Search results for: thick cylinder
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 690

Search results for: thick cylinder

630 Transient Hygrothermoelastic Behavior in an Infinite Annular Cylinder with Internal Heat Generation by Linear Dependence Theory of Coupled Heat and Moisture

Authors: Tasneem Firdous Islam, G. D. Kedar

Abstract:

The aim of this paper is to study the effect of internal heat generation in a transient infinitely long annular cylinder subjected to hygrothermal loadings. The linear dependence theory of moisture and temperature is derived based on Dufour and Soret effect. The meticulous solutions of temperature, moisture, and thermal stresses are procured by using the Hankel transform technique. The influence of the internal heat source on the radial aspect is examined for coupled and uncoupled cases. In the present study, the composite material T300/5208 is considered, and the coupled and uncoupled cases are analyzed. The results obtained are computed numerically and illustrated graphically.

Keywords: temperature, moisture, hygrothermoelasticity, internal heat generation, annular cylinder

Procedia PDF Downloads 86
629 Framework for Integrating Big Data and Thick Data: Understanding Customers Better

Authors: Nikita Valluri, Vatcharaporn Esichaikul

Abstract:

With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.

Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data

Procedia PDF Downloads 132
628 Free Convective Flow in a Vertical Cylinder with Heat Sink: A Numerical Study

Authors: Emmanuel Omokhuale

Abstract:

A mathematical model is presented to study free convective boundary layer flow in a semi-infinite vertical cylinder with heat sink effect in a porous medium. The governing dimensional governing partial differential equations (PDEs) with corresponding initial and boundary conditions are approximated and solved numerically employing finite difference method (FDM) the implicit type. Stability and convergence of the scheme are also established. Furthermore, the influence of significant physical parameters on the flow characteristics was analysed and shown graphically. The obtained results are benchmarked with previously published works in order to access the accuracy of the numerical method and found to be in good agreement.

Keywords: free convection flow, vertical cylinder, implicit finite difference method, heat sink and porous medium

Procedia PDF Downloads 100
627 A Simplified Method to Assess the Damage of an Immersed Cylinder Subjected to Underwater Explosion

Authors: Kevin Brochard, Herve Le Sourne, Guillaume Barras

Abstract:

The design of a submarine’s hull is crucial for its operability and crew’s safety, but also complex. Indeed, engineers need to balance lightness, acoustic discretion and resistance to both immersion pressure and environmental attacks. Submarine explosions represent a first-rate threat for the integrity of the hull, whose behavior needs to be properly analyzed. The presented work is focused on the development of a simplified analytical method to study the structural response of a deeply immersed cylinder submitted to an underwater explosion. This method aims to provide engineers a quick estimation of the resulting damage, allowing them to simulate a large number of explosion scenarios. The present research relies on the so-called plastic string on plastic foundation model. A two-dimensional boundary value problem for a cylindrical shell is converted to an equivalent one-dimensional problem of a plastic string resting on a non-linear plastic foundation. For this purpose, equivalence parameters are defined and evaluated by making assumptions on the shape of the displacement and velocity field in the cross-sectional plane of the cylinder. Closed-form solutions for the deformation and velocity profile of the shell are obtained for explosive loading, and compare well with numerical and experimental results. However, the plastic-string model has not yet been adapted for a cylinder in immersion subjected to an explosive loading. In fact, the effects of fluid-structure interaction have to be taken into account. Moreover, when an underwater explosion occurs, several pressure waves are emitted by the gas bubble pulsations, called secondary waves. The corresponding loads, which may produce significant damages to the cylinder, must also be accounted for. The analytical developments carried out to solve the above problem of a shock wave impacting a cylinder, considering fluid-structure interaction will be presented for an unstiffened cylinder. The resulting deformations are compared to experimental and numerical results for different shock factors and different standoff distances.

Keywords: immersed cylinder, rigid plastic material, shock loading, underwater explosion

Procedia PDF Downloads 289
626 Effect of Thermal Radiation on Flow, Heat, and Mass Transfer of a Nanofluid over a Stretching Horizontal Cylinder Embedded in a Porous Medium with Suction/Injection

Authors: Elsayed M. A. Elbashbeshy, T. G. Emam, M. S. El-Azab, K. M. Abdelgaber

Abstract:

The effect of thermal radiation on flow, heat and mass transfer of an incompressible viscous nanofluid over a stretching horizontal cylinder embedded in a porous medium with suction/injection is discussed numerically. The governing boundary layer equations are reduced to a system of ordinary differential equations. Mathematica has been used to solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made with previously published results in some special cases, and found to be in a good agreement.

Keywords: laminar flow, boundary layer, stretching horizontal cylinder, thermal radiation, suction/injection, nanofluid

Procedia PDF Downloads 357
625 Non-Newtonian Fluid Flow Simulation for a Vertical Plate and a Square Cylinder Pair

Authors: Anamika Paul, Sudipto Sarkar

Abstract:

The flow behaviour of non-Newtonian fluid is quite complicated, although both the pseudoplastic (n < 1, n being the power index) and dilatant (n > 1) fluids under this category are used immensely in chemical and process industries. A limited research work is carried out for flow over a bluff body in non-Newtonian flow environment. In the present numerical simulation we control the vortices of a square cylinder by placing an upstream vertical splitter plate for pseudoplastic (n=0.8), Newtonian (n=1) and dilatant (n=1.2) fluids. The position of the upstream plate is also varied to calculate the critical distance between the plate and cylinder, below which the cylinder vortex shedding suppresses. Here the Reynolds number is considered as Re = 150 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid), which comes under laminar periodic vortex shedding regime. The vertical plate is having a dimension of 0.5a × 0.05a and it is placed at the cylinder centre-line. Gambit 2.2.30 is used to construct the flow domain and to impose the boundary conditions. In detail, we imposed velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. The unsteady 2-D Navier Stokes equations in fully conservative form are then discretized in second-order spatial and first-order temporal form. These discretized equations are then solved by Ansys Fluent 14.5 implementing SIMPLE algorithm written in finite volume method. Here, fine meshing is used surrounding the plate and cylinder. Away from the cylinder, the grids are slowly stretched out in all directions. To get an account of mesh quality, a total of 297 × 208 grid points are used for G/a = 3 (G being the gap between the plate and cylinder) in the streamwise and flow-normal directions respectively after a grid independent study. The computed mean flow quantities obtained from Newtonian flow are agreed well with the available literatures. The results are depicted with the help of instantaneous and time-averaged flow fields. Qualitative and quantitative noteworthy differences are obtained in the flow field with the changes in rheology of fluid. Also, aerodynamic forces and vortex shedding frequencies differ with the gap-ratio and power index of the fluid. We can conclude from the present simulation that fluent is capable to capture the vortex dynamics of unsteady laminar flow regime even in the non-Newtonian flow environment.

Keywords: CFD, critical gap-ratio, splitter plate, wake-wake interactions, dilatant, pseudoplastic

Procedia PDF Downloads 92
624 Influence of Flame-Holder on Existence Important Parameters in a Duct Combustion Simulator

Authors: Mohammad Mahdi Doustdar, Mohammad Mojtahedpoor

Abstract:

The effects of flame-holder position, the ratio of flame holder diameter to combustion chamber diameter and injection angle on fuel propulsive droplets sizing and effective mass fraction have been studied by a cold flow. We named the mass of fuel vapor inside the flammability limit as the effective mass fraction. An empty cylinder as well as a flame-holder which are as a simulator for duct combustion has been considered. The airflow comes into the cylinder from one side and injection operation will be done by four nozzles which are located on the entrance of cylinder. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multi phase, multi component code for the analysis of chemically reacting flows with sprays, is used.

Keywords: KIVA-3V, flame-holder, duct combustion, effective mass fraction, mean diameter of droplets

Procedia PDF Downloads 589
623 Numerical Study of Rayleight Number and Eccentricity Effect on Free Convection Fluid Flow and Heat Transfer of Annulus

Authors: Ali Reza Tahavvor‚ Saeed Hosseini, Behnam Amiri

Abstract:

Concentric and eccentric annulus is used frequently in technical and industrial applications such as nuclear reactors, thermal storage system and etc. In this paper, computational fluid dynamics (CFD) is used to investigate two dimensional free convection of laminar flow in annulus with isotherm cylinders surface and cooler inner surface. Problem studied in thirty different cases. Due to natural convection continuity and momentum equations are coupled and must be solved simultaneously. Finite volume method is used for solving governing equations. The purpose was to obtain the eccentricity effect on Nusselt number in different Rayleight numbers, so streamlines and temperature fields must be determined. Results shown that the highest Nusselt number values occurs in degree of eccentricity equal to 0.5 upward for inner cylinder and degree of eccentricity equal to 0.3 upward for outer cylinder. Side eccentricity reduces the outer cylinder Nusselt number but increases inner cylinder Nusselt number. The trend in variation of Nusselt number with respect to eccentricity remain similar in different Rayleight numbers. Correlations are included to calculate the Nusselt number of the cylinders.

Keywords: natural convection, concentric, eccentric, Nusselt number, annulus

Procedia PDF Downloads 337
622 Numerical Study of Natural Convection in a Nanofluid-Filled Vertical Cylinder under an External Magnetic Field

Authors: M. Maache, R. Bessaih

Abstract:

In this study, the effect of the magnetic field direction on the free convection heat transfer in a vertical cylinder filled with an Al₂O₃ nanofluid is investigated numerically. The external magnetic field is applied in either direction axial and radial on a cylinder having an aspect ratio H/R0=5, bounded by the top and the bottom disks at temperatures Tc and Th and by an adiabatic side wall. The equations of continuity, Navier Stocks and energy are non-dimensionalized and then discretized by the finite volume method. A computer program based on the SIMPLER algorithm is developed and compared with the numerical results found in the literature. The numerical investigation is carried out for different governing parameters namely: The Hartmann number (Ha=0, 5, 10, …, 40), nanoparticles volume fraction (ϕ=0, 0.025, …,0.1) and Rayleigh number (Ra=103, Ra=104 and Ra=105). The behavior of average Nusselt number, streamlines and temperature contours are illustrated. The results revel that the average Nusselt number increases with an increase of the Rayleigh number but it decreases with an increase in the Hartmann number. Depending on the magnetic field direction and on the values of Hartmann and Rayleigh numbers, an increase of the solid volume fraction may result enhancement or deterioration of the heat transfer performance in the nanofluid.

Keywords: natural convection, nanofluid, magnetic field, vertical cylinder

Procedia PDF Downloads 290
621 Experiment Study on the Influence of Tool Materials on the Drilling of Thick Stacked Plate of 2219 Aluminum Alloy

Authors: G. H. Li, M. Liu, H. J. Qi, Q. Zhu, W. Z. He

Abstract:

The drilling and riveting processes are widely used in the assembly of carrier rocket, which makes the efficiency and quality of drilling become the important factor affecting the assembly process. According to the problem existing in the drilling of thick stacked plate (thickness larger than 10mm) of carrier rocket, such as drill break, large noise and burr etc., experimental study of the influence of tool material on the drilling was carried out. The cutting force was measured by a piezoelectric dynamometer, the aperture was measured with an outline projector, and the burr is observed and measured by a digital stereo microscope. Through the measurement, the effects of tool material on the drilling were analyzed from the aspects of drilling force, diameter, and burr. The results show that, compared with carbide drill and coated carbide one, the drilling force of high speed steel is larger. But, the application of high speed steel also has some advantages, e.g. a higher number of hole can be obtained, the height of burr is small, the exit is smooth and the slim burr is less, and the tool experiences wear but not fracture. Therefore, the high speed steel tool is suitable for the drilling of thick stacked plate of 2219 Aluminum alloy.

Keywords: 2219 aluminum alloy, thick stacked plate, drilling, tool material

Procedia PDF Downloads 205
620 Unsteady Forced Convection Flow and Heat Transfer Past a Blunt Headed Semi-Circular Cylinder at Low Reynolds Numbers

Authors: Y. El Khchine, M. Sriti

Abstract:

In the present work, the forced convection heat transfer and fluid flow past an unconfined semi-circular cylinder is investigated. The two-dimensional simulation is employed for Reynolds numbers ranging from 10 ≤ Re ≤ 200, employing air (Pr = 0.71) as an operating fluid with Newtonian constant physics property. Continuity, momentum, and energy equations with appropriate boundary conditions are solved using the Computational Fluid Dynamics (CFD) solver Ansys Fluent. Various parameters flow such as lift, drag, pressure, skin friction coefficients, Nusselt number, Strouhal number, and vortex strength are calculated. The transition from steady to time-periodic flow occurs between Re=60 and 80. The effect of the Reynolds number on heat transfer is discussed. Finally, a developed correlation of Nusselt and Strouhal numbers is presented.

Keywords: forced convection, semi-circular cylinder, Nusselt number, Prandtl number

Procedia PDF Downloads 85
619 Effects of Viscous Dissipation on Free Convection Boundary Layer Flow towards a Horizontal Circular Cylinder

Authors: Muhammad Khairul Anuar Mohamed, Mohd Zuki Salleh, Anuar Ishak, Nor Aida Zuraimi Md Noar

Abstract:

In this study, the numerical investigation of viscous dissipation on convective boundary layer flow towards a horizontal circular cylinder with constant wall temperature is considered. The transformed partial differential equations are solved numerically by using an implicit finite-difference scheme known as the Keller-box method. Numerical solutions are obtained for the reduced Nusselt number and the skin friction coefficient as well as the velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number and Eckert number are analyzed and discussed. The results in this paper is original and important for the researchers working in the area of boundary layer flow and this can be used as reference and also as complement comparison purpose in future.

Keywords: free convection, horizontal circular cylinder, viscous dissipation, convective boundary layer flow

Procedia PDF Downloads 414
618 Studies on H2S Gas Sensing Performance of Al2O3-Doped ZnO Thick Films at Ppb Level

Authors: M. K. Deore

Abstract:

The thick films of undoped and Al2O3 doped- ZnO were prepared by screen printing technique. AR grade (99.9 % pure) Zinc Oxide powder were mixed mechanochemically in acetone medium with Aluminium Chloride (AlCl2) material in various weight percentages such as 0.5, 1, 3 and 5 wt % to obtain Al2O3 - ZnO composite. The prepared materials were sintered at 1000oC for 12h in air ambience and ball milled to ensure sufficiently fine particle size. The electrical, structural and morphological properties of the films were investigated. The X-ray diffraction analysis of pure and doped ZnO shows the polycrystalline nature. The surface morphology of the films was studied by SEM. The final composition of each film was determined by EDAX analysis. The gas response of undoped and Al2O3- doped ZnO films were studied for different gases such as CO, H2, NH3, and H2S at operating temperature ranging from 50 oC to 450 o C. The pure film shows the response to H2S gas (500ppm) at 300oC while the film doped with 3 wt.% Al2O3 gives the good response to H2S gas(ppb) at 350oC. The selectivity, response and recovery time of the sensor were measured and presented.

Keywords: thick films, ZnO-Al2O3, H2S gas, sensitivity, selectivity, response and recovery time

Procedia PDF Downloads 397
617 Relativistic Effects of Rotation

Authors: Yin Rui, Yin Ming, Wang Yang

Abstract:

For a rotational reference frame of the theory of special relativity, the critical radius is defined as the distance from the axis to the point where the tangential velocity is equal to the speed of light, and the critical cylinder as the set of all points separated from the axis by this critical radius. Based on these terms, two relativistic effects of rotation are discovered: (i) the tangential velocity in the region of Outside Critical Cylinder (OCC) is not superluminal due to the existence of space-time exchange; (ii) some of the physical quantities of the rotational body have an opposite mathematic sign at OCC versus those at Inside Critical Cylinder (ICC), which is termed as the Critical Cylindrical Effect (CCE). The laboratory experiments demonstrate that the repulsive force exerted on an anion by electrons will change to an attractive force by the electrons in precession while the anion is at OCC of the precession. Thirty-six screenshots from four experimental videos are provided. Theoretical proofs for both space-time exchange and CCE are then presented. The CCEs of field force are also discussed.

Keywords: critical radius, critical cylindrical effect, special relativity, space-time exchange

Procedia PDF Downloads 16
616 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy

Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos

Abstract:

Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.

Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree

Procedia PDF Downloads 116
615 Evaluation of Sloshing in Process Equipment for Floating Cryogenic Application

Authors: Bo Jin

Abstract:

A variety of process equipment having flow in and out is widely used in industrial land-based cryogenic facilities. In some of this equipment, such as vapor-liquid separator, a liquid level is established during the steady operation. As the implementation of such industrial processes extends to off-shore floating facilities, it is important to investigate the effect of sea motion on the process equipment partially filled with liquid. One important aspect to consider is the occurrence of sloshing therein. The flow characteristics are different from the classical study of sloshing, where the fluid is enclosed inside a vessel (e.g., storage tank) with no flow in or out. Liquid inside process equipment continuously flows in and out of the system. To understand this key difference, a Computational Fluid Dynamics (CFD) model is developed to simulate the liquid motion inside a partially filled cylinder with and without continuous flow in and out. For a partially filled vertical cylinder without any continuous flow in and out, the CFD model is found to be able to capture the well-known sloshing behavior documented in the literature. For the cylinder with a continuous steady flow in and out, the CFD simulation results demonstrate that the continuous flow suppresses sloshing. Given typical cryogenic fluid has very low viscosity, an analysis based on potential flow theory is developed to explain why flow into and out of the cylinder changes the natural frequency of the system and thereby suppresses sloshing. This analysis further validates the CFD results.

Keywords: computational fluid dynamics, CFD, cryogenic process equipment, off-shore floating processes, sloshing

Procedia PDF Downloads 108
614 Studying the Effect of Froude Number and Densimetric Froude Number on Local Scours around Circular Bridge Piers

Authors: Md Abdullah Al Faruque

Abstract:

A very large percentage of bridge failures are attributed to scouring around bridge piers and this directly influences public safety. Experiments are carried out in a 12-m long rectangular open channel flume made of transparent tempered glass. A 300 mm thick bed made up of sand particles is leveled horizontally to create the test bed and a 50 mm hollow plastic cylinder is used as a model bridge pier. Tests are carried out with varying flow depths and velocities. Data points of various scour parameters such as scour depth, width, and length are collected based on different flow conditions and visual observations of changes in the stream bed downstream the bridge pier are also made as the scour progresses. Result shows that all three major flow characteristics (flow depth, Froude number and densimetric Froude number) have one way or other affect the scour profile.

Keywords: bridge pier scour, densimetric Froude number, flow depth, Froude number, sand

Procedia PDF Downloads 144
613 Laminar Periodic Vortex Shedding over a Square Cylinder in Pseudoplastic Fluid Flow

Authors: Shubham Kumar, Chaitanya Goswami, Sudipto Sarkar

Abstract:

Pseudoplastic (n < 1, n being the power index) fluid flow can be found in food, pharmaceutical and process industries and has very complex flow nature. To our knowledge, inadequate research work has been done in this kind of flow even at very low Reynolds numbers. Here, in the present computation, we have considered unsteady laminar flow over a square cylinder in pseudoplastic flow environment. For Newtonian fluid flow, this laminar vortex shedding range lies between Re = 47-180. In this problem, we consider Re = 100 (Re = U∞ a/ ν, U∞ is the free stream velocity of the flow, a is the side of the cylinder and ν is the kinematic viscosity of the fluid). The pseudoplastic fluid range has been chosen from close to the Newtonian fluid (n = 0.8) to very high pseudoplasticity (n = 0.1). The flow domain is constituted using Gambit 2.2.30 and this software is also used to generate mesh and to impose the boundary conditions. For all places, the domain size is considered as 36a × 16a with 280 ×192 grid point in the streamwise and flow normal directions respectively. The domain and the grid points are selected after a thorough grid independent study at n = 1.0. Fine and equal grid spacing is used close to the square cylinder to capture the upper and lower shear layers shed from the cylinder. Away from the cylinder the grid is unequal in size and stretched out in all direction. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition du/dy = 0, v = 0) at upper and lower domain boundary conditions are used for this simulation. Wall boundary (u = v = 0) is considered on the square cylinder surface. Fully conservative 2-D unsteady Navier-Stokes equations are discretized and then solved by Ansys Fluent 14.5 to understand the flow nature. SIMPLE algorithm written in finite volume method is selected for this purpose which is the default solver in scripted in Fluent. The result obtained for Newtonian fluid flow agrees well with previous work supporting Fluent’s usefulness in academic research. A minute analysis of instantaneous and time averaged flow field is obtained both for Newtonian and pseudoplastic fluid flow. It has been observed that drag coefficient increases continuously with the reduced value of n. Also, the vortex shedding phenomenon changes at n = 0.4 due to flow instability. These are some of the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment.

Keywords: Ansys Fluent, CFD, periodic vortex shedding, pseudoplastic fluid flow

Procedia PDF Downloads 150
612 Modeling of Combustion Process in the Piston Aircraft Engine Using a MCFM-3Z Model

Authors: Marcin Szlachetka, Konrad Pietrykowski

Abstract:

Modeling of a combustion process in a 9-cylinder aircraft engine is presented. The simulations of the combustion process in the IC engine have provided the information on the spatial and time distributions of selected quantities within the combustion chamber of the engine. The numerical analysis results have been compared with the results of indication process of the engine on the test stand. Modeling of combustion process an auto-ignited IC engine in the AVL Fire was carried out within the study. For the calculations, a ECFM-3Z model was used. Verification of simulation results was carried out by comparison of the pressure in the cylinder. The courses of indicated pressure, obtained from the simulations and during the engine tests mounted on a test stand were compared. The engine was braked by the propeller, which results in an adequate external power characteristics. The test object is a modified ASz-62IR engine with the injection system. The engine was running at take-off power. To check the optimum ignition timing regarding power, calculations, tests were performed for 7 different moments of ignition. The analyses of temperature distribution in the cylinder depending on the moments of ignition were carried out. Additional the course of pressure in the cylinder at different angles of ignition delays of the second spark plug were examined. The swirling of the mixture in the combustion chamber was also analysed. It has been shown that the largest vortexes occur in the middle of the chamber, and gets smaller, closer to the combustion chamber walls. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: CFD, combustion, internal combustion engine, aircraft engine

Procedia PDF Downloads 338
611 Numerical Simulation on Two Components Particles Flow in Fluidized Bed

Authors: Wang Heng, Zhong Zhaoping, Guo Feihong, Wang Jia, Wang Xiaoyi

Abstract:

Flow of gas and particles in fluidized beds is complex and chaotic, which is difficult to measure and analyze by experiments. Some bed materials with bad fluidized performance always fluidize with fluidized medium. The material and the fluidized medium are different in many properties such as density, size and shape. These factors make the dynamic process more complex and the experiment research more limited. Numerical simulation is an efficient way to describe the process of gas-solid flow in fluidized bed. One of the most popular numerical simulation methods is CFD-DEM, i.e., computational fluid dynamics-discrete element method. The shapes of particles are always simplified as sphere in most researches. Although sphere-shaped particles make the calculation of particle uncomplicated, the effects of different shapes are disregarded. However, in practical applications, the two-component systems in fluidized bed also contain sphere particles and non-sphere particles. Therefore, it is needed to study the two component flow of sphere particles and non-sphere particles. In this paper, the flows of mixing were simulated as the flow of molding biomass particles and quartz in fluidized bad. The integrated model was built on an Eulerian–Lagrangian approach which was improved to suit the non-sphere particles. The constructed methods of cylinder-shaped particles were different when it came to different numerical methods. Each cylinder-shaped particle was constructed as an agglomerate of fictitious small particles in CFD part, which means the small fictitious particles gathered but not combined with each other. The diameter of a fictitious particle d_fic and its solid volume fraction inside a cylinder-shaped particle α_fic, which is called the fictitious volume fraction, are introduced to modify the drag coefficient β by introducing the volume fraction of the cylinder-shaped particles α_cld and sphere-shaped particles α_sph. In a computational cell, the void ε, can be expressed as ε=1-〖α_cld α〗_fic-α_sph. The Ergun equation and the Wen and Yu equation were used to calculate β. While in DEM method, cylinder-shaped particles were built by multi-sphere method, in which small sphere element merged with each other. Soft sphere model was using to get the connect force between particles. The total connect force of cylinder-shaped particle was calculated as the sum of the small sphere particles’ forces. The model (size=1×0.15×0.032 mm3) contained 420000 sphere-shaped particles (diameter=0.8 mm, density=1350 kg/m3) and 60 cylinder-shaped particles (diameter=10 mm, length=10 mm, density=2650 kg/m3). Each cylinder-shaped particle was constructed by 2072 small sphere-shaped particles (d=0.8 mm) in CFD mesh and 768 sphere-shaped particles (d=3 mm) in DEM mesh. The length of CFD and DEM cells are 1 mm and 2 mm. Superficial gas velocity was changed in different models as 1.0 m/s, 1.5 m/s, 2.0m/s. The results of simulation were compared with the experimental results. The movements of particles were regularly as fountain. The effect of superficial gas velocity on cylinder-shaped particles was stronger than that of sphere-shaped particles. The result proved this present work provided a effective approach to simulation the flow of two component particles.

Keywords: computational fluid dynamics, discrete element method, fluidized bed, multiphase flow

Procedia PDF Downloads 288
610 Operation Cycle Model of ASz62IR Radial Aircraft Engine

Authors: M. Duk, L. Grabowski, P. Magryta

Abstract:

Today's very important element relating to air transport is the environment impact issues. Nowadays there are no emissions standards for turbine and piston engines used in air transport. However, it should be noticed that the environmental effect in the form of exhaust gases from aircraft engines should be as small as possible. For this purpose, R&D centers often use special software to simulate and to estimate the negative effect of engine working process. For cooperation between the Lublin University of Technology and the Polish aviation company WSK "PZL-KALISZ" S.A., to achieve more effective operation of the ASz62IR engine, one of such tools have been used. The AVL Boost software allows to perform 1D simulations of combustion process of piston engines. ASz62IR is a nine-cylinder aircraft engine in a radial configuration. In order to analyze the impact of its working process on the environment, the mathematical model in the AVL Boost software have been made. This model contains, among others, model of the operation cycle of the cylinders. This model was based on a volume change in combustion chamber according to the reciprocating movement of a piston. The simplifications that all of the pistons move identically was assumed. The changes in cylinder volume during an operating cycle were specified. Those changes were important to determine the energy balance of a cylinder in an internal combustion engine which is fundamental for a model of the operating cycle. The calculations for cylinder thermodynamic state were based on the first law of thermodynamics. The change in the mass in the cylinder was calculated from the sum of inflowing and outflowing masses including: cylinder internal energy, heat from the fuel, heat losses, mass in cylinder, cylinder pressure and volume, blowdown enthalpy, evaporation heat etc. The model assumed that the amount of heat released in combustion process was calculated from the pace of combustion, using Vibe model. For gas exchange, it was also important to consider heat transfer in inlet and outlet channels because of much higher values there than for flow in a straight pipe. This results from high values of heat exchange coefficients and temperature coefficients near valves and valve seats. A Zapf modified model of heat exchange was used. To use the model with the flight scenarios, the impact of flight altitude on engine performance has been analyze. It was assumed that the pressure and temperature at the inlet and outlet correspond to the values resulting from the model for International Standard Atmosphere (ISA). Comparing this model of operation cycle with the others submodels of the ASz62IR engine, it could be noticed, that a full analysis of the performance of the engine, according to the ISA conditions, can be made. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under

Keywords: aviation propulsion, AVL Boost, engine model, operation cycle, aircraft engine

Procedia PDF Downloads 259
609 Design Manufacture and Testing of a Combined Alpha-Beta Double Piston Stirling Engine

Authors: A. Calvin Antony, Sakthi Kumar Arul Prakash, V. R. Sanal Kumar

Abstract:

In this paper a unique alpha-beta double piston 'stirling engine' is designed, manufactured and conducted laboratory test to ameliorate the efficiency of the stirling engine. The paper focuses on alpha and beta type engines, capturing their benefits and eradicating their short comings; along with the output observed from the flywheel. In this model alpha engine is kinematically with a piston cylinder arrangement which works quite like a beta engine. The piston of the new cylinder is so designed that it replicates a glued displacer and power piston as similar to that of beta engine. The bigger part of the piston is the power piston, which has a gap around it, while the smaller part of the piston is tightly fit in the cylinder and acts like the displacer piston. We observed that the alpha-beta double piston stirling engine produces 25% increase in power compare to a conventional alpha stirling engine. This working model is a pointer towards for the design and development of an alpha-beta double piston Stirling engine for industrial applications for producing electricity from the heat producing exhaust gases.

Keywords: alpha-beta double piston stirling engine , alpha stirling engine , beta double piston stirling engine , electricity from stirling engine

Procedia PDF Downloads 509
608 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall

Authors: Sanjib Kr Pal, S. Bhattacharyya

Abstract:

Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.

Keywords: conjugate heat transfer, mixed convection, nano fluid, wall waviness

Procedia PDF Downloads 233
607 Multiple Negative-Differential Resistance Regions Based on AlN/GaN Resonant Tunneling Structures by the Vertical Growth of Molecular Beam Epitaxy

Authors: Yao Jiajia, Wu Guanlin, LIU Fang, Xue Junshuai, Zhang Jincheng, Hao Yue

Abstract:

Resonant tunneling diodes (RTDs) based on GaN have been extensively studied. However, no results of multiple logic states achieved by RTDs were reported by the methods of epitaxy in the GaN materials. In this paper, the multiple negative-differential resistance regions by combining two discrete double-barrier RTDs in series have been first demonstrated. Plasma-assisted molecular beam epitaxy (PA-MBE) was used to grow structures consisting of two vertical RTDs. The substrate was a GaN-on-sapphire template. Each resonant tunneling structure was composed of a double barrier of AlN and a single well of GaN with undoped 4-nm space layers of GaN on each side. The AlN barriers were 1.5 nm thick, and the GaN well was 2 nm thick. The resonant tunneling structures were separated from each other by 30-nm thick n+ GaN layers. The bottom and top layers of the structures, grown neighboring to the spacer layers that consist of 200-nm-thick n+ GaN. These devices with two tunneling structures exhibited uniform peaks and valleys current and also had two negative differential resistance NDR regions equally spaced in bias voltage. The current-voltage (I-V) characteristics of resonant tunneling structures with diameters of 1 and 2 μm were analyzed in this study. These structures exhibit three stable operating points, which are investigated in detail. This research demonstrates that using molecular beam epitaxy MBE to vertically grow multiple resonant tunneling structures is a promising method for achieving multiple negative differential resistance regions and stable logic states. These findings have significant implications for the development of digital circuits capable of multi-value logic, which can be achieved with a small number of devices.

Keywords: GaN, AlN, RTDs, MBE, logic state

Procedia PDF Downloads 57
606 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend

Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes

Abstract:

This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.

Keywords: diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions

Procedia PDF Downloads 329
605 Annular Axi-Symmetric Stagnation Flow of Electrically Conducting Fluid on a Moving Cylinder in the Presence of Axial Magnetic Field

Authors: Deva Kanta Phukan

Abstract:

An attempt is made where an electrically conducting fluid is injected from a fixed outer cylindrical casing onto an inner moving cylindrical rod. A magnetic field is applied parallel to the axis of the cylindrical rod. The basic governing set of partial differential equations for conservation of mass and momentum are reduced to a set of non-linear ordinary differential equation by introducing similarity transformation, which are integrated numerically. A perturbation solution for the case of large magnetic parameter is derived for constant Reynolds number.

Keywords: annular axi-symmetric stagnation flow, conducting fluid, magnetic field, moving cylinder

Procedia PDF Downloads 373
604 A Novel Combustion Engine, Design and Modeling

Authors: M. A. Effati, M. R. Hojjati, M. Razmdideh

Abstract:

Nowadays, engine developments have focused on internal combustion engine design call for increased engine power, reduced engine size and improved fuel economy, simultaneously. In this paper, a novel design for combustion engine is proposed. Two combustion chambers were designed in two sides of cylinder. Piston was designed in a way that two sides of piston would transfer heat energy due to combustion to linear motion. This motion would convert to rotary motion through the designed mechanism connected to connecting rod. Connecting rod operation was analyzed to evaluate applied stress in 3000, 4500 and 6000 rpm. Boundary conditions including generated pressure in each side of cylinder in these 3 situations was calculated.

Keywords: combustion engine, design, finite element method, modeling

Procedia PDF Downloads 476
603 Experimental Investigations of a Modified Taylor-Couette Flow

Authors: Ahmed Esmael, Ali El Shrif

Abstract:

In this study the instability problem of a modified Taylor-Couette flow between two vertical coaxial cylinders of radius R1, R2 is considered. The modification is based on the wavy shape of the inner cylinder surface, where inner cylinders with different surface amplitude and wavelength are used. The study aims to discover the effect of the inner surface geometry on the instability phenomenon that undergoes Taylor-Couette flow. The study reveals that the transition processes depends strongly on the amplitude and wavelength of the inner cylinder surface and resulting in flow instabilities that are strongly different from that encountered in the case of the classical Taylor-Couette flow.

Keywords: hydrodynamic instability, Modified Taylor-Couette Flow, turbulence, Taylor vortices

Procedia PDF Downloads 409
602 Experimental Investigations on the Mechanism of Stratified Liquid Mixing in a Cylinder

Authors: Chai Mingming, Li Lei, Lu Xiaoxia

Abstract:

In this paper, the mechanism of stratified liquids’ mixing in a cylinder is investigated. It is focused on the effects of Rayleigh-Taylor Instability (RTI) and rotation of the cylinder on liquid interface mixing. For miscible liquids, Planar Laser Induced Fluorescence (PLIF) technique is applied to record the concentration field for one liquid. Intensity of Segregation (IOS) is used to describe the mixing status. For immiscible liquids, High Speed Camera is adopted to record the development of the interface. The experiment of RTI indicates that it plays a great role in the mixing process, and meanwhile the large-scale mixing is triggered, and subsequently the span of the stripes decreases, showing that the mesoscale mixing is coming into being. The rotation experiments show that the spin-down process has a great role in liquid mixing, during which the upper liquid falls down rapidly along the wall and crashes into the lower liquid. During this process, a lot of interface instabilities are excited. Liquids mix rapidly in the spin-down process. It can be concluded that no matter what ways have been adopted to speed up liquid mixing, the fundamental reason is the interface instabilities which increase the area of the interface between liquids and increase the relative velocity of the two liquids.

Keywords: interface instability, liquid mixing, Rayleigh-Taylor Instability, spin-down process, spin-up process

Procedia PDF Downloads 267
601 Individual Cylinder Ignition Advance Control Algorithms of the Aircraft Piston Engine

Authors: G. Barański, P. Kacejko, M. Wendeker

Abstract:

The impact of the ignition advance control algorithms of the ASz-62IR-16X aircraft piston engine on a combustion process has been presented in this paper. This aircraft engine is a nine-cylinder 1000 hp engine with a special electronic control ignition system. This engine has two spark plugs per cylinder with an ignition advance angle dependent on load and the rotational speed of the crankshaft. Accordingly, in most cases, these angles are not optimal for power generated. The scope of this paper is focused on developing algorithms to control the ignition advance angle in an electronic ignition control system of an engine. For this type of engine, i.e. radial engine, an ignition advance angle should be controlled independently for each cylinder because of the design of such an engine and its crankshaft system. The ignition advance angle is controlled in an open-loop way, which means that the control signal (i.e. ignition advance angle) is determined according to the previously developed maps, i.e. recorded tables of the correlation between the ignition advance angle and engine speed and load. Load can be measured by engine crankshaft speed or intake manifold pressure. Due to a limited memory of a controller, the impact of other independent variables (such as cylinder head temperature or knock) on the ignition advance angle is given as a series of one-dimensional arrays known as corrective characteristics. The value of the ignition advance angle specified combines the value calculated from the primary characteristics and several correction factors calculated from correction characteristics. Individual cylinder control can proceed in line with certain indicators determined from pressure registered in a combustion chamber. Control is assumed to be based on the following indicators: maximum pressure, maximum pressure angle, indicated mean effective pressure. Additionally, a knocking combustion indicator was defined. Individual control can be applied to a single set of spark plugs only, which results from two fundamental ideas behind designing a control system. Independent operation of two ignition control systems – if two control systems operate simultaneously. It is assumed that the entire individual control should be performed for a front spark plug only and a rear spark plug shall be controlled with a fixed (or specific) offset relative to the front one or from a reference map. The developed algorithms will be verified by simulation and engine test sand experiments. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: algorithm, combustion process, radial engine, spark plug

Procedia PDF Downloads 264