Search results for: ultrafine grains
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 397

Search results for: ultrafine grains

187 Non-Equilibrium Synthesis and Structural Characterization of Magnetic FeCoPt Nanocrystalline Alloys

Authors: O. Crisan, A. D. Crisan, I. Mercioniu, R. Nicula, F. Vasiliu

Abstract:

FePt-based systems are currently under scrutiny for their possible use as future materials for perpendicular magnetic recording. Another possible application is in the field of permanent magnets without rare-earths, magnets that are capable to operate at higher temperatures than the classic Nd-Fe-B magnets. Within this work, FeCoPt alloys prepared by rapid solidification from the melt are structurally and magnetically characterized. Extended transmission electron microscopy analysis shows the high degree of L10 ordering. X-ray diffraction is used to characterize the phase structure and to obtain the structural parameters of interest for L10 ordering. Co-existence of hard CoFePt and CoPt L10 phases with the soft fcc FePt phase is obtained within a refined microstructure made of alternatively disposed grains of around 5 to 20 nm in size. Magnetic measurements show increased remanence close to the parent L10 FePt phase and not so high coercivity due to the significant presence of the soft magnetic constituent phase. A Curie temperature of about 820K is reported for the FeCoPt alloy.

Keywords: melt-spinning, FeCoPt alloys, high-resolution electron microscopy (HREM), ordered L10 structure

Procedia PDF Downloads 294
186 Molecular Cloning of CSP2s, PBP1 and PBP2 Genes of Rhyzopertha dominica

Authors: Suliman A. I. Ali, Mory Mandiana Diakite, Saqib Ali, Man-Qun Wang

Abstract:

Lesser grain borer, Rhyzopertha dominica, is a causing damages of stored grains all tropical and subtropical area in the global, according to the information of antenna cDNA library of R. dominica, three olfactory protein genes, including R.domica CSPs2, R.domica PBPs1, R.domica PBPs2 genes (GenBank accessions are KJ186798.1, KJ186830.1, KJ186831.1 separately.), were successfully cloned. For sequencing and phylogenetic analysis, R.domica CSPs1 and R.domica CSPs2 belonged to Minus-C CSPs showed that have 4 conserved cysteine residues, while R.domica PBPs1 and R.domica PBPs2 showed conserved amino acids in all PBPs six conserved cysteine residues. The results of transcription expression level of PBPs1 and PBPs2 of R. dominica showed that the expression level of R.domnica PBP2 is much higher than that of R.domnica PBP1. The variation transcription level at the different developmental time suggested the PBP1, and PBP2 had their particular job in searching food sources, mates and oviposition sites.

Keywords: Rhyzopertha dominica, CSPs, PBPs, molecular cloning

Procedia PDF Downloads 120
185 Grain Size Effect of Durability of Bio-Clogging Treatment

Authors: Tahani Farah, Hanène Souli, Jean-Marie Fleureau, Guillaume Kermouche, Jean-Jacques Fry, Benjamin Girard, Denis Aelbrecht

Abstract:

In this work, the bio-clogging of two soils with different granulometries is presented. The durability of the clogging is also studied under cycles of hydraulic head and under cycles of desaturation- restauration. The studied materials present continuous grain size distributions. The first one corresponding to the "material 1", presents grain sizes between 0.4 and 4 mm. The second material called "material 2" is composed of grains with size varying between 1 and 10 mm. The results show that clogging occurs very quickly after the injection of nutrition and an outlet flow near to 0 is observed. The critical hydraulic head is equal to 0.76 for "material 1", and 0.076 for "material 2". The durability tests show a good resistance to unclogging under cycles of hydraulic head and desaturation-restauration for the "material 1". Indeed, the flow after the cycles is very low. In contrast, "material 2", shows a very bad resistance, especially under the hydraulic head cycles. The resistance under the cycles of desaturation-resaturation is better but an important increase of the flow is observed. The difference of behavior is due to the granulometry of the materials. Indeed, the large grain size contributes to the reduction of the efficiency of the bio-clogging treatment in this material.

Keywords: bio-clogging, granulometry, permeability, nutrition

Procedia PDF Downloads 378
184 Behavior on Nutritious Food: An Analysis of Newly Affluent Millionaire of Kathmandu Valley, Nepal

Authors: Babita Adhikari

Abstract:

There is a general assumption that affluent people consume a variety of balanced nutritious foods on a regular basis, such as fruits, whole grains, lean meat, nuts, and fresh vegetables, because they have greater affordability and market accessibility. A simple random sampling technique and an open-ended questionnaire were used for this study. Findings showed that high socioeconomic status (SES) people in Kathmandu were more concerned with expensive foods, fruits, and vegetables, regardless of their nutrient content. New millionaire groups in Kathmandu are aware of the importance of nutrition and healthy well-being, but their purchasing and consumption habits differ from general perceptions as they learn about fast-food and restaurant culture. On the home front, they buy, cook, and eat expensive foods but are unaware of their nutrient contents. The study critically examines attributes that influence purchase decisions for nutritious and healthy foods in Kathmandu. Despite the fact that a significant amount of literature helps to comprehend that food has to be good in taste, healthy, and affordable, the major driver of food purchases is still the desire to consume.

Keywords: nutritious food, consumer behavior, nutrition, food behavior

Procedia PDF Downloads 37
183 The Effect of the Weld Current Types on Microstructure and Hardness in Tungsten Inert Gas Welding of the AZ31 Magnesium Alloy Sheet

Authors: Bilge Demir, Ahmet Durgutlu, Mustafa Acarer

Abstract:

In this study, the butt welding of the commercial AZ31 magnesium alloy sheets have been carried out by using Tungsten Inert Gas (TIG) welding process with alternative and pulsed current. Welded samples were examined with regards to hardness and microstructure. Despite some recent developments in welding of magnesium alloys, they have some problems such as porosity, hot cracking, oxide formation and so on. Samples of the welded parts have undergone metallographic and mechanical examination. Porosities and homogeneous micron grain oxides were rarely observed. Orientations of the weld microstructure in terms of heat transfer also were rarely observed and equiaxed grain morphology was dominant grain structure as in the base metal. As results, fusion zone and few locations of the HAZ of the welded samples have shown twin’s grains. Hot cracking was not observed for any samples. Weld bead geometry of the welded samples were evaluated as normal according to welding parameters. In the results, conditions of alternative and pulsed current and the samples were compared to each other with regards to microstructure and hardness.

Keywords: AZ31 magnesium alloy, microstructures, micro hardness TIG welding

Procedia PDF Downloads 354
182 New Highly-Scalable Carbon Nanotube-Reinforced Glasses and Ceramics

Authors: Konstantinos G. Dassios, Guillaume Bonnefont, Gilbert Fantozzi, Theodore E. Matikas, Costas Galiotis

Abstract:

We report herein the development and preliminary mechanical characterization of fully-dense multi-wall carbon nanotube (MWCNT)-reinforced ceramics and glasses based on a completely new methodology termed High Shear Compaction (HSC). The tubes are introduced and bound to the matrix grains by aid of polymeric binders to form flexible green bodies which are sintered and densified by spark plasma sintering to unprecedentedly high densities of 100% of the pure-matrix value. The strategy was validated across a PyrexTM glass / MWCNT composite while no identifiable factors limit application to other types of matrices. Non-destructive evaluation, based on ultrasonics, of the dynamic mechanical properties of the materials including elastic, shear and bulk modulus as well as Poisson’s ratio showed optimum property improvement at 0.5 %wt tube loading while evidence of nanoscale-specific energy dissipative characteristics acting complementary to nanotube bridging and pull-out indicate a high potential in a wide range of reinforcing and multifunctional applications.

Keywords: ceramic matrix composites, carbon nanotubes, toughening, ultrasonics

Procedia PDF Downloads 346
181 The Influence of Ni Elements on Mechanical Properties and Microstructure of Twinning Induced Plasticity (TWIP)

Authors: Yuksel Akinay, Fatih Hayat

Abstract:

The influence of Ni elements on mechanical properties and microstructure of twinning induced plasticity (TWIP) steels were investigated in this study. TWIP 1 (0,6C, 24Mn) and TWIP 2 (0,6C, 24Mn, 1Ni) high Mn TWIP (Twinning Induced Plasticity) steels were fabricated, and were annealed at 700°C, 800°C and 900°C for 150 minute and then air-cooled. The microstructures and mechanical properties of specimens were analysed to investigate influence of Ni element on TWIP steel. The carbide precipitations have seen in microstructure of TWIP 1 and TWIP 2 specimen annealed at 700 °C. However, the microstructures of TWIP 1 annealed at 800°C and 900°C are fully austenite and some grains are including annealing twins. However twining did not occur at TWIP 2 specimens annealed at 700 °C, 800 °C and 900 °C. TWIP 2 steel contains also Ni element differently from TWIP 1 steel. It can conclude that, Nickel (Ni) was restrained formation of twinning. The reversion of the tensile strength occurred between 700°C and 800°C because of the carbide precipitation hardening. Beside that, hardness value has decreased between 800 °C and 900 °C, which show a good agreement with the equilibrium dissolution temperature of M3C carbides. However, the results show that, carbide precipitations also are as strong barriers for the formation of twining. For this reason, twinning was not obtained at 700 °C.

Keywords: high manganese, heat treatment, SEM, TWIP steel, cold rolling, nickel

Procedia PDF Downloads 325
180 Tribological Behavior of Warm Rolled Spray Formed Al-6Si-1Mg-1Graphite Composite

Authors: Surendra Kumar Chourasiya, Sandeep Kumar, Devendra Singh

Abstract:

In the present investigation tribological behavior of Al-6Si-1Mg-1Graphite composite has been explained. The composite was developed through the unique spray forming route in the spray forming chamber by using N₂ gas at 7kg/cm² and the flight distance was 400 mm. Spray formed composite having a certain amount of porosity which was reduced by the deformations. The composite was subjected to the warm rolling (WR) at 250ºC up to 40% reduction. Spray forming composite shows the considerable microstructure refinement, equiaxed grains, distribution of silicon and graphite particles in the primary matrix of the composite. Graphite (Gr) was incorporated externally during the process that works as a solid lubricant. Porosity decreased after reduction and hardness increases. Pin on disc test has been performed to analyze the wear behavior which is the function of sliding distance for all percent reduction of the composite. 30% WR composite shows the better result of wear rate and coefficient of friction. The improved wear properties of the composite containing Gr are discussed in light of the microstructural features of spray formed the composite and the nature of the debris particles. Scanning electron microscope and optical microscope analysis of the present material supported the prediction of aforementioned changes.

Keywords: Al-6Si-1Mg-1Graphite, spray forming, warm rolling, wear

Procedia PDF Downloads 532
179 Effect of Yttrium Doping on Properties of Bi2Sr1.9Ca0.1-xYxCu2O7+δ (Bi-2202) Cuprate Ceramics

Authors: Y. Boudjadja, A. Amira, A. Saoudel, A. Varilci, S. P. Altintas, C. Terzioglu

Abstract:

In this work, we report the effect of Y3+ doping on structural, mechanical and electrical properties of Bi-2202 phase. Samples of Bi2Sr1.9Ca0.1-xYxCu2O7+δ with x = 0, 0.025, 0.05, 0.075 and 0.1 are elaborated in air by conventional solid state reaction and characterized by X-Ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) combined with EDS spectroscopy, density, Vickers micro-hardness and resistivity measurements. A good correlation between the variations of the bulk density and the Vickers micro-hardness with doping is obtained. The SEM photograph shows that the samples are composed of grains with a flat shape that characterizes the Bi-based cuprates. Quantitative EDS analysis confirms the reduction of Ca content and the increase of Y content when x is increased. The variation of resistivity with temperature shows that only samples with x = 0, 0.025 and 0.05 present an onset transition to the superconducting state. The higher onset transition temperature is obtained for x = 0.025 and is about 93.62 K. The transition is wide and is realized in two steps confirming then the presence of the low Tc Bi-2201 phase in the samples. For x = 0.075 and 0.1, a transition to a semiconducting state is seen at low temperatures. Some physical parameters are extracted from these curves and discussed.

Keywords: Bi-2202 phase, doping, structure, mechanical and electrical properties

Procedia PDF Downloads 298
178 Detection of Mustard Traces in Food by an Official Food Safety Laboratory

Authors: Clara Tramuta, Lucia Decastelli, Elisa Barcucci, Sandra Fragassi, Samantha Lupi, Enrico Arletti, Melissa Bizzarri, Daniela Manila Bianchi

Abstract:

Introdution: Food allergies occurs, in the Western World, 2% of adults and up to 8% of children. The protection of allergic consumers is guaranted, in Eurrope, by Regulation (EU) No 1169/2011 of the European Parliament which governs the consumer's right to information and identifies 14 food allergens to be mandatory indicated on the label. Among these, mustard is a popular spice added to enhance the flavour and taste of foods. It is frequently present as an ingredient in spice blends, marinades, salad dressings, sausages, and other products. Hypersensitivity to mustard is a public health problem since the ingestion of even low amounts can trigger severe allergic reactions. In order to protect the allergic consumer, high performance methods are required for the detection of allergenic ingredients. Food safety laboratories rely on validated methods that detect hidden allergens in food to ensure the safety and health of allergic consumers. Here we present the test results for the validation and accreditation of a Real time PCR assay (RT-PCR: SPECIALfinder MC Mustard, Generon), for the detection of mustard traces in food. Materials and Methods. The method was tested on five classes of food matrices: bakery and pastry products (chocolate cookies), meats (ragù), ready-to-eat (mixed salad), dairy products (yogurt), grains, and milling products (rice and barley flour). Blank samples were spiked starting with the mustard samples (Sinapis Alba), lyophilized and stored at -18 °C, at a concentration of 1000 ppm. Serial dilutions were then prepared to a final concentration of 0.5 ppm, using the DNA extracted by ION Force FAST (Generon) from the blank samples. The Real Time PCR reaction was performed by RT-PCR SPECIALfinder MC Mustard (Generon), using CFX96 System (BioRad). Results. Real Time PCR showed a limit of detection (LOD) of 0.5 ppm in grains and milling products, ready-to-eat, meats, bakery, pastry products, and dairy products (range Ct 25-34). To determine the exclusivity parameter of the method, the ragù matrix was contaminated with Prunus dulcis (almonds), peanut (Arachis hypogaea), Glycine max (soy), Apium graveolens (celery), Allium cepa (onion), Pisum sativum (peas), Daucus carota (carrots), and Theobroma cacao (cocoa) and no cross-reactions were observed. Discussion. In terms of sensitivity, the Real Time PCR confirmed, even in complex matrix, a LOD of 0.5 ppm in five classes of food matrices tested; these values are compatible with the current regulatory situation that does not consider, at international level, to establish a quantitative criterion for the allergen considered in this study. The Real Time PCR SPECIALfinder kit for the detection of mustard proved to be easy to use and particularly appreciated for the rapid response times considering that the amplification and detection phase has a duration of less than 50 minutes. Method accuracy was rated satisfactory for sensitivity (100%) and specificity (100%) and was fully validated and accreditated. It was found adequate for the needs of the laboratory as it met the purpose for which it was applied. This study was funded in part within a project of the Italian Ministry of Health (IZS PLV 02/19 RC).

Keywords: allergens, food, mustard, real time PCR

Procedia PDF Downloads 134
177 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: surface plasmon resonance, laser-induced breakdown spectroscopy, ICCD spectrometer, engine oil

Procedia PDF Downloads 115
176 Interfacial Investigation and Chemical Bonding in Graphene Reinforced Alumina Ceramic Nanocomposites

Authors: Iftikhar Ahmad, Mohammad Islam

Abstract:

Thermally exfoliated graphene nanomaterial was reinforced into Al2O3 ceramic and the nanocomposites were consolidated using rapid high-frequency induction heat sintering route. The resulting nanocomposites demonstrated higher mechanical properties due to efficient GNS incorporation and chemical interaction with the Al2O3 matrix grains. The enhancement in mechanical properties is attributed to (i) uniformly-dispersed GNS in the consolidated structure (ii) ability of GNS to decorate Al2O3 nanoparticles and (iii) strong GNS/Al2O3 chemical interaction during colloidal mixing and pullout/crack bridging toughening mechanisms during mechanical testing. The GNS/Al2O3 interaction during different processing stages was thoroughly examined by thermal and structural investigation of the interfacial area. The formation of an intermediate aluminum oxycarbide phase (Al2OC) via a confined carbothermal reduction reaction at the GNS/Al2O3 interface was observed using advanced electron microscopes. The GNS surface roughness improves GNS/Al2O3 mechanical locking and chemical compatibility. The sturdy interface phase facilitates efficient load transfer and delayed failure through impediment of crack propagation. The resulting nanocomposites, therefore, offer superior toughness.

Keywords: ceramics, nanocomposites, interfaces, nanostructures, electron microscopy, Al2O3

Procedia PDF Downloads 328
175 Combination of Standard Secondary Raw Materials and New Production Waste Materials in Green Concrete Technology

Authors: M. Tazky, R. Hela, P. Novosad, L. Osuska

Abstract:

This paper deals with the possibility of safe incorporation fluidised bed combustion fly ash (waste material) into cement matrix together with next commonly used secondary raw material, which is high-temperature fly ash. Both of these materials have a very high pozzolanic ability, and the right combination could bring important improvements in both the physico-mechanical properties and the better durability of a cement composite. This paper tries to determine the correct methodology for designing green concrete by using modern methods measuring rheology of fresh concrete and following hydration processes. The use of fluidised bed combustion fly ash in cement composite production as an admixture is not currently common, but there are some real possibilities for its potential. The most striking negative aspect is its chemical composition which supports the development of new product formation, influencing the durability of the composite. Another disadvantage is the morphology of grains, which have a negative effect on consistency. This raises the question of how this waste can be used in concrete production to emphasize its positive properties and eliminate negatives. The focal point of the experiment carried out on cement pastes was particularly on the progress of hydration processes, aiming for the possible acceleration of pozzolanic reactions of both types of fly ash.

Keywords: high temperature fly ash, fluidized bed combustion fly ash, pozzolan, CaO (calcium oxide), rheology

Procedia PDF Downloads 182
174 The Effect of Extrusion Processing on Solubility and Molecular Weight of Water-Soluble Arabinoxylan

Authors: Abdulmannan Fadel

Abstract:

Arabinoxylan is a non-starch polysaccharide (NSP), which is one of the most important polysaccharides contained within cereal grains. Wheat endosperm pentosan and rice bran contain a significant amount of arabinoxylan (7% in rice bran and 10-12% in wheat endosperm pentosan). Several methods have been used for arabinoxylan extraction with varying degrees of success e.g. enzymatic and alkaline treatment. Yet, the use of extrusion alone as a pre-treatment to increase the yield and reduce the molecular weight in wheat endosperm pentosan and rice bran has not been investigated. The samples (wheat pentosan and rice bran) were extruded using a Twin-screw extruder at a range of screw speeds (80 and 160 rpm) and barrel temperatures range (80 to 140°C) with a throughput of 30 Kg hr-1 and moisture content of 25%. Arabinoxylans were extracted with water and the extraction yield and molecular weight was determined using size exclusion high-pressure liquid chromatography system. It was found that increasing screw speed from 80 rpm to 160 rpm, did not effect the extraction yield (p < 0.05) of arabinoxylan from either the wheat endosperm pentosan or the rice bran. However, the molecular weight of the extracted arabinoxylans from pentosan was found to decrease with increasing screw speed in wheat endosperm pentosan. These low molecular weight arabinoxylans have been suggested as immunomodulators.

Keywords: arabinoxylans, extrusion, wheat endosperm pentosan, rice bran

Procedia PDF Downloads 381
173 Experimental Investigation of Hybrid Rocket Motor: Ignition, Throttling and Re-Ignition Phenomena

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

Ignition phenomena are of great interest area over the past many years, and it has a direct impact on many propulsion and combustion applications. The direct goal of the paper is to realize and evaluate a functioning ignition method, shut-off, throttling and re-start operations for the hybrid rocket motor. A small-scale hybrid rocket motor (SSHRM) is designed, manufactured, demonstrated at various operating conditions and finally equipped for laboratory firing tests with high level of safety. Various solid fuel grains as Polymethyle-methacrylate (PMMA) and Polyethylene (PE) are selected, and it is decided to use the commercial gaseous oxygen (GO2) for its availability and low cost. Examine different types of ignition methods, pyrotechnic charge, fuse wire, heat wire and finally hot oxidizer method by using the heat exchanger, which are proposed as very safe ignition methods. Finally; recognize phenomena of throttling and re-start operations. Ignition by hot GO2 impingement is proved to be a very attractive ignition method for laboratory SSHRM, for its high safety, reliability and acceptable delay time. Finally; the throttling and re-start operations are demonstrated several times and can be carried out more easily with hot air ignition method.

Keywords: hybrid rocket motor, ignition system, re-start phenomena, throttling

Procedia PDF Downloads 278
172 The Chromitites of the Collo Ultramafic Rocks (NE Algeria): Two Generations Evidenced From Petrological, Mineralogical and Isotopic Studies

Authors: Rabah Laouar, Yahia Boudra, Adel Satouh, Adrian Boyce

Abstract:

The ultramafic rocks of the Collo region crop out as « stratified » masses that cross-cut older metamorphic formation of the basement. These rocks are mainly peridotites and serpentinites. The peridotites are composed of olivine, orthopyroxene, clinopyroxene and spinel (chromite). The chemical composition of these lherzolites show a magnesian character with high MgO contents (34.4 to 37.5%), high Cr (0.14 to 0.27%), Ni (0.14 to 0.26%) and Co (34 to 133 ppm) and low CaO and Al₂O₃ (0.02 to 2.2 and 0.5 to 2.8 % respectively). They represent a residue (restite) of a mantle magmas partial melting. The chromite which represents about 2 to 3% of the rock is a ubiquitous mineral and shows two different generations: primary idiomorphic millimetric crystals and secondary very fine, xenomorphic and interstitial aggregates. The primary chromites are alumino-ferro-magnesian crystals. They show high Al₂O₃ (25.77% to 27.36%) and MgO (10.70% to 13.36%). Cr# (100*Cr/ (Al+Cr)) varies between 45 and 48, and Mg# (100*Mg/Mg+Fe₂+) varies between 49 and 59. On the other hand, the secondary interstitial grains are iron-rich chromites; they show low Al₂O₃ (4.67% to 9.54%) and MgO (4.60% to 4.65%). Cr# is relatively high (77 to 88) whereas Mg# show relatively low values, varying between 22 and 25. Oxygen isotopic composition of both types of chromites is consistent with their derivation from a mantle source (ð¹⁸O vary between +3.9 and +5.2‰), though a contribution of ¹⁶O-rich component to the secondary chromites is not ruled out.

Keywords: peridotites, serpentinites, chromite, partial melting, collo, Algeria

Procedia PDF Downloads 59
171 A Digital Representation of a Microstructure and Determining Its Mechanical Behavior

Authors: Burak Bal

Abstract:

Mechanical characterization tests might come with a remarkable cost of time and money for both companies and academics. The inquiry to transform laboratory experiments to the computational media is getting a trend; accordingly, the literature supplies many analytical ways to explain the mechanics of deformation. In our work, we focused on the crystal plasticity finite element modeling (CPFEM) analysis on various materials in various crystal structures to predict the stress-strain curve without tensile tests. For FEM analysis, which we used in this study was ABAQUS, a standard user-defined material subroutine (UMAT) was prepared. The geometry of a specimen was created via DREAM 3D software with the inputs of Euler angles taken by Electron Back-Scattered Diffraction (EBSD) technique as orientation, or misorientation angles. The synthetic crystal created with DREAM 3D is also meshed in a way the grains inside the crystal meshed separately, and the computer can realize interaction of inter, and intra grain structures. The mechanical deformation parameters obtained from the literature put into the Fortran based UMAT code to describe how material will response to the load applied from specific direction. The mechanical response of a synthetic crystal created with DREAM 3D agrees well with the material response in the literature.

Keywords: crystal plasticity finite element modeling, ABAQUS, Dream.3D, microstructure

Procedia PDF Downloads 121
170 Metallurgical Analysis of Surface Defect in Telescopic Front Fork

Authors: Souvik Das, Janak Lal, Arthita Dey, Goutam Mukhopadhyay, Sandip Bhattacharya

Abstract:

Telescopic Front Fork (TFF) used in two wheelers, mainly motorcycle, is made from high strength steel, and is manufactured by high frequency induction welding process wherein hot rolled and pickled coils are used as input raw material for rolling of hollow tubes followed by heat treatment, surface treatment, cold drawing, tempering, etc. The final application demands superior quality TFF tubes w.r.t. surface finish and dimensional tolerances. This paper presents the investigation of two different types of failure of fork during operation. The investigation consists of visual inspection, chemical analysis, characterization of microstructure, and energy dispersive spectroscopy. In this paper, comprehensive investigations of two failed tube samples were investigated. In case of Sample #1, the result revealed that there was a pre-existing crack, known as hook crack, which leads to the cracking of the tube. Metallographic examination exhibited that during field operation the pre-existing hook crack was surfaced out leading to crack in the pipe. In case of Sample #2, presence of internal oxidation with decarburised grains inside the material indicates origin of the defect from slab stage.

Keywords: telescopic front fork, induction welding, hook crack, internal oxidation

Procedia PDF Downloads 99
169 Effect of Drought Stress on Yield and Yield Components of Maize Cultivars in Golestan Province

Authors: Mojtaba Esmaeilzad Limoudehi, Ebrahim Amiri

Abstract:

Water scarcity is now one of the leading challenges for human societies. In this regard, recognizing the relationship between soil, water, plant growth, and plant response to stress is very significant. In this paper, considering the importance of drought stress and the role of choosing suitable cultivars in resistance against drought, a split-plot experiment using early, intermediate, and late-maturing cultivars was carried out in Katul filed, Golestan province during two cultivation years of 2015 and 2016. The main factor was irrigation intervals at four levels, including 7 days, 14 days, 21 days, and 28 days. The subfactor was the subplot of six maize cultivars (two early maturing cultivars, two medium maturing cultivars, and two late-maturing cultivars). The results of variance analysis have revealed that irrigation interval and cultivars treatment have significant effects on the number of grain in each corn, number of rows in each corn, number of grain per row, the weight of 1000 grains, grain yield, and biomass yield. Although, the interaction of these two factors on the mentioned attributes was meaningful. The best grain yield was achieved at 7 days irrigation interval and late maturing maize cultivars treatment, which was equal to 12301 kg/ha.

Keywords: corn, growth period, optimization, stress

Procedia PDF Downloads 109
168 Preparation, Physical and Photoelectrochemical Characterization of Ag/CuCo₂O₄: Application to Solar Light Oxidation of Methyl Orange

Authors: Radia Bagtache, Karima Boudjedien, Ahmed Malek Djaballah, Mohamed Trari

Abstract:

The compounds with a spinel structure have received special attention because of their numerous applications in electronics, magnetism, catalysis, electrocatalysis, photocatalysis, etc. Among these oxides, CuCo₂O₄ was selected because of its optimal band gap, very close to the ideal value for solar devices, its low cost, and a potential candidate in the field of energy storage. Herein, we reported the junction Ag/CuCo₂O₄ (5/95 % wt.) prepared by co-precipitation, characterized physically and photo electrochemically. Moreover, its performance was evaluated for the oxidation of methyl orange (MO) under solar light. The X-ray diffraction exhibited narrow peaks ascribed to the spinel CuCo₂O₄ and Ag. The SEM analysis displayed grains with regular shapes. The band gap of CuCo₂O₄ (1.38 eV) was deducted from the diffuse reflectance, and this value decreased down to 1.15 eV due to the synergy effect in the junction. The current-potential (J-E) curve plotted in Na₂SO₄ electrolyte showed a medium hysteresis, characteristic of good chemical stability. The capacitance-2 – potential (C⁻² – E) graph displayed that the spinel behaves as a p-type semiconductor, a property supported by chrono-amperometry. The conduction band, located at 4.05 eV (-0.94 VNHE), was made up of Co³⁺: 3d orbital. The result showed a total discoloration of MO after 2 h of illumination under solar light.

Keywords: junction Ag/CuCo₂O₄, semiconductor, environment, sunlight, characterization, depollution

Procedia PDF Downloads 40
167 The Austenite Role in Duplex Stainless Steel Performance

Authors: Farej Ahmed Emhmmed Alhegagi

Abstract:

Duplex stainless steels are attractive material for apparatus working with sea water, petroleum, refineries, chemical plants,vessels, and pipes operating at high temperatures and/or pressures. The role of austenite phase in duplex stainless steels performance was investigated. Zeron 100, stainless steels with 50/50 ferrite / austenite %, specimens were tested for strength, toughness, embrittlement susceptibility, and assisted environmental cracking (AEC) resistance. Specimens were heat treated at 475°C for different times and loaded to well- selected values of load. The load values were chosen to be within the range of higher / lower than the expected toughness. Sodium chloride solution 3.5wt% environment with polarity of -900mV / SCE was used to investigate the material susceptibility to (AEC). Results showed important effect of austenite on specimens overall mechanical properties. Strength was affected by the ductile nature of austenite phase leading to plastic deformation accommodated by austenite slip system. Austenite embrittlement, either by decomposition or nucleation and growth process, was not observed to take place during specimens heat treatment. Cracking due to (AEC) took place in the ferrite grains and avoided the austenite phase. Specimens showed the austenite to act as a crack arrestor during (AEC) of duplex stainless steels.

Keywords: austenite phase, mechanical properties, embrittlement susceptibility, duplex stainless steels

Procedia PDF Downloads 331
166 Food and Feeding Habit of Clarias anguillaris in Tagwai Reservoir, Minna, Niger State, Nigeria

Authors: B. U. Ibrahim, A. Okafor

Abstract:

Sixty-two (62) samples of Clarias anguillaris were collected from Tagwai Reservoir and used for the study. 29 male and 33 female samples were obtained for the study. Body measurement indicated that different sizes were collected for the study. Males, females and combined sexes had standard length and total length means of 26.56±4.99 and 31.13±6.43, 27.17±5.21 and 30.62±5.43, 26.88±5.08 and 30.86±5.88 cm, respectively. The weights of males, females and combined sexes have mean weights of 241.10±96.27, 225.75±78.66 and 232.93±86.95 gm, respectively. Eight items; fish, insects, plant materials, sand grains, crustaceans, algae, detritus and unidentified items were eaten as food by Clarias anguilarias in Tagwai Reservoir. Frequency of occurrence and numerical methods used in stomach contents analysis indicated that fish was the highest, followed by insect, while the lowest was the algae. Frequency of stomach fullness of Clarias anguillaris showed low percentage of empty stomachs or stomachs without food (21.00%) and high percentage of stomachs with food (79.00%), which showed high abundance of food and high feeding intensity during the period of study. Classification of fish based on feeding habits showed that Clarias anguillaris in this study is an omnivore because it consumed both plant and animal materials.

Keywords: stomach content, feeding habit, Clarias anguillaris, Tagwai Reservoir

Procedia PDF Downloads 566
165 Yield Parameters of Hulled Wheat Species, Grown in Organic Farming

Authors: Petr Konvalina, Jan Moudry

Abstract:

As organic farmers are searching foregoing crops for horticultural crops, there is possible to choice neglected wheat species and also have a new market and sale opportunities. Concerning wheat, there are landraces so called hulled wheat species (einkorn, emmer wheat, spelt) comprising parts of collections of the world gene banks. The advantage of this wheat species are small demands on growing conditions and also droughtiness in conditions of changing climate. Our paper aims at presenting the results of the study and the assessment of spring wheat forms, four einkorn cultivars, eight emmer wheat cultivars, seven spelt wheat cultivars in particular, as compared to modern bread wheat variety. Small-plot trials were established at two different localities within the Czech Republic and Austria in 2009 and 2012. The results of the trials show that some varieties were inclined to lodging. On the other hand, they were resistant to common wheat diseases (mildew, brown rust). Hulls served as barriers and obstacles against the DON grain contamination. The yield rate was lower. The grains were characterized by a high proportion of protein in grain (up to 18.1 %). However, they may be difficult to use for common baking. Moreover, new food products demonstrating a different technological quality of the hulled wheat species have to be launched on the market. They will be suitable for regional marketing.

Keywords: organic farming, hulled wheat species, einkorn, emmer, spelt

Procedia PDF Downloads 491
164 The Mechanical and Electrochemical Properties of DC-Electrodeposited Ni-Mn Alloy Coating with Low Internal Stress

Authors: Chun-Ying Lee, Kuan-Hui Cheng, Mei-Wen Wu

Abstract:

The nickel-manganese (Ni-Mn) alloy coating prepared from DC electrodeposition process in sulphamate bath was studied. The effects of process parameters, such as current density and electrolyte composition, on the cathodic current efficiency, microstructure, internal stress and mechanical properties were investigated. Because of its crucial effect on the application to the electroforming of microelectronic components, the development of low internal stress coating with high leveling power was emphasized. It was found that both the coating’s manganese content and the cathodic current efficiency increased with the raise in current density. In addition, the internal stress of the deposited coating showed compressive nature at low current densities while changed to tensile one at higher current densities. Moreover, the metallographic observation, X-ray diffraction measurement, transmission electron microscope (TEM) examination, and polarization curve measurement were conducted. It was found that the Ni-Mn coating consisted of nano-sized columnar grains and the maximum hardness of the coating was associated with (111) preferred orientation in the microstructure. The grain size was refined along with the increase in the manganese content of the coating, which accordingly, raised its hardness and mechanical tensile strength. In summary, the Ni-Mn coating prepared at lower current density of 1-2 A/dm2 had low internal stress, high leveling power, and better corrosion resistance.

Keywords: Ni-Mn coating, DC plating, internal stress, leveling power

Procedia PDF Downloads 338
163 Mechanism of Action of Troxerutin in Reducing Oxidative Stress

Authors: Nasrin Hosseinzad

Abstract:

Troxerutin, a trihydroxyethylated derived of rutin, is a flavonoid existing in tea, coffee, cereal grains, various fruits and vegetables have been conveyed to display radioprotective, antithrombotic, nephron-protective and hepato-protective possessions. Troxerutin, has been well-proved to utilize hepatoprotective assets. Troxerutin could upturn the resistance of hippocampal neurons alongside apoptosis by lessening the action of AChE and oxidative stress. Consequently, troxerutin may have advantageous properties in the administration of Alzheimer's disease and cancer. Troxerutin has been testified to have several welfares and medicinal stuffs. It could shelter the mouse kidney against d-gal-induced damage by refining renal utility, decreasing histopathologic changes, dropping ROS construction, reintroducing the activities of antioxidant enzymes and reducing DNA oxidative destruction. The DNA cleavage study clarifies that troxerutin showed DNA protection against hydroxyl radical persuaded DNA mutilation. Troxerutin uses anti-cancer effect in HuH-7 hepatocarcinoma cells conceivably through synchronized regulation of the molecular signalling pathways, Nrf2 and NF-κB. DNA binding at slight channel by troxerutin may have donated to feature breaks leading to improved radiation brought cell death. Furthermore, the mechanism principal the observed variance in the antioxidant activities of troxerutin and its esters was qualified to equally their free radical scavenging capabilities and dissemination on the cell membrane outward.

Keywords: troxerutin, DNA, oxidative stress, antioxidant, free radical

Procedia PDF Downloads 130
162 Variation of Streamwise and Vertical Turbulence Intensity in a Smooth and Rough Bed Open Channel Flow

Authors: M. Abdullah Al Faruque, Ram Balachandar

Abstract:

An experimental study with four different types of bed conditions was carried out to understand the effect of roughness in open channel flow at two different Reynolds numbers. The bed conditions include a smooth surface and three different roughness conditions which were generated using sand grains with a median diameter of 2.46 mm. The three rough conditions include a surface with distributed roughness, a surface with continuously distributed roughness and a sand bed with a permeable interface. A commercial two-component fibre-optic LDA system was used to conduct the velocity measurements. The variables of interest include the mean velocity, turbulence intensity, the correlation between the streamwise and the wall normal turbulence, Reynolds shear stress and velocity triple products. Quadrant decomposition was used to extract the magnitude of the Reynolds shear stress of the turbulent bursting events. The effect of roughness was evident throughout the flow depth. The results show that distributed roughness has the greatest roughness effect followed by the sand bed and the continuous roughness. Compared to the smooth bed, the streamwise turbulence intensity reduces but the vertical turbulence intensity increases at a location very close to the bed due to the introduction of roughness. Although the same sand grain is used to create the three different rough bed conditions, the difference in the turbulence intensity is an indication that the specific geometry of the roughness has an influence on turbulence structure.

Keywords: open channel flow, smooth and rough bed, Reynolds number, turbulence

Procedia PDF Downloads 299
161 Effect of Segregation Pattern of Mn, Si, and C on through Thickness Microstructure and Properties of Hot Rolled Steel

Authors: Waleed M. Al-Othman, Hamid Bayati, Abdullah Al-Shahrani, Haitham Al-Jabr

Abstract:

Pearlite bands commonly form parallel to the surface of the hot rolled steel and have significant influence on the properties of the steel. This study investigated the correlation between segregation pattern of Mn, Si, C and formation of the pearlite bands in hot rolled Gr 60 steel plate. Microstructural study indicated formation of a distinguished thick band at centerline of the plate with number of parallel bands through thickness of the steel plate. The thickness, frequency, and continuity of the bands are reduced from mid-thickness toward external surface of the steel plate. Analysis showed a noticeable increase of C, Si and Mn levels within the bands. Such alloying segregation takes place during metal solidification. EDS analysis verified presence of particles rich in Ti, Nb, Mn, C, N, within the bands. Texture analysis by Electron Backscatter Detector (EBSD) indicated the grains size/misorientation can noticeably change within the bands. Effect of banding on through-thickness properties of the steel was examined by carrying out microhardness, toughness and tensile tests. Results suggest the Mn and C contents are changed in sinusoidal pattern through thickness of the hot rolled plate and pearlite bands are formed at the peaks of this sinusoidal segregation pattern. Changes in grain size/misorientation, formation of highly alloyed particles, and pearlite within these bands, facilitate crack formation along boundaries of these bands.

Keywords: pearlite band, alloying segregation, hot rolling, Ti, Nb, N, C

Procedia PDF Downloads 107
160 Sintering of Functionally Graded WC-TiC-Co Cemented Carbides

Authors: Stella Sten, Peter Hedström, Joakim Odqvist, Susanne Norgren

Abstract:

Two functionally graded cemented carbide samples have been produced by local addition of Titanium carbide (TiC) to a pressed Tungsten carbide and Cobalt, WC-10 wt% Co, green body prior to sintering, with the aim of creating a gradient in both composition and grain size in the as-sintered component. The two samples differ only by the in-going WC particle size, where one sub-micron and one coarse WC particle size have been chosen for comparison. The produced sintered samples had a gradient, thus a non-homogenous structure. The Titanium (Ti), Cobalt (Co), and Carbon (C) concentration profiles have been investigated using SEM-EDS and WDS; in addition, the Vickers hardness profile has been measured. Moreover, the Ti concentration profile has been simulated using DICTRA software and compared with experimental results. The concentration and hardness profiles show a similar trend for both samples. Ti and C levels decrease, as expected from the area of TiC application, whereas Co increases towards the edge of the samples. The non-homogenous composition affects the number of stable phases and WC grain size evolution. The sample with finer in-going WC grain size shows a shorter gamma (γ) phase zone and a larger difference in WC grain size compared to the coarse-grained sample. Both samples show, independent of the composition, the presence of abnormally large grains.

Keywords: cemented carbide, functional gradient material, grain growth, sintering

Procedia PDF Downloads 60
159 The Study of Aluminum Effects Layer Austenite Twins Adjacent to K-Carbide Plates in the Cellular Structure of a Mn-Al Alloy Steel

Authors: Wu Wei-Ting, Liu Po-Yen, Chang Chin-Tzu, Cheng Wei-Chun

Abstract:

Three types of low-temperature phase transformations in an Fe-12.5 Mn-6.53 Al-1.28 C (wt %) alloy have been studied. The steel underwent solution heat treatment at 1100℃ and isothermal holding at low temperatures. γ’ phase appears in the austenite matrix in the air-cooled steel. Coherent ultra-fine particles of γ’ phase precipitated uniformly in the austenite matrix after the air-cooling process. These ultra-fine particles were very small and only could be detected by TEM through dark-field images. After short periods of isothermal holding at low temperatures these particles of γ’ phase grew and could be easily detected by TEM. A pro-eutectoid reaction happened after isothermal holding at temperatures below 875 ℃. Proeutectoid κ-carbide and ferrite appear in the austenite matrix as grain boundary precipitates and cellular precipitates. The cellular precipitates are composed of lamellar κ-carbide and austenite. The lamellar κ-carbide grains are always accompanied by layers of austenite twins. The presence of twin layers adhering to the κ-carbide plates might be attributed to the lower activation energy for the precipitation of κ-carbide plates in the austenite. The final form of phase transformation is the eutectoid reaction for the decomposition of supersaturated austenite into stable κ-carbide and ferrite phases at temperatures below 700℃. The ferrite and κ-carbide are in the form of pearlite lamellae.

Keywords: austenite, austenite twin layers, κ-carbide, twins

Procedia PDF Downloads 197
158 Synthesis of Amorphous Nanosilica Anode Material from Philippine Waste Rice Hull for Lithium Battery Application

Authors: Emie A. Salamangkit-Mirasol, Rinlee Butch M. Cervera

Abstract:

Rice hull or rice husk (RH) is an agricultural waste obtained from milling rice grains. Since RH has no commercial value and is difficult to use in agriculture, its volume is often reduced through open field burning which is an environmental hazard. In this study, amorphous nanosilica from Philippine waste RH was prepared via acid precipitation method. The synthesized samples were fully characterized for its microstructural properties. X-ray diffraction pattern reveals that the structure of the prepared sample is amorphous in nature while Fourier transform infrared spectrum showed the different vibration bands of the synthesized sample. Scanning electron microscopy (SEM) and particle size analysis (PSA) confirmed the presence of agglomerated silica particles. On the other hand, transmission electron microscopy (TEM) revealed an amorphous sample with grain sizes of about 5 to 20 nanometer range and has about 95 % purity according to EDS analyses. The elemental mapping also suggests that leaching of rice hull ash effectively removed the metallic impurity such as potassium element in the material. Hence, amorphous nanosilica was successfully prepared via a low-cost acid precipitation method from Philippine waste rice hull. In addition, initial electrode performance of the synthesized samples as an anode material in Lithium Battery have been investigated.

Keywords: agricultural waste, anode material, nanosilica, rice hull

Procedia PDF Downloads 257