients were assigned randomly into two groups. Subjects in the experimental group (n=15) with main age of 36.73 (2.52) received traditional physical therapy program (Infrared radiation, ultrasonic, stretching and strengthening exercises for back muscles) as well as magnetic field, and control group (n=15) with main age of 37.27 (2.52) received traditional physical therapy only. The following parameters including pain severity, functional disability and lumbar range of motion (flexion, extension, right side bending, and left side bending) were measured before and after four weeks of treatment. Results: The results showed significant improvement in all parameters in the experimental group compared with those in the control group. Interpretation/Conclusion: By the present date, it is possible to conclude that a magnetic field is effective as a method of treatment for lower back myofascial pain syndrome patients with the parameters used in the present study.

Keywords: magnetic field, lower back pain, myofascial pain syndrome, biological systems engineering

Procedia PDF Downloads 415
14684 A Comparative Study between FEM and Meshless Methods

Authors: Jay N. Vyas, Sachin Daxini

Abstract:

Numerical simulation techniques are widely used now in product development and testing instead of expensive, time-consuming and sometimes dangerous laboratory experiments. Numerous numerical methods are available for performing simulation of physical problems of different engineering fields. Grid based methods, like Finite Element Method, are extensively used in performing various kinds of static, dynamic, structural and non-structural analysis during product development phase. Drawbacks of grid based methods in terms of discontinuous secondary field variable, dealing fracture mechanics and large deformation problems led to development of a relatively a new class of numerical simulation techniques in last few years, which are popular as Meshless methods or Meshfree Methods. Meshless Methods are expected to be more adaptive and flexible than Finite Element Method because domain descretization in Meshless Method requires only nodes. Present paper introduces Meshless Methods and differentiates it with Finite Element Method in terms of following aspects: Shape functions used, role of weight function, techniques to impose essential boundary conditions, integration techniques for discrete system equations, convergence rate, accuracy of solution and computational effort. Capabilities, benefits and limitations of Meshless Methods are discussed and concluded at the end of paper.

Keywords: numerical simulation, Grid-based methods, Finite Element Method, Meshless Methods

Procedia PDF Downloads 363
14683 Autonomous Ground Vehicle Navigation Based on a Single Camera and Image Processing Methods

Authors: Auday Al-Mayyahi, Phil Birch, William Wang

Abstract:

A vision system-based navigation for autonomous ground vehicle (AGV) equipped with a single camera in an indoor environment is presented. A proposed navigation algorithm has been utilized to detect obstacles represented by coloured mini- cones placed in different positions inside a corridor. For the recognition of the relative position and orientation of the AGV to the coloured mini cones, the features of the corridor structure are extracted using a single camera vision system. The relative position, the offset distance and steering angle of the AGV from the coloured mini-cones are derived from the simple corridor geometry to obtain a mapped environment in real world coordinates. The corridor is first captured as an image using the single camera. Hence, image processing functions are then performed to identify the existence of the cones within the environment. Using a bounding box surrounding each cone allows to identify the locations of cones in a pixel coordinate system. Thus, by matching the mapped and pixel coordinates using a projection transformation matrix, the real offset distances between the camera and obstacles are obtained. Real time experiments in an indoor environment are carried out with a wheeled AGV in order to demonstrate the validity and the effectiveness of the proposed algorithm.

Keywords: autonomous ground vehicle, navigation, obstacle avoidance, vision system, single camera, image processing, ultrasonic sensor

Procedia PDF Downloads 277
14682 Development, Characterization and Performance Evaluation of a Weak Cation Exchange Hydrogel Using Ultrasonic Technique

Authors: Mohamed H. Sorour, Hayam F. Shaalan, Heba A. Hani, Eman S. Sayed, Amany A. El-Mansoup

Abstract:

Heavy metals (HMs) present an increasing threat to aquatic and soil environment. Thus, techniques should be developed for the removal and/or recovery of those HMs from point sources in the generating industries. This paper reports our endeavors concerning the development of in-house developed weak cation exchange polyacrylate hydrogel kaolin composites for heavy metals removal. This type of composite enables desirable characteristics and functions including mechanical strength, bed porosity and cost advantages. This paper emphasizes the effect of varying crosslinker (methylenebis(acrylamide)) concentration. The prepared cation exchanger has been subjected to intensive characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF) and Brunauer Emmett and Teller (BET) method. Moreover, the performance was investigated using synthetic and real wastewater for an industrial complex east of Cairo. Simulated and real wastewater compositions addressed; Cr, Co, Ni, and Pb are in the range of (92-115), (91-103), (86-88) and (99-125), respectively. Adsorption experiments have been conducted in both batch and column modes. In general, batch tests revealed enhanced cation exchange capacities of 70, 72, 78.2 and 99.9 mg/g from single synthetic wastes while, removal efficiencies of 82.2, 86.4, 44.4 and 96% were obtained for Cr, Co, Ni and Pb, respectively from mixed synthetic wastes. It is concluded that the mixed synthetic and real wastewaters have lower adsorption capacities than single solutions. It is worth mentioned that Pb attained higher adsorption capacities with comparable results in all tested concentrations of synthetic and real wastewaters. Pilot scale experiments were also conducted for mixed synthetic waste in a fluidized bed column for 48 hour cycle time which revealed 86.4%, 58.5%, 66.8% and 96.9% removal efficiency for Cr, Co, Ni, and Pb, respectively with maximum regeneration was also conducted using saline and acid regenerants. Maximum regeneration efficiencies for the column studies higher than the batch ones about by about 30% to 60%. Studies are currently under way to enhance the regeneration efficiency to enable successful scaling up of the adsorption column.

Keywords: polyacrylate hydrogel kaolin, ultrasonic irradiation, heavy metals, adsorption and regeneration

Procedia PDF Downloads 97
14681 The Motion of Ultrasonically Propelled Nanomotors Operating in Biomimetic Environments

Authors: Suzanne Ahmed

Abstract:

Nanomotors, also commonly referred to as nanorobotics or nanomachines, have garnered considerable research attention due to their numerous potential applications in biomedicine, including drug delivery and microsurgery. Nanomotors typically consist of inorganic or polymeric particles that are powered to undergo motion. These artificial, man-made nanoscale motors operate in the low Reynolds number regime and typically have no moving parts. Several methods have been developed to actuate the motion of nanomotors including magnetic fields, electrical fields, electromagnetic waves, and chemical fuel. Since their introduction in 2012, ultrasonically powered nanomotors have been explored in biocompatible fluids and even within living cells. Due to the common use of ultrasound within the biomedical community for both imaging and therapeutics, the introduction of ultrasonically propelled nanomotors holds significant potential for biomedical applications. In this work, metallic nanomotors are electrochemically plated within porous anodic alumina templates to have a diameter of 300 nm and a length that is 2-4 µm. Nanomotors are placed within an acoustic chamber capable of producing bulk acoustic waves in the ultrasonic range. The motion of nanomotors within biomimetic confines is explored. The control over nanomotor motion is exerted by virtue of the properties of the acoustic signal within these biomimetic confines to control speed, modes of motion and directionality of motion. To expand the range of control over nanorod motion within biomimetic confines, external forces from biocompatible magnetic fields, are exerted onto the acoustically propelled nanomotors.

Keywords: nanomotors, nanomachines, nanorobots, ultrasound

Procedia PDF Downloads 45
14680 Facile Fabrication of Nickel/Zinc Oxide Hollow Spheres Nanostructure and Photodegradation of Congo Red

Authors: Seyed Mohsen Mousavi, Ali Reza Mahjoub, Behjat Afshari

Abstract:

In this work, Nickel/Zinc Oxide hollow spherical structures with high surface area using the template Fructose was prepared by the hydrothermal method using a ultrasonic bath at room temperature was produced and were identified by FTIR, XRD, FE-SEM. The photocatalytic activity of synthesized hollow spherical Nickel/Zinc Oxide was studied in the destruction of Congo red as Azo dye. The results showed that the photocatalytic activity of Nickel/ Zinc Oxide hollow spherical nanostructures is improved compared with zinc oxide hollow sphere and other morphologies.

Keywords: azo dye, hollow spheres, photocatalyst, nickel/zinc oxide

Procedia PDF Downloads 599
14679 A Continuous Boundary Value Method of Order 8 for Solving the General Second Order Multipoint Boundary Value Problems

Authors: T. A. Biala

Abstract:

This paper deals with the numerical integration of the general second order multipoint boundary value problems. This has been achieved by the development of a continuous linear multistep method (LMM). The continuous LMM is used to construct a main discrete method to be used with some initial and final methods (also obtained from the continuous LMM) so that they form a discrete analogue of the continuous second order boundary value problems. These methods are used as boundary value methods and adapted to cope with the integration of the general second order multipoint boundary value problems. The convergence, the use and the region of absolute stability of the methods are discussed. Several numerical examples are implemented to elucidate our solution process.

Keywords: linear multistep methods, boundary value methods, second order multipoint boundary value problems, convergence

Procedia PDF Downloads 353
14678 Linear Prediction System in Measuring Glucose Level in Blood

Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali

Abstract:

Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.

Keywords: diabetes, glucose level, linear, near-infrared, non-invasive, prediction system

Procedia PDF Downloads 130
14677 Numerical Methods versus Bjerksund and Stensland Approximations for American Options Pricing

Authors: Marasovic Branka, Aljinovic Zdravka, Poklepovic Tea

Abstract:

Numerical methods like binomial and trinomial trees and finite difference methods can be used to price a wide range of options contracts for which there are no known analytical solutions. American options are the most famous of that kind of options. Besides numerical methods, American options can be valued with the approximation formulas, like Bjerksund-Stensland formulas from 1993 and 2002. When the value of American option is approximated by Bjerksund-Stensland formulas, the computer time spent to carry out that calculation is very short. The computer time spent using numerical methods can vary from less than one second to several minutes or even hours. However to be able to conduct a comparative analysis of numerical methods and Bjerksund-Stensland formulas, we will limit computer calculation time of numerical method to less than one second. Therefore, we ask the question: Which method will be most accurate at nearly the same computer calculation time?

Keywords: Bjerksund and Stensland approximations, computational analysis, finance, options pricing, numerical methods

Procedia PDF Downloads 419
14676 In-Plume H₂O, CO₂, H₂S and SO₂ in the Fumarolic Field of La Fossa Cone (Vulcano Island, Aeolian Archipelago)

Authors: Cinzia Federico, Gaetano Giudice, Salvatore Inguaggiato, Marco Liuzzo, Maria Pedone, Fabio Vita, Christoph Kern, Leonardo La Pica, Giovannella Pecoraino, Lorenzo Calderone, Vincenzo Francofonte

Abstract:

The periods of increased fumarolic activity at La Fossa volcano have been characterized, since early 80's, by changes in the gas chemistry and in the output rate of fumaroles. Excepting the direct measurements of the steam output from fumaroles performed from 1983 to 1995, the mass output of the single gas species has been recently measured, with various methods, only sporadically or for short periods. Since 2008, a scanning DOAS system is operating in the Palizzi area for the remote measurement of the in-plume SO₂ flux. On these grounds, the need of a cross-comparison of different methods for the in situ measurement of the output rate of different gas species is envisaged. In 2015, two field campaigns have been carried out, aimed at: 1. The mapping of the concentration of CO₂, H₂S and SO₂ in the fumarolic plume at 1 m from the surface, by using specific open-path diode tunable lasers (GasFinder Boreal Europe Ltd.) and an Active DOAS for SO₂, respectively; these measurements, coupled to simultaneous ultrasonic wind speed and meteorological data, have been elaborated to obtain the dispersion map and the output rate of single species in the overall fumarolic field; 2. The mapping of the concentrations of CO₂, H₂S, SO₂, H₂O in the fumarolic plume at 0.5 m from the soil, by using an integrated system, including IR spectrometers and specific electrochemical sensors; this has provided the concentration ratios of the analysed gas species and their distribution in the fumarolic field; 3. The in-fumarole sampling of vapour and measurement of the steam output, to validate the remote measurements. The dispersion map of CO₂, obtained from the tunable laser measurements, shows a maximum CO₂ concentration at 1m from the soil of 1000 ppmv along the rim, and 1800 ppmv in the inner slopes. As observed, the largest contribution derives from a wide fumarole of the inner-slope, despite its present outlet temperature of 230°C, almost 200°C lower than those measured at the rim fumaroles. Actually, fumaroles in the inner slopes are among those emitting the largest amount of magmatic vapour and, during the 1989-1991 crisis, reached the temperature of 690°C. The estimated CO₂ and H₂S fluxes are 400 t/d and 4.4 t/d, respectively. The coeval SO₂ flux, measured by the scanning DOAS system, is 9±1 t/d. The steam output, recomputed from CO₂ flux measurements, is about 2000 t/d. The various direct and remote methods (as described at points 1-3) have produced coherent results, which encourage to the use of daily and automatic DOAS SO₂ data, coupled with periodic in-plume measurements of different acidic gases, to obtain the total mass rates.

Keywords: DOAS, fumaroles, plume, tunable laser

Procedia PDF Downloads 369
14675 Methods for Preparation of Soil Samples for Determination of Trace Elements

Authors: S. Krustev, V. Angelova, K. Ivanov, P. Zaprjanova

Abstract:

It is generally accepted that only about ten microelements are vitally important to all plants, and approximately ten more elements are proved to be significant for the development of some species. The main methods for their determination in soils are the atomic spectral techniques - AAS and ICP-OAS. Critical stage to obtain correct results for content of heavy metals and nutrients in the soil is the process of mineralization. A comparative study of the most widely spread methods for soil sample preparation for determination of some trace elements was carried out. Three most commonly used methods for sample preparation were used as follows: ISO11466, EPA Method 3051 and BDS ISO 14869-1. Their capabilities were assessed and their bounds of applicability in determining the levels of the most important microelements in agriculture were defined.

Keywords: analysis, copper, methods, zinc

Procedia PDF Downloads 233
14674 Developing Reading Methods of Industrial Education Students at King Mongkut’s Institute of Technology Ladkrabang

Authors: Rattana Sangchan, Pattaraporn Thampradit

Abstract:

Teaching students to use a variety of reading methods in developing reading is essential for Thai university students. However, there haven’t been a lot of studies concerned about developing reading methods that are used by Thai students in the industrial education field. Therefore, this study was carried out not only to investigate the developing reading methods of Industrial Education students at King Mongkut’s Institute of Technology Ladkrabang, but also to determine if the developing reading strategies differ among the students’ reading abilities and differ gender: male and female. The research instrument used in collecting the data consisted of fourteen statements which include either metacognitive strategies, cognitive strategies or social / affective strategies. Results of this study revealed that students could develop their reading methods in moderate level (mean=3.13). Furthermore, high reading ability students had different levels of using reading methods to develop their reading from those of mid reading ability students. In addition, high reading ability students could use either metacognitive reading methods or cognitive reading methods to develop their reading much better than mid reading ability students. Interestingly, male students could develop their reading methods in great levels while female students could develop their reading methods only in moderate level. Last but not least, male students could use either metacognitive reading methods or cognitive reading methods to develop their reading much better than female students. Thus, the results of this study could indicate that most students need to apply much more reading strategies to develop their reading. At the same time, suggestions on how to motivate and train their students to apply much more appropriate effective reading strategies to better comprehend their reading were also provided.

Keywords: developing reading methods, industrial education, reading abilities, reading method classification

Procedia PDF Downloads 257
14673 A New Family of Globally Convergent Conjugate Gradient Methods

Authors: B. Sellami, Y. Laskri, M. Belloufi

Abstract:

Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, a new family of conjugate gradient method is proposed for unconstrained optimization. This method includes the already existing two practical nonlinear conjugate gradient methods, which produces a descent search direction at every iteration and converges globally provided that the line search satisfies the Wolfe conditions. The numerical experiments are done to test the efficiency of the new method, which implies the new method is promising. In addition the methods related to this family are uniformly discussed.

Keywords: conjugate gradient method, global convergence, line search, unconstrained optimization

Procedia PDF Downloads 381
14672 On a Generalization of the Spectral Dichotomy Method of a Matrix With Respect to Parabolas

Authors: Mouhamadou Dosso

Abstract:

This paper presents methods of spectral dichotomy of a matrix which compute spectral projectors on the subspace associated with the eigenvalues external to the parabolas described by a general equation. These methods are modifications of the one proposed in [A. N. Malyshev and M. Sadkane, SIAM J. MATRIX ANAL. APPL. 18 (2), 265-278, 1997] which uses the spectral dichotomy method of a matrix with respect to the imaginary axis. Theoretical and algorithmic aspects of the methods are developed. Numerical results obtained by applying methods presented on matrices are reported.

Keywords: spectral dichotomy method, spectral projector, eigensubspaces, eigenvalue

Procedia PDF Downloads 62
14671 Fundamental Study on Reconstruction of 3D Image Using Camera and Ultrasound

Authors: Takaaki Miyabe, Hideharu Takahashi, Hiroshige Kikura

Abstract:

The Government of Japan and Tokyo Electric Power Company Holdings, Incorporated (TEPCO) are struggling with the decommissioning of Fukushima Daiichi Nuclear Power Plants, especially fuel debris retrieval. In fuel debris retrieval, amount of fuel debris, location, characteristics, and distribution information are important. Recently, a survey was conducted using a robot with a small camera. Progress report in remote robot and camera research has speculated that fuel debris is present both at the bottom of the Pressure Containment Vessel (PCV) and inside the Reactor Pressure Vessel (RPV). The investigation found a 'tie plate' at the bottom of the containment, this is handles on the fuel rod. As a result, it is assumed that a hole large enough to allow the tie plate to fall is opened at the bottom of the reactor pressure vessel. Therefore, exploring the existence of holes that lead to inside the RCV is also an issue. Investigations of the lower part of the RPV are currently underway, but no investigations have been made inside or above the PCV. Therefore, a survey must be conducted for future fuel debris retrieval. The environment inside of the RPV cannot be imagined due to the effect of the melted fuel. To do this, we need a way to accurately check the internal situation. What we propose here is the adaptation of a technology called 'Structure from Motion' that reconstructs a 3D image from multiple photos taken by a single camera. The plan is to mount a monocular camera on the tip of long-arm robot, reach it to the upper part of the PCV, and to taking video. Now, we are making long-arm robot that has long-arm and used at high level radiation environment. However, the environment above the pressure vessel is not known exactly. Also, fog may be generated by the cooling water of fuel debris, and the radiation level in the environment may be high. Since camera alone cannot provide sufficient sensing in these environments, we will further propose using ultrasonic measurement technology in addition to cameras. Ultrasonic sensor can be resistant to environmental changes such as fog, and environments with high radiation dose. these systems can be used for a long time. The purpose is to develop a system adapted to the inside of the containment vessel by combining a camera and an ultrasound. Therefore, in this research, we performed a basic experiment on 3D image reconstruction using a camera and ultrasound. In this report, we select the good and bad condition of each sensing, and propose the reconstruction and detection method. The results revealed the strengths and weaknesses of each approach.

Keywords: camera, image processing, reconstruction, ultrasound

Procedia PDF Downloads 85
14670 Amine Hardeners with Carbon Nanotubes Dispersing Ability for Epoxy Coating Systems

Authors: Szymon Kugler, Krzysztof Kowalczyk, Tadeusz Spychaj

Abstract:

An addition of carbon nanotubes (CNT) can simultaneously improve many features of epoxy coatings, i.e. electrical, mechanical, functional and thermal. Unfortunately, this nanofiller negatively affects visual properties of the coatings, such as transparency and gloss. The main reason for the low visual performance of CNT-modified epoxy coatings is the lack of compatibility between CNT and popular amine curing agents, although epoxy resins based on bisphenol A are indisputable good CNT dispersants. This is a serious obstacle in utilization of the coatings in advanced applications, demanding both high transparency and electrical conductivity. The aim of performed investigations was to find amine curing agents exhibiting affinity for CNT, and ensuring good performance of epoxy coatings with them. Commercially available CNT was dispersed in epoxy resin, as well as in different aliphatic, cycloaliphatic and aromatic amines, using one of two dispergation methods: ultrasonic or mechanical. The CNT dispersions were subsequently used in the preparation of epoxy coating compositions and coatings on a transparent substrate. It was found that amine derivative of bio-based cardanol, as well as modified o-tolylbiguanide exhibit significant CNT, dispersing properties, resulting in improved transparent/electroconductive performance of epoxy coatings. In one of prepared coating systems just 0.025 wt.% (250 ppm) of CNT was enough to obtain coatings with semi conductive properties, 83% of transparency as well as perfect chemical resistance to methyl-ethyl ketone and improved thermal stability. Additionally, a theory of the influence of amine chemical structure on CNT dispersing properties was proposed.

Keywords: bio-based cardanol, carbon nanotubes, epoxy coatings, tolylbiguanide

Procedia PDF Downloads 180
14669 Assessing the Influence of Using Traditional Methods of Construction on Cost and Quality of Building Construction

Authors: Musoke Ivan, Birungi Racheal

Abstract:

The construction trend is characterized by increased use of modern methods yet traditional methods are cheaper in terms of costs, in addition to the benefits it offers to the construction sector, like providing more jobs that could have been worked with the intensive machines. The purpose of this research was to assess the influence of using Traditional methods of construction (TMC) on the costs and quality of building structures and determine the different ways. Traditional methods of construction (TMC) can be applicable and integrated into the construction trend, and propose ways how this can be a success. The study adopted a quantitative method approach targeting various construction professionals like Architects, Quantity surveyors, Engineers, and Construction Managers. Questionnaires and analyses of literature were used to obtain research data and findings. Simple random sampling was used to select 40 construction professionals to which questionnaires were administered. The data was then analyzed using Microsoft Excel. The findings of the research indicate that Traditional methods of construction (TMCs) in Uganda are cheaper in terms of costs, but the quality is still low. This is attributed to a lack of skilled labour and efficient supervision while undertaking tasks leading to low quality. The study identifies strategies that would improve Traditional methods of construction (TMC), which include the employment of skilled manpower and effective supervision. It also identifies the need by stakeholders like the government, clients, and professionals to appreciate Traditional methods of construction (TMCs) and allow for a levelled ground for Traditional Methods of Construction and Modern methods of construction (MMCs).

Keywords: traditional methods of construction, integration, cost, quality

Procedia PDF Downloads 28
14668 Classifier for Liver Ultrasound Images

Authors: Soumya Sajjan

Abstract:

Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.

Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix

Procedia PDF Downloads 382
14667 Hibiscus Sabdariffa Extracts: A Sustainable and Eco-Friendly Resource for Multifunctional Cellulosic Fibers

Authors: Mohamed Rehan, Gamil E. Ibrahim, Mohamed S. Abdel-Aziz, Shaimaa R. Ibrahim, Tawfik A. Khattab

Abstract:

The utilization of natural products in finishing textiles toward multifunctional applications without side effects is an extremely motivating goal. Hibiscus sabdariffa usually has been used for many traditional medicine applications. To develop an additional use for Hibiscus sabdariffa, an extraction of bioactive compounds from Hibiscus sabdariffa followed by finishing on cellulosic fibers was designed to cleaner production of the value-added textiles fibers with multifunctional applications. The objective of this study is to explore, identify, and evaluate the bioactive compound extracted from Hibiscus sabdariffa by different solvent via ultrasonic technique as a potential eco-friendly agent for multifunctional cellulosic fabrics via two approaches. In the first approach, Hibiscus sabdariffa extract was used as a source of sustainable eco-friendly for simultaneous coloration and multi-finishing of cotton fabrics via in situ incorporations of nanoparticles (silver and metal oxide). In the second approach, the micro-capsulation of Hibiscus sabdariffa extracts was followed by coating onto cotton gauze to introduce multifunctional healthcare applications. The effect of the solvent type was accelerated by ultrasonic on the phytochemical, antioxidant, and volatile compounds of Hibiscus sabdariffa. The surface morphology and elemental content of the treated fabrics were explored using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). The multifunctional properties of treated fabrics, including coloration, sensor properties and protective properties against pathogenic microorganisms and UV radiation as well as wound healing property were evaluated. The results showed that the water, as well as ethanol/water, was selected as a solvent for the extraction of natural compounds from Hibiscus Sabdariffa with high in extract yield, total phenolic contents, flavonoid contents, and antioxidant activity. These natural compounds were utilized to enhance cellulosic fibers functionalization by imparting faint/dark red color, antimicrobial against different organisms, and antioxidants as well as UV protection properties. The encapsulation of Hibiscus Sabdariffa extracts, as well as wound healing, is under consideration and evaluation. As a result, the current study presents a sustainable and eco-friendly approach to design cellulosic fabrics for multifunctional medical and healthcare applications.

Keywords: cellulosic fibers, Hibiscus sabdariffa extract, multifunctional application, nanoparticles

Procedia PDF Downloads 116
14666 Solving Mean Field Problems: A Survey of Numerical Methods and Applications

Authors: Amal Machtalay

Abstract:

In this survey, we aim to review the rapidly growing literature on numerical methods to solve different forms of mean field problems, namely mean field games (MFG), mean field controls (MFC), potential MFGs, and master equations, as well as their corresponding recent applications. Here, we distinguish two families of numerical methods: iterative methods based on mesh generation and those called mesh-free, normally related to neural networking and learning frameworks.

Keywords: mean-field games, numerical schemes, partial differential equations, complex systems, machine learning

Procedia PDF Downloads 78
14665 A Review of Fractal Dimension Computing Methods Applied to Wear Particles

Authors: Manish Kumar Thakur, Subrata Kumar Ghosh

Abstract:

Various types of particles found in lubricant may be characterized by their fractal dimension. Some of the available methods are: yard-stick method or structured walk method, box-counting method. This paper presents a review of the developments and progress in fractal dimension computing methods as applied to characteristics the surface of wear particles. An overview of these methods, their implementation, their advantages and their limits is also present here. It has been accepted that wear particles contain major information about wear and friction of materials. Morphological analysis of wear particles from a lubricant is a very effective way for machine condition monitoring. Fractal dimension methods are used to characterize the morphology of the found particles. It is very useful in the analysis of complexity of irregular substance. The aim of this review is to bring together the fractal methods applicable for wear particles.

Keywords: fractal dimension, morphological analysis, wear, wear particles

Procedia PDF Downloads 450
14664 Influence of Procurement Methods on Cost Performance of Building Projects in Gombe State, Nigeria

Authors: S. U. Kunya, S. Abdulkadir, M. A. Anas, L. Z. Adam

Abstract:

Procurement methods is described as systems of contractual arrangements used by the contractor in order to secure the design and construction services based on the stipulated cost and within the required time and quality. Despite that, major projects in the Nigerian construction industry failed because of wrong procurement methods with major consequences leads to cost overrun which needs to find lasting solution. The aim of the study is to evaluate the influence of procurement methods on cost performance of building projects in Gombe State, Nigeria. Study adopts descriptive and explorative design approach. Data were collected through administering of one hundred questionnaire using convenient sampling techniques. Data analyses using percentages, mean value and Anova analysis. Major finding show that more than fifty percent (50%) of procurement methods available are mainly utilized in the study area and the top procurement methods that have high impacts on cost performance as compare with the other methods is project management and direct labour procurement methods. The results of hypothesis’ tests with pvalue 0.12 and 0.07 validated that there was no significant variation in the perception of stakeholders’ on the impacts of procurements methods on cost performance. Therefore, the study concluded that projects management and direct labour are the most appropriate procurement methods that will ensure successful completion of project at stipulated cost in building projects.

Keywords: cost, effects, performance, procurement, projects

Procedia PDF Downloads 198
14663 The Relationship between Lithological and Geomechanical Properties of Carbonate Rocks. Case study: Arab-D Reservoir Outcrop Carbonate, Central Saudi Arabia

Authors: Ammar Juma Abdlmutalib, Osman Abdullatif

Abstract:

Upper Jurrasic Arab-D Reservoir is considered as the largest oil reservoir in Saudi Arabia. The equivalent outcrop is exposed near Riyadh. The study investigates the relationships between lithofacies properties changes and geomechanical properties of Arab-D Reservoir in the outcrop scale. The methods used included integrated field observations and laboratory measurements. Schmidt Hammer Rebound Hardness, Point Load Index tests were carried out to estimate the strength of the samples, ultrasonic wave velocity test also was applied to measure P-wave, S-wave, and dynamic Poisson's ratio. Thin sections have been analyzed and described. The results show that there is a variation in geomechanical properties between the Arab-D member and Upper Jubaila Formation at outcrop scale, the change in texture or grain size has no or little effect on these properties. This is because of the clear effect of diagenesis which changes the strength of the samples. The result also shows the negative or inverse correlation between porosity and geomechanical properties. As for the strength, dolomitic mudstone and wackestone within Upper Jubaila Formation has higher Schmidt hammer values, wavy rippled sandy grainstone which is rich in quarts has the greater point load index values. While laminated mudstone and breccias, facies has lower strength. This emphasizes the role of mineral content in the geomechanical properties of Arab-D reservoir lithofacies.

Keywords: geomechanical properties, Arab-D reservoir, lithofacies changes, Poisson's ratio, diageneis

Procedia PDF Downloads 373
14662 Initial Periodontal Therapy and Follow-up in a Periodontitis Patient: A Case Report

Authors: Yasir Karabacak

Abstract:

Objective: The aim of periodontal therapy is to control and eliminate inflammation in order halt disease progression. The initial periodontal therapy (IPT) including scaling and root planing (SRP) can control periodontal disease in most cases of periodontitis; also maintaining good oral hygiene by the patient is fundamental. The aim of this case report is to present IPT and to present 3-month follow-up results in a patient with periodontitis. Materials and Methods IPT of a 63-year-old non-smoker male with generalized periodontitis is presented. The patient had no history of systemic disease. The intraoral examination reveals marked gingival inflammation as well as plaque accumulation and significant calculus deposits. On radiographic examination, severe bone loss was evident. The patient was diagnosed with generalized advanced periodontitis. Initial periodontal therapy including oral hygiene instructions and quadrant-based SRP under local anesthesia was performed using hand and ultrasonic instruments. No antibiotics were prescribed. The patient was recalled 4 weeks after IPT. Results Favorable clinical improvement was obtained. Gingival inflammation was resolved significantly. A reduction of the mean probing depth from 2.4 mm at baseline to 1.9 mm was observed. The patient presented with a good standard of oral hygiene. The plaque scores decreased from 54.0% at baseline to 17.0%. In addition, the percentage of sites with bleeding on probing decreased from 80.0% at baseline to 44.0%. The patient was scheduled for maintenance therapy every three months. Conclusion: The level of oral hygiene has a great impact on periodontal treatment outcome and supports periodontal therapy properly.

Keywords: initial periodontal, therapy and follow-up in a periodontitis, patient, a case report

Procedia PDF Downloads 51
14661 Localized Meshfree Methods for Solving 3D-Helmholtz Equation

Authors: Reza Mollapourasl, Majid Haghi

Abstract:

In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem.

Keywords: radial basis functions, Hermite finite difference, Helmholtz equation, stability

Procedia PDF Downloads 66
14660 Age Estimation Using Destructive and Non-Destructive Dental Methods on an Archeological Human Sample from the Poor Claire Nunnery in Brussels, Belgium

Authors: Pilar Cornejo Ulloa, Guy Willems, Steffen Fieuws, Kim Quintelier, Wim Van Neer, Patrick Thevissen

Abstract:

Dental age estimation can be performed both in living and deceased individuals. In anthropology, few studies have tested the reliability of dental age estimation methods complementary to the usually applied osteological methods. Objectives: In this study, destructive and non-destructive dental age estimation methods were applied on an archeological sample in order to compare them with the previously obtained anthropological age estimates. Materials and Methods: One hundred and thirty-four teeth from 24 individuals were analyzed using Kvaal, Kvaal and Solheim, Bang and Ramm, Lamendin, Gustafson, Maples, Dalitz and Johanson’s methods. Results: A high variability and wider age ranges than the ones previously obtained by the anthropologist could be observed. Destructive methods had a slightly higher agreement than the non-destructive. Discussion: Due to the heterogeneity of the sample and the lack of the real age at death, the obtained results were not representative, and it was not possible to suggest one dental age estimation method over another.

Keywords: archeology, dental age estimation, forensic anthropology, forensic dentistry

Procedia PDF Downloads 333