Search results for: system dynamics model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30307

Search results for: system dynamics model

30247 A Flexible Bayesian State-Space Modelling for Population Dynamics of Wildlife and Livestock Populations

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Hans-Peter Piepho

Abstract:

We aim to model dynamics of wildlife or pastoral livestock population for understanding of their population change and hence for wildlife conservation and promoting human welfare. The study is motivated by an age-sex structured population counts in different regions of Serengeti-Mara during the period 1989-2003. Developing reliable and realistic models for population dynamics of large herbivore population can be a very complex and challenging exercise. However, the Bayesian statistical domain offers some flexible computational methods that enable the development and efficient implementation of complex population dynamics models. In this work, we have used a novel Bayesian state-space model to analyse the dynamics of topi and hartebeest populations in the Serengeti-Mara Ecosystem of East Africa. The state-space model involves survival probabilities of the animals which further depend on various factors like monthly rainfall, size of habitat, etc. that cause recent declines in numbers of the herbivore populations and potentially threaten their future population viability in the ecosystem. Our study shows that seasonal rainfall is the most important factors shaping the population size of animals and indicates the age-class which most severely affected by any change in weather conditions.

Keywords: bayesian state-space model, Markov Chain Monte Carlo, population dynamics, conservation

Procedia PDF Downloads 173
30246 Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-car Model

Authors: Quy Dang Nguyen, Reza Nakhaie Jazar

Abstract:

The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment.

Keywords: quarter-car vibrations, tire-road separation, separation analysis, separation dynamics, ride comfort, ADAMS validation

Procedia PDF Downloads 57
30245 Transmission Dynamics of Lumpy Skin Disease in Ethiopia

Authors: Wassie Molla, Klaas Frankena, Mart De Jong

Abstract:

Lumpy skin disease (LSD) is a severe viral disease of cattle, which often occurs in epidemic form. It is caused by lumpy skin disease virus of the genus capripoxvirus of family poxviridae. Mathematical models play important role in the study of infectious diseases epidemiology. They help to explain the dynamics and understand the transmission of an infectious disease within a population. Understanding the transmission dynamics of lumpy skin disease between animals is important for the implementation of effective prevention and control measures against the disease. This study was carried out in central and north-western part of Ethiopia with the objectives to understand LSD outbreak dynamics, quantify the transmission between animals and herds, and estimate the disease reproduction ratio in dominantly crop-livestock mixed and commercial herd types. Field observation and follow-up study were undertaken, and the transmission parameters were estimated based on a SIR epidemic model in which individuals are susceptible (S), infected and infectious (I), and recovered and immune or dead (R) using the final size and generalized linear model methods. The result showed that a higher morbidity was recorded in infected crop-livestock (24.1%) mixed production system herds than infected commercial production (17.5%) system herds whereas mortality was higher in intensive (4.0%) than crop-livestock (1.5%) system and the differences were statistically significant. The transmission rate among animals and between herds were 0.75 and 0.68 per week, respectively in dominantly crop-livestock production system. The transmission study undertaken in dominantly crop-livestock production system highlighted the presence of statistically significant seasonal difference in LSD transmission among animals. The reproduction numbers of LSD in dominantly crop-livestock production system were 1.06 among animals and 1.28 between herds whereas it varies from 1.03 to 1.31 among animals in commercial production system. Though the R estimated for LSD in different production systems at different localities is greater than 1, its magnitude is low implying that the disease can be easily controlled by implementing the appropriate control measures.

Keywords: commercial, crop-livestock, Ethiopia, LSD, reproduction number, transmission

Procedia PDF Downloads 260
30244 Coefficient of Performance (COP) Optimization of an R134a Cross Vane Expander Compressor Refrigeration System

Authors: Y. D. Lim, K. S. Yap, K. T. Ooi

Abstract:

Cross Vane Expander Compressor (CVEC) is a newly invented expander-compressor combined unit, where it is introduced to replace the compressor and the expansion valve in traditional refrigeration system. The mathematical model of CVEC has been developed to examine its performance, and it was found that the energy consumption of a conventional refrigeration system was reduced by as much as 18%. It is believed that energy consumption can be further reduced by optimizing the device. In this study, the coefficient of performance (COP) of CVEC has been optimized under predetermined operational parameters and constrained main design parameters. Several main design parameters of CVEC were selected to be the variables, and the optimization was done with theoretical model in a simulation program. The theoretical model consists of geometrical model, dynamic model, heat transfer model and valve dynamics model. Complex optimization method, which is a constrained, direct search and multi-variables method was used in the study. As a result, the optimization study suggested that with an appropriate combination of design parameters, a 58% COP improvement in CVEC R134a refrigeration system is possible.

Keywords: COP, cross vane expander-compressor, CVEC, design, simulation, refrigeration system, air-conditioning, R134a, multi variables

Procedia PDF Downloads 302
30243 Control of Spherical Robot with Sliding Mode

Authors: Roya Khajepour, Alireza B. Novinzadeh

Abstract:

A major issue with spherical robot is it surface shape, which is not always predictable. This means that given only the dynamic model of the robot, it is not possible to control the robot. Due to the fact that in certain conditions it is not possible to measure surface friction, control methods must be prepared for these conditions. Moreover, although spherical robot never becomes unstable or topples thanks to its special shape, since it moves by rolling it has a non-holonomic constraint at point of contact and therefore it is considered a non-holonomic system. Existence of such a point leads to complexity and non-linearity of robot's kinematic equations and makes the control problem difficult. Due to the non-linear dynamics and presence of uncertainty, the sliding-mode control is employed. The proposed method is based on Lyapunov Theory and guarantees system stability. This controller is insusceptible to external disturbances and un-modeled dynamics.

Keywords: sliding mode, spherical robot, non-holomonic constraint, system stability

Procedia PDF Downloads 353
30242 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics

Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink

Abstract:

Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.

Keywords: photovoltaic, system dynamics, technological learning, learning curve

Procedia PDF Downloads 66
30241 Complexity in Managing Higher Education Institutions in Mexico: A System Dynamics Approach

Authors: José Carlos Rodríguez, Mario Gómez, Medardo Serna

Abstract:

This paper analyses managing higher education institutions in emerging economies. The paper investigates the case of postgraduate studies development at public universities. In so doing, it adopts the complex theory approach to evaluate how postgraduate studies have evolved in these countries. The investigation suggests that the postgraduate studies sector at public universities can be seen as a complex adaptive system (CAS). Therefore, the paper adopts system dynamics (SD) methods to develop this analysis. The case of postgraduate studies at Universidad Michoacana de San Nicolás de Hidalgo in Mexico is investigated in this paper.

Keywords: complex adaptive systems, higher education institutions, Mexico, system dynamics

Procedia PDF Downloads 286
30240 Effects of Screen Time on Children from a Systems Engineering Perspective

Authors: Misagh Faezipour

Abstract:

This paper explores the effects of screen time on children from a systems engineering perspective. We reviewed literature from several related works on the effects of screen time on children to explore all factors and interrelationships that would impact children that are subjected to using long screen times. Factors such as kids' age, parent attitudes, parent screen time influence, amount of time kids spend with technology, psychosocial and physical health outcomes, reduced mental imagery, problem-solving and adaptive thinking skills, obesity, unhealthy diet, depressive symptoms, health problems, disruption in sleep behavior, decrease in physical activities, problematic relationship with mothers, language, social, emotional delays, are examples of some factors that could be either a cause or effect of screen time. A systems engineering perspective is used to explore all the factors and factor relationships that were discovered through literature. A causal model is used to illustrate a graphical representation of these factors and their relationships. Through the causal model, the factors with the highest impacts can be realized. Future work would be to develop a system dynamics model to view the dynamic behavior of the relationships and observe the impact of changes in different factors in the model. The different changes on the input of the model, such as a healthier diet or obesity rate, would depict the effect of the screen time in the model and portray the effect on the children’s health and other factors that are important, which also works as a decision support tool.

Keywords: children, causal model, screen time, systems engineering, system dynamics

Procedia PDF Downloads 118
30239 Modelling the Effect of Distancing and Wearing of Face Masks on Transmission of COVID-19 Infection Dynamics

Authors: Nurudeen Oluwasola Lasisi

Abstract:

The COVID-19 is an infection caused by coronavirus, which has been designated as a pandemic in the world. In this paper, we proposed a model to study the effect of distancing and wearing masks on the transmission of COVID-19 infection dynamics. The invariant region of the model is established. The COVID-19 free equilibrium and the reproduction number of the model were obtained. The local and global stability of the model is determined using the linearization technique method and Lyapunov method. It was found that COVID-19 free equilibrium state is locally asymptotically stable in feasible region Ω if R₀ < 1 and globally asymptomatically stable if R₀ < 1, otherwise unstable if R₀ > 1. More so, numerical analysis and simulations of the dynamics of the COVID-19 infection are presented.

Keywords: distancing, reproduction number, wearing of mask, local and global stability, modelling, transmission

Procedia PDF Downloads 106
30238 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

Authors: Mohammad A. Bani-Khaled

Abstract:

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams

Procedia PDF Downloads 392
30237 Segregation Patterns of Trees and Grass Based on a Modified Age-Structured Continuous-Space Forest Model

Authors: Jian Yang, Atsushi Yagi

Abstract:

Tree-grass coexistence system is of great importance for forest ecology. Mathematical models are being proposed to study the dynamics of tree-grass coexistence and the stability of the systems. However, few of the models concentrates on spatial dynamics of the tree-grass coexistence. In this study, we modified an age-structured continuous-space population model for forests, obtaining an age-structured continuous-space population model for the tree-grass competition model. In the model, for thermal competitions, adult trees can out-compete grass, and grass can out-compete seedlings. We mathematically studied the model to make sure tree-grass coexistence solutions exist. Numerical experiments demonstrated that a fraction of area that trees or grass occupies can affect whether the coexistence is stable or not. We also tried regulating the mortality of adult trees with other parameters and the fraction of area trees and grass occupies were fixed; results show that the mortality of adult trees is also a factor affecting the stability of the tree-grass coexistence in this model.

Keywords: population-structured models, stabilities of ecosystems, thermal competitions, tree-grass coexistence systems

Procedia PDF Downloads 122
30236 Aerodynamic Modelling of Unmanned Aerial System through Computational Fluid Dynamics: Application to the UAS-S45 Balaam

Authors: Maxime A. J. Kuitche, Ruxandra M. Botez, Arthur Guillemin

Abstract:

As the Unmanned Aerial Systems have found diverse utilities in both military and civil aviation, the necessity to obtain an accurate aerodynamic model has shown an enormous growth of interest. Recent modeling techniques are procedures using optimization algorithms and statistics that require many flight tests and are therefore extremely demanding in terms of costs. This paper presents a procedure to estimate the aerodynamic behavior of an unmanned aerial system from a numerical approach using computational fluid dynamic analysis. The study was performed using an unstructured mesh obtained from a grid convergence analysis at a Mach number of 0.14, and at an angle of attack of 0°. The flow around the aircraft was described using a standard k-ω turbulence model. Thus, the Reynold Averaged Navier-Stokes (RANS) equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45 designed and manufactured by Hydra Technologies in Mexico. The lift, the drag, and the pitching moment coefficients were obtained at different angles of attack for several flight conditions defined in terms of altitudes and Mach numbers. The results obtained from the Computational Fluid Dynamics analysis were compared with the results obtained by using the DATCOM semi-empirical procedure. This comparison has indicated that our approach is highly accurate and that the aerodynamic model obtained could be useful to estimate the flight dynamics of the UAS-S45.

Keywords: aerodynamic modelling, CFD Analysis, ANSYS FLUENT, UAS-S45

Procedia PDF Downloads 348
30235 Model Predictive Controller for Pasteurization Process

Authors: Tesfaye Alamirew Dessie

Abstract:

Our study focuses on developing a Model Predictive Controller (MPC) and evaluating it against a traditional PID for a pasteurization process. Utilizing system identification from the experimental data, the dynamics of the pasteurization process were calculated. Using best fit with data validation, residual, and stability analysis, the quality of several model architectures was evaluated. The validation data fit the auto-regressive with exogenous input (ARX322) model of the pasteurization process by roughly 80.37 percent. The ARX322 model structure was used to create MPC and PID control techniques. After comparing controller performance based on settling time, overshoot percentage, and stability analysis, it was found that MPC controllers outperform PID for those parameters.

Keywords: MPC, PID, ARX, pasteurization

Procedia PDF Downloads 123
30234 Foresight in Food Supply System in Bogota

Authors: Suarez-Puello Alejandro, Baquero-Ruiz Andrés F, Suarez-Puello Rodrigo

Abstract:

This paper discusses the results of a foresight exercise which analyzes Bogota’s fruit, vegetable and tuber supply chain strategy- described at the Food Supply and Security Master Plan (FSSMP)-to provide the inhabitants of Bogotá, Colombia, with basic food products at a fair price. The methodology consisted of using quantitative and qualitative foresight tools such as system dynamics and variable selection methods to better represent interactions among stakeholders and obtain more integral results that could shed light on this complex situation. At first, the Master Plan is an input to establish the objectives and scope of the exercise. Then, stakeholders and their relationships are identified. Later, system dynamics is used to model product, information and money flow along the fruit, vegetable and tuber supply chain. Two scenarios are presented, discussing actions by the public sector and the reactions that could be expected from the whole food supply system. Finally, these impacts are compared to the Food Supply and Security Master Plan’s objectives suggesting recommendations that could improve its execution. This foresight exercise performed at a governmental level is intended to promote the widen the use of foresight as an anticipatory, decision-making tool that offers solutions to complex problems.

Keywords: decision making, foresight, public policies, supply chain, system dynamics

Procedia PDF Downloads 407
30233 Pressure-Controlled Dynamic Equations of the PFC Model: A Mathematical Formulation

Authors: Jatupon Em-Udom, Nirand Pisutha-Arnond

Abstract:

The phase-field-crystal, PFC, approach is a density-functional-type material model with an atomic resolution on a diffusive timescale. Spatially, the model incorporates periodic nature of crystal lattices and can naturally exhibit elasticity, plasticity and crystal defects such as grain boundaries and dislocations. Temporally, the model operates on a diffusive timescale which bypasses the need to resolve prohibitively small atomic-vibration time steps. The PFC model has been used to study many material phenomena such as grain growth, elastic and plastic deformations and solid-solid phase transformations. In this study, the pressure-controlled dynamic equation for the PFC model was developed to simulate a single-component system under externally applied pressure; these coupled equations are important for studies of deformable systems such as those under constant pressure. The formulation is based on the non-equilibrium thermodynamics and the thermodynamics of crystalline solids. To obtain the equations, the entropy variation around the equilibrium point was derived. Then the resulting driving forces and flux around the equilibrium were obtained and rewritten as conventional thermodynamic quantities. These dynamics equations are different from the recently-proposed equations; the equations in this study should provide more rigorous descriptions of the system dynamics under externally applied pressure.

Keywords: driving forces and flux, evolution equation, non equilibrium thermodynamics, Onsager’s reciprocal relation, phase field crystal model, thermodynamics of single-component solid

Procedia PDF Downloads 278
30232 Computational Fluid Dynamics of a Bubbling Fluidized Bed in Wood Pellets

Authors: Opeyemi Fadipe, Seong Lee, Guangming Chen, Steve Efe

Abstract:

In comparison to conventional combustion technologies, fluidized bed combustion has several advantages, such as superior heat transfer characteristics due to homogeneous particle mixing, lower temperature needs, nearly isothermal process conditions, and the ability to operate continuously. Computational fluid dynamics (CFD) can help anticipate the intricate combustion process and the hydrodynamics of a fluidized bed thoroughly by using CFD techniques. Bubbling Fluidized bed was model using the Eulerian-Eulerian model, including the kinetic theory of the flow. The model was validated by comparing it with other simulation of the fluidized bed. The effects of operational gas velocity, volume fraction, and feed rate were also investigated numerically. A higher gas velocity and feed rate cause an increase in fluidization of the bed.

Keywords: fluidized bed, operational gas velocity, volume fraction, computational fluid dynamics

Procedia PDF Downloads 53
30231 Design Optimization of a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics

Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami

Abstract:

The use of Micro Gas Turbine (MGT) as the engine in Unmanned Aerobic Vehicles (UAVs) and power source in Robotics is widespread these days. Research has been conducted in the past decade or so to improve the performance of different components of MGT. This type of engine has interrelated components which have non-linear characteristics. Therefore, the overall engine performance depends on the individual engine element’s performance. Computational Fluid Dynamics (CFD) is one of the simulation method tools used to analyze or even optimize MGT system performance. In this study, the compressor of the MGT is designed, and performance optimization is being done using CFD. Performance of the micro compressor is improved in order to increase the overall performance of MGT. A high value of pressure ratio is to be achieved by studying the effect of change of different operating parameters like mass flow rate and revolutions per minute (RPM) and aerodynamical and geometrical parameters on the pressure ratio of the compressor. Two types of compressor designs are considered in this study; 3D centrifugal and ‘planar’ designs. For a 10 mm impeller, the planar model is the simplest compressor model with the ease in manufacturability. On the other hand, 3D centrifugal model, although more efficient, is very difficult to manufacture using current microfabrication resources. Therefore, the planar model is the best-suited model for a micro compressor. So. a planar micro compressor has been designed that has a good pressure ratio, and it is easy to manufacture using current microfabrication technologies. Future work is to fabricate the compressor to get experimental results and validate the theoretical model.

Keywords: computational fluid dynamics, microfabrication, MEMS, unmanned aerobic vehicles

Procedia PDF Downloads 116
30230 Modelling of Polymeric Fluid Flows between Two Coaxial Cylinders Taking into Account the Heat Dissipation

Authors: Alexander Blokhin, Ekaterina Kruglova, Boris Semisalov

Abstract:

Mathematical model based on the mesoscopic theory of polymer dynamics is developed for numerical simulation of the flows of polymeric liquid between two coaxial cylinders. This model is a system of nonlinear partial differential equations written in the cylindrical coordinate system and coupled with the heat conduction equation including a specific dissipation term. The stationary flows similar to classical Poiseuille ones are considered, and the resolving equations for the velocity of flow and for the temperature are obtained. For solving them, a fast pseudospectral method is designed based on Chebyshev approximations, that enables one to simulate the flows through the channels with extremely small relative values of the radius of inner cylinder. The numerical analysis of the dependance of flow on this radius and on the values of dissipation constant is done.

Keywords: dynamics of polymeric liquid, heat dissipation, singularly perturbed problem, pseudospectral method, Chebyshev polynomials, stabilization technique

Procedia PDF Downloads 263
30229 Simulating the Dynamics of E-waste Production from Mobile Phone: Model Development and Case Study of Rwanda

Authors: Rutebuka Evariste, Zhang Lixiao

Abstract:

Mobile phone sales and stocks showed an exponential growth in the past years globally and the number of mobile phones produced each year was surpassing one billion in 2007, this soaring growth of related e-waste deserves sufficient attentions paid to it regionally and globally as long as 40% of its total weight is made from metallic which 12 elements are identified to be highly hazardous and 12 are less harmful. Different research and methods have been used to estimate the obsolete mobile phones but none has developed a dynamic model and handle the discrepancy resulting from improper approach and error in the input data. The study aim was to develop a comprehensive dynamic system model for simulating the dynamism of e-waste production from mobile phone regardless the country or region and prevail over the previous errors. The logistic model method combined with STELLA program has been used to carry out this study. Then the simulation for Rwanda has been conducted and compared with others countries’ results as model testing and validation. Rwanda is about 1.5 million obsoletes mobile phone with 125 tons of waste in 2014 with e-waste production peak in 2017. It is expected to be 4.17 million obsoletes with 351.97 tons by 2020 along with environmental impact intensity of 21times to 2005. Thus, it is concluded through the model testing and validation that the present dynamic model is competent and able deal with mobile phone e-waste production the fact that it has responded to the previous studies questions from Czech Republic, Iran, and China.

Keywords: carrying capacity, dematerialization, logistic model, mobile phone, obsolescence, similarity, Stella, system dynamics

Procedia PDF Downloads 318
30228 Towards A New Maturity Model for Information System

Authors: Ossama Matrane

Abstract:

Information System has become a strategic lever for enterprises. It contributes effectively to align business processes on strategies of enterprises. It is regarded as an increase in productivity and effectiveness. So, many organizations are currently involved in implementing sustainable Information System. And, a large number of studies have been conducted the last decade in order to define the success factors of information system. Thus, many studies on maturity model have been carried out. Some of this study is referred to the maturity model of Information System. In this article, we report on development of maturity models specifically designed for information system. This model is built based on three components derived from Maturity Model for Information Security Management, OPM3 for Project Management Maturity Model and processes of COBIT for IT governance. Thus, our proposed model defines three maturity stages for corporate a strong Information System to support objectives of organizations. It provides a very practical structure with which to assess and improve Information System Implementation.

Keywords: information system, maturity models, information security management, OPM3, IT governance

Procedia PDF Downloads 417
30227 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 131
30226 Universality and Synchronization in Complex Quadratic Networks

Authors: Anca Radulescu, Danae Evans

Abstract:

The relationship between a network’s hardwiring and its emergent dynamics are central to neuroscience. We study the principles of this correspondence in a canonical setup (in which network nodes exhibit well-studied complex quadratic dynamics), then test their universality in biological networks. By extending methods from discrete dynamics, we study the effects of network connectivity on temporal patterns, encapsulating long-term behavior into the rich topology of network Mandelbrot sets. Then elements of fractal geometry can be used to predict and classify network behavior.

Keywords: canonical model, complex dynamics, dynamic networks, fractals, Mandelbrot set, network connectivity

Procedia PDF Downloads 278
30225 Simulation Model for Optimizing Energy in Supply Chain Management

Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari

Abstract:

In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.

Keywords: supply chain management, green supply chain management, system dynamics, energy consumption

Procedia PDF Downloads 108
30224 Mathematical Properties of the Viscous Rotating Stratified Fluid Counting with Salinity and Heat Transfer in a Layer

Authors: A. Giniatoulline

Abstract:

A model of the mathematical fluid dynamics which describes the motion of a three-dimensional viscous rotating fluid in a homogeneous gravitational field with the consideration of the salinity and heat transfer is considered in a vertical finite layer. The model is a generalization of the linearized Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density, salinity, and heat transfer. An explicit solution is constructed and the proof of the existence and uniqueness theorems is given. The localization and the structure of the spectrum of inner waves is also investigated. The results may be used, in particular, for constructing stable numerical algorithms for solutions of the considered models of fluid dynamics of the Atmosphere and the Ocean.

Keywords: Fourier transform, generalized solutions, Navier-Stokes equations, stratified fluid

Procedia PDF Downloads 223
30223 Formal Verification of Cache System Using a Novel Cache Memory Model

Authors: Guowei Hou, Lixin Yu, Wei Zhuang, Hui Qin, Xue Yang

Abstract:

Formal verification is proposed to ensure the correctness of the design and make functional verification more efficient. As cache plays a vital role in the design of System on Chip (SoC), and cache with Memory Management Unit (MMU) and cache memory unit makes the state space too large for simulation to verify, then a formal verification is presented for such system design. In the paper, a formal model checking verification flow is suggested and a new cache memory model which is called “exhaustive search model” is proposed. Instead of using large size ram to denote the whole cache memory, exhaustive search model employs just two cache blocks. For cache system contains data cache (Dcache) and instruction cache (Icache), Dcache memory model and Icache memory model are established separately using the same mechanism. At last, the novel model is employed to the verification of a cache which is module of a custom-built SoC system that has been applied in practical, and the result shows that the cache system is verified correctly using the exhaustive search model, and it makes the verification much more manageable and flexible.

Keywords: cache system, formal verification, novel model, system on chip (SoC)

Procedia PDF Downloads 469
30222 Calculating Non-Unique Sliding Modes for Switched Dynamical Systems

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis.

Keywords: hybrid dynamical systems, singular perturbation analysis, sliding modes, switched dynamics

Procedia PDF Downloads 133
30221 Observer-Based Leader-Following Consensus of Nonlinear Fractional-Order Multi-Agent Systems

Authors: Ali Afaghi, Sehraneh Ghaemi

Abstract:

The coordination of the multi-agent systems has been one of the interesting topic in recent years, because of its potential applications in many branches of science and engineering such as sensor networks, flocking, underwater vehicles and etc. In the most of the related studies, it is assumed that the dynamics of the multi-agent systems are integer-order and linear and the multi-agent systems with the fractional-order nonlinear dynamics are rarely considered. However many phenomena in nature cannot be described within integer-order and linear characteristics. This paper investigates the leader-following consensus problem for a class of nonlinear fractional-order multi-agent systems based on observer-based cooperative control. In the system, the dynamics of each follower and leader are nonlinear. For a multi-agent system with fixed directed topology firstly, an observer-based consensus protocol is proposed based on the relative observer states of neighboring agents. Secondly, based on the property of the stability theory of fractional-order system, some sufficient conditions are presented for the asymptotical stability of the observer-based fractional-order control systems. The proposed method is applied on a five-agent system with the fractional-order nonlinear dynamics and unavailable states. The simulation example shows that the proposed scenario results in the good performance and can be used in many practical applications.

Keywords: fractional-order multi-agent systems, leader-following consensus, nonlinear dynamics, directed graphs

Procedia PDF Downloads 366
30220 Simulation of a Three-Link, Six-Muscle Musculoskeletal Arm Activated by Hill Muscle Model

Authors: Nafiseh Ebrahimi, Amir Jafari

Abstract:

The study of humanoid character is of great interest to researchers in the field of robotics and biomechanics. One might want to know the forces and torques required to move a limb from an initial position to the desired destination position. Inverse dynamics is a helpful method to compute the force and torques for an articulated body limb. It enables us to know the joint torques required to rotate a link between two positions. Our goal in this study was to control a human-like articulated manipulator for a specific task of path tracking. For this purpose, the human arm was modeled with a three-link planar manipulator activated by Hill muscle model. Applying a proportional controller, values of force and torques applied to the joints were calculated by inverse dynamics, and then joints and muscle forces trajectories were computed and presented. To be more accurate to say, the kinematics of the muscle-joint space was formulated by which we defined the relationship between the muscle lengths and the geometry of the links and joints. Secondary, the kinematic of the links was introduced to calculate the position of the end-effector in terms of geometry. Then, we considered the modeling of Hill muscle dynamics, and after calculation of joint torques, finally, we applied them to the dynamics of the three-link manipulator obtained from the inverse dynamics to calculate the joint states, find and control the location of manipulator’s end-effector. The results show that the human arm model was successfully controlled to take the designated path of an ellipse precisely.

Keywords: arm manipulator, hill muscle model, six-muscle model, three-link lodel

Procedia PDF Downloads 111
30219 Dynamics of the Coupled Fitzhugh-Rinzel Neurons

Authors: Sanjeev Kumar Sharma, Arnab Mondal, Ranjit Kumar Upadhyay

Abstract:

Excitable cells often produce different oscillatory activities that help us to understand the transmitting and processing of signals in the neural system. We consider a FitzHugh-Rinzel (FH-R) model and studied the different dynamics of the model by considering the parameter c as the predominant parameter. The model exhibits different types of neuronal responses such as regular spiking, mixed-mode bursting oscillations (MMBOs), elliptic bursting, etc. Based on the bifurcation diagram, we consider the three regimes (MMBOs, elliptic bursting, and quiescent state). An analytical treatment for the occurrence of the supercritical Hopf bifurcation is studied. Further, we extend our study to a network of a hundred neurons by considering the bi-directional synaptic coupling between them. In this article, we investigate the alternation of spiking propagation and bursting phenomena of an uncoupled and coupled FH-R neurons. We explore that the complete graph of heterogenous desynchronized neurons can exhibit different types of bursting oscillations for certain coupling strength. For higher coupling strength, all the neurons in the network show complete synchronization.

Keywords: excitable neuron model, spiking-bursting, stability and bifurcation, synchronization networks

Procedia PDF Downloads 95
30218 A Study of Chaos Control Schemes for Plankton-Fish Dynamics

Authors: Rajinder Pal Kaur, Amit Sharma, Anuj Kumar Sharma, Govind Prasad Sahu

Abstract:

The existence of chaos in the marine ecosystems may cause planktonic blooms, disease outbreaks, extinction of some plankton species, or some complex dynamics in oceans, which can adversely affect the sustainable marine ecosystem. The control of the chaotic plankton-fish dynamics is one of the main motives of marine ecologists. In this paper, we have studied the impact of phytoplankton refuge, zooplankton refuge, and fear effect on the chaotic plankton-fish dynamics incorporating phytoplankton, zooplankton, and fish biomass. The fear of fish predation transfers the unpredictable(chaotic) behavior of the plankton system to a stable orbit. The defense mechanism developed by prey species due to fear of the predator population can also terminate chaos from the given dynamics. Moreover, the impact of external disturbances like seasonality, noise, periodic fluctuations, and time delay on the given chaotic plankton system has also been discussed. We have applied feedback mechanisms to control the complexity of the system through the parameter noise. The non-feedback schemes are implemented to observe the role of seasonal force, periodic fluctuations, and time delay in suppressing the given chaotic system. Analytical results are substantiated by numerical simulation.

Keywords: plankton, chaos, noise, seasonality, fluctuations, fear effect, prey refuge

Procedia PDF Downloads 55