Search results for: supervisory control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10463

Search results for: supervisory control

10373 Control and Control Systems of Administration in Nigeria

Authors: Inuwa Abdu Ibrahim

Abstract:

Public officials are required to posses certain values to adequately protect public interest, by being leaders that are servants of the people. The reality in Nigeria is that leaders rule as masters of the people rather than servants. The paper looked at control and control systems of administration in Nigeria, its resultant consequences and ways of achieving true control of administrators and administration. Secondary source of data was adopted for the research. It concludes that the keys to administrative efficiency and effectiveness through control are implementation of the already existing procedures and laws, as well as commitment on the part of public officials.

Keywords: Accountability, Fraud, Administration, Nigeria

Procedia PDF Downloads 320
10372 Design of Control Systems for Grid Interconnection and Power Control of a Grid Tie Inverter for Micro-Grid Application

Authors: Deepak Choudhary

Abstract:

COEP-Microgrid, a project by the students of College of Engineering Pune aims at establishing a micro grid in the college campus serving as a living laboratory for research and development of novel grid technologies. Proposed micro grid has an AC-bus and DC-bus, interconnected together with a tie line DC-AC converter. In grid-connected mode AC bus of microgrid is synchronized with utility grid. Synchronization with utility grid requires grid and AC bus to have synchronism in frequency, phase sequence and voltage. Power flow requires phase difference between grid and AC bus. Control System is required to effectively regulate power flow between the grid and AC bus. The grid synchronizing control system is composed of frequency and phase control for regulated power flow and voltage control system for reduction of reactive power flow. The control system involves automatic active power flow control. It takes the feedback of DC link Capacitor and changes the power angle accordingly. Control system incorporating voltage, phase and power control was developed for grid-tie inverter. This paper discusses the design, simulation and practical implementation of control system described in various micro grid scenarios.

Keywords: microgrid, Grid-tie inverter, voltage control, automatic power control

Procedia PDF Downloads 630
10371 SVM-DTC Using for PMSM Speed Tracking Control

Authors: Kendouci Khedidja, Mazari Benyounes, Benhadria Mohamed Rachid, Dadi Rachida

Abstract:

In recent years, direct torque control (DTC) has become an alternative to the well-known vector control especially for permanent magnet synchronous motor (PMSM). However, it presents a problem of field linkage and torque ripple. In order to solve this problem, the conventional DTC is combined with space vector pulse width modulation (SVPWM). This control theory has achieved great success in the control of PMSM. That has become a hotspot for resolving. The main objective of this paper gives us an introduction of the DTC and SVPWM-DTC control theory of PMSM which has been simulating on each part of the system via Matlab/Simulink based on the mathematical modeling. Moreover, the outcome of the simulation proved that the improved SVPWM- DTC of PMSM has a good dynamic and static performance.

Keywords: PMSM, DTC, SVM, speed control

Procedia PDF Downloads 351
10370 Synchronization of Chaotic T-System via Optimal Control as an Adaptive Controller

Authors: Hossein Kheiri, Bashir Naderi, Mohamad Reza Niknam

Abstract:

In this paper we study the optimal synchronization of chaotic T-system with complete uncertain parameter. Optimal control laws and parameter estimation rules are obtained by using Hamilton-Jacobi-Bellman (HJB) technique and Lyapunov stability theorem. The derived control laws are optimal adaptive control and make the states of drive and response systems asymptotically synchronized. Numerical simulation shows the effectiveness and feasibility of the proposed method.

Keywords: Lyapunov stability, synchronization, chaos, optimal control, adaptive control

Procedia PDF Downloads 445
10369 RAPDAC: Role Centric Attribute Based Policy Driven Access Control Model

Authors: Jamil Ahmed

Abstract:

Access control models aim to decide whether a user should be denied or granted access to the user‟s requested activity. Various access control models have been established and proposed. The most prominent of these models include role-based, attribute-based, policy based access control models as well as role-centric attribute based access control model. In this paper, a novel access control model is presented called “Role centric Attribute based Policy Driven Access Control (RAPDAC) model”. RAPDAC incorporates the concept of “policy” in the “role centric attribute based access control model”. It leverages the concept of "policy‟ by precisely combining the evaluation of conditions, attributes, permissions and roles in order to allow authorization access. This approach allows capturing the "access control policy‟ of a real time application in a well defined manner. RAPDAC model allows making access decision at much finer granularity as illustrated by the case study of a real time library information system.

Keywords: authorization, access control model, role based access control, attribute based access control

Procedia PDF Downloads 130
10368 Intrusion Detection in SCADA Systems

Authors: Leandros A. Maglaras, Jianmin Jiang

Abstract:

The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.

Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection

Procedia PDF Downloads 510
10367 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot

Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin

Abstract:

Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.

Keywords: balance control, speed control, intelligent controller, two wheel inverted pendulum

Procedia PDF Downloads 191
10366 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designing the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics

Procedia PDF Downloads 446
10365 Establishing Control Chart Limits for Rounded Measurements

Authors: Ran Etgar

Abstract:

The process of rounding off measurements in continuous variables is commonly encountered. Although it usually has minor effects, sometimes it can lead to poor outcomes in statistical process control using X̄ chart. The traditional control limits can cause incorrect conclusions if applied carelessly. This study looks into the limitations of classical control limits, particularly the impact of asymmetry. An approach to determining the distribution function of the measured parameter ȳ is presented, resulting in a more precise method to establish the upper and lower control limits. The proposed method, while slightly more complex than Shewhart's original idea, is still user-friendly and accurate and only requires the use of two straightforward tables.

Keywords: SPC, round-off data, control limit, rounding error

Procedia PDF Downloads 41
10364 A Group Setting of IED in Microgrid Protection Management System

Authors: Jyh-Cherng Gu, Ming-Ta Yang, Chao-Fong Yan, Hsin-Yung Chung, Yung-Ruei Chang, Yih-Der Lee, Chen-Min Chan, Chia-Hao Hsu

Abstract:

There are a number of distributed generations (DGs) installed in microgrid, which may have diverse path and direction of power flow or fault current. The overcurrent protection scheme for the traditional radial type distribution system will no longer meet the needs of microgrid protection. Integrating the intelligent electronic device (IED) and a supervisory control and data acquisition (SCADA) with IEC 61850 communication protocol, the paper proposes a microgrid protection management system (MPMS) to protect power system from the fault. In the proposed method, the MPMS performs logic programming of each IED to coordinate their tripping sequence. The GOOSE message defined in IEC 61850 is used as the transmission information medium among IEDs. Moreover, to cope with the difference in fault current of microgrid between grid-connected mode and islanded mode, the proposed MPMS applies the group setting feature of IED to protect system and robust adaptability. Once the microgrid topology varies, the MPMS will recalculate the fault current and update the group setting of IED. Provided there is a fault, IEDs will isolate the fault at once. Finally, the Matlab/Simulink and Elipse Power Studio software are used to simulate and demonstrate the feasibility of the proposed method.

Keywords: IEC 61850, IED, group Setting, microgrid

Procedia PDF Downloads 430
10363 Feasibility Study of Distributed Lightless Intersection Control with Level 1 Autonomous Vehicles

Authors: Bo Yang, Christopher Monterola

Abstract:

Urban intersection control without the use of the traffic light has the potential to vastly improve the efficiency of the urban traffic flow. For most proposals in the literature, such lightless intersection control depends on the mass market commercialization of highly intelligent autonomous vehicles (AV), which limits the prospects of near future implementation. We present an efficient lightless intersection traffic control scheme that only requires Level 1 AV as defined by NHTSA. The technological barriers of such lightless intersection control are thus very low. Our algorithm can also accommodate a mixture of AVs and conventional vehicles. We also carry out large scale numerical analysis to illustrate the feasibility, safety and robustness, comfort level, and control efficiency of our intersection control scheme.

Keywords: intersection control, autonomous vehicles, traffic modelling, intelligent transport system

Procedia PDF Downloads 427
10362 The Control Illusion of Conditioned Superstition

Authors: Chia-Ching Tsai

Abstract:

The study examined the control illusion of conditioned superstition by using Taiwanese subjects. The study had a three-group experimental design, that is, conditioning group and a control group, and the conditioning group was further separated into superstitious and unsuperstitious groups. The results showed that conditioned superstition can significantly influence the control illusion. Further analysis showed that the control illusion in the superstitious conditioning group was significantly greater than in the control group or in the unsuperstitious conditioning group. Besides, there was no significant difference between the control group and the unsuperstitious conditioning group.

Keywords: Control illusion, Conditioned superstition, experimental design

Procedia PDF Downloads 579
10361 Modern Pedagogy Techniques for DC Motor Speed Control

Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal

Abstract:

Based on a survey conducted for second and third year students of the electrical engineering department at Maharishi Markandeshwar University, India, it was found that around 92% of students felt that it would be better to introduce a virtual environment for laboratory experiments. Hence, a need was felt to perform modern pedagogy techniques for students which consist of a virtual environment using MATLAB/Simulink. In this paper, a virtual environment for the speed control of a DC motor is performed using MATLAB/Simulink. The various speed control methods for the DC motor include the field resistance control method and armature voltage control method. The performance analysis of the DC motor is hence analyzed.

Keywords: DC Motor, field control, pedagogy techniques, speed control, virtual environment, voltage control

Procedia PDF Downloads 400
10360 Policy Guidelines to Enhance the Mathematics Teachers’ Association of the Philippines (MTAP) Saturday Class Program

Authors: Roselyn Alejandro-Ymana

Abstract:

The study was an attempt to assess the MTAP Saturday Class Program along its eight components namely, modules, instructional materials, scheduling, trainer-teachers, supervisory support, administrative support, financial support and educational facilities, the results of which served as bases in developing policy guidelines to enhance the MTAP Saturday Class Program. Using a descriptive development method of research, this study involved the participation of twenty-eight (28) schools with MTAP Saturday Class Program in the Division of Dasmarinas City where twenty-eight school heads, one hundred twenty-five (125) teacher-trainer, one hundred twenty-five (125) pupil program participants, and their corresponding one hundred twenty-five (125) parents were purposively drawn to constitute the study’s respondent. A self-made validated survey questionnaire together with Pre and Post-Test Assessment Test in Mathematics for pupils participating in the program, and an unstructured interview guide was used to gather the data needed in the study. Data obtained from the instruments administered was organized and analyzed through the use of statistical tools that included the Mean, Weighted Mean, Relative Frequency, Standard Deviation, F-Test or One-Way ANOVA and the T-Test. Results of the study revealed that all the eight domains involved in the MTAP Saturday Class Program were practiced with the areas of 'trainer-teachers', 'educational facilities', and 'supervisory support' identified as the program’s strongest components while the areas of 'financial support', 'modules' and 'scheduling' as being the weakest program’s components. Moreover, the study revealed based on F-Test, that there was a significant difference in the assessment made by the respondents in each of the eight (8) domains. It was found out that the parents deviated significantly from the assessment of either the school heads or the teachers on the indicators of the program. There is much to be desired when it comes to the quality of the implementation of the MTAP Saturday Class Program. With most of the indicators of each component of the program, having received overall average ratings that were at least 0.5 point away from the ideal rating 5 for total quality, school heads, teachers, and supervisors need to work harder for total quality of the implementation of the MTAP Saturday Class Program in the division.

Keywords: mathematics achievement, MTAP program, policy guidelines, program assessment

Procedia PDF Downloads 181
10359 Design of a Sliding Mode Control Using Nonlinear Sliding Surface and Nonlinear Observer Applied to the Trirotor Mini-Aircraft

Authors: Samir Zeghlache, Abderrahmen Bouguerra, Kamel Kara, Djamel Saigaa

Abstract:

The control of the trirotor helicopter includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. This paper presents a control strategy for an underactuated six degrees of freedom (6 DOF) trirotor helicopter, based on the coupling of the fuzzy logic control and sliding mode control (SMC). The main purpose of this work is to eliminate the chattering phenomenon. To achieve our purpose we have used a fuzzy logic control to generate the hitting control signal, also the non linear observer is then synthesized in order to estimate the unmeasured states. Finally simulation results are included to indicate the trirotor UAV with the proposed controller can greatly alleviate the chattering effect and remain robust to the external disturbances.

Keywords: fuzzy sliding mode control, trirotor helicopter, dynamic modelling, underactuated systems

Procedia PDF Downloads 491
10358 A Wireless Feedback Control System as a Base of Bio-Inspired Structure System to Mitigate Vibration in Structures

Authors: Gwanghee Heo, Geonhyeok Bang, Chunggil Kim, Chinok Lee

Abstract:

This paper attempts to develop a wireless feedback control system as a primary step eventually toward a bio-inspired structure system where inanimate structure behaves like a life form autonomously. It is a standalone wireless control system which is supposed to measure externally caused structural responses, analyze structural state from acquired data, and take its own action on the basis of the analysis with an embedded logic. For an experimental examination of its effectiveness, we applied it on a model of two-span bridge and performed a wireless control test. Experimental tests have been conducted for comparison on both the wireless and the wired system under the conditions of Un-control, Passive-off, Passive-on, and Lyapunov control algorithm. By proving the congruence of the test result of the wireless feedback control system with the wired control system, its control performance was proven to be effective. Besides, it was found to be economical in energy consumption and also autonomous by means of a command algorithm embedded into it, which proves its basic capacity as a bio-inspired system.

Keywords: structural vibration control, wireless system, MR damper, feedback control, embedded system

Procedia PDF Downloads 180
10357 Disturbance Observer-Based Predictive Functional Critical Control of a Table Drive System

Authors: Toshiyuki Satoh, Hiroki Hara, Naoki Saito, Jun-ya Nagase, Norihiko Saga

Abstract:

This paper addresses a control system design for a table drive system based on the disturbance observer (DOB)-based predictive functional critical control (PFCC). To empower the previously developed DOB-based PFC to handle constraints on controlled outputs, we propose to take a critical control approach. To this end, we derive the transfer function representation of the PFC controller, and yield a detailed design procedure. The effectiveness of the proposed method is confirmed through an experimental evaluation.

Keywords: critical control, disturbance observer, mechatronics, motion control, predictive functional control, table drive systems

Procedia PDF Downloads 455
10356 Ant Lion Optimization in a Fuzzy System for Benchmark Control Problem

Authors: Leticia Cervantes, Edith Garcia, Oscar Castillo

Abstract:

At today, there are several control problems where the main objective is to obtain the best control in the study to decrease the error in the application. Many techniques can use to control these problems such as Neural Networks, PID control, Fuzzy Logic, Optimization techniques and many more. In this case, fuzzy logic with fuzzy system and an optimization technique are used to control the case of study. In this case, Ant Lion Optimization is used to optimize a fuzzy system to control the velocity of a simple treadmill. The main objective is to achieve the control of the velocity in the control problem using the ALO optimization. First, a simple fuzzy system was used to control the velocity of the treadmill it has two inputs (error and error change) and one output (desired speed), then results were obtained but to decrease the error the ALO optimization was developed to optimize the fuzzy system of the treadmill. Having the optimization, the simulation was performed, and results can prove that using the ALO optimization the control of the velocity was better than a conventional fuzzy system. This paper describes some basic concepts to help to understand the idea in this work, the methodology of the investigation (control problem, fuzzy system design, optimization), the results are presented and the optimization is used for the fuzzy system. A comparison between the simple fuzzy system and the optimized fuzzy systems are presented where it can be proving the optimization improved the control with good results the major findings of the study is that ALO optimization is a good alternative to improve the control because it helped to decrease the error in control applications even using any control technique to optimized, As a final statement is important to mentioned that the selected methodology was good because the control of the treadmill was improve using the optimization technique.

Keywords: ant lion optimization, control problem, fuzzy control, fuzzy system

Procedia PDF Downloads 360
10355 DSPIC30F6010A Control for 12/8 Switched Reluctance Motor

Authors: Yang Zhou, Chen Hao, Ma Xiaoping

Abstract:

This paper briefly mentions the micro controller unit, and then goes into details about the exact regulations for SRM. Firstly, it proposes the main driving state control for motor and the importance of the motor position sensor. For different speed, the controller will choice various styles such as voltage chopper control, angle position control and current chopper control for which owns its advantages and disadvantages. Combining the strengths of the three discrepant methods, the main control chip will intelligently select the best performing control depending on the load and speed demand. Then the exact flow diagram is showed in paper. At last, an experimental platform is established to verify the correctness of the proposed theory.

Keywords: switched reluctance motor, dspic microcontroller, current chopper

Procedia PDF Downloads 393
10354 A Framework for Event-Based Monitoring of Business Processes in the Supply Chain Management of Industry 4.0

Authors: Johannes Atug, Andreas Radke, Mitchell Tseng, Gunther Reinhart

Abstract:

In modern supply chains, large numbers of SKU (Stock-Keeping-Unit) need to be timely managed, and any delays in noticing disruptions of items often limit the ability to defer the impact on customer order fulfillment. However, in supply chains of IoT-connected enterprises, the ERP (Enterprise-Resource-Planning), the MES (Manufacturing-Execution-System) and the SCADA (Supervisory-Control-and-Data-Acquisition) systems generate large amounts of data, which generally glean much earlier notice of deviations in the business process steps. That is, analyzing these streams of data with process mining techniques allows the monitoring of the supply chain business processes and thus identification of items that deviate from the standard order fulfillment process. In this paper, a framework to enable event-based SCM (Supply-Chain-Management) processes including an overview of core enabling technologies are presented, which is based on the RAMI (Reference-Architecture-Model for Industrie 4.0) architecture. The application of this framework in the industry is presented, and implications for SCM in industry 4.0 and further research are outlined.

Keywords: cyber-physical production systems, event-based monitoring, supply chain management, RAMI (Reference-Architecture-Model for Industrie 4.0)

Procedia PDF Downloads 201
10353 The Impact of Artificial Intelligence on Qualty Conrol and Quality

Authors: Mary Moner Botros Fanawel

Abstract:

Many companies use the statistical tool named as statistical quality control, and which can have a high cost for the companies interested on these statistical tools. The evaluation of the quality of products and services is an important topic, but the reduction of the cost of the implantation of the statistical quality control also has important benefits for the companies. For this reason, it is important to implement a economic design for the various steps included into the statistical quality control. In this paper, we describe some relevant aspects related to the economic design of a quality control chart for the proportion of defective items. They are very important because the suggested issues can reduce the cost of implementing a quality control chart for the proportion of defective items. Note that the main purpose of this chart is to evaluate and control the proportion of defective items of a production process.

Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives proportion, type I error, economic plan, distribution function bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics

Procedia PDF Downloads 10
10352 The Role of Internal and External Control in the Migrant Related Representations of Right-Wing Extremists

Authors: Gabriella Kengyel

Abstract:

This study aims to describe the differences between the attitudes of the right-wing extremists with internal or external control towards migrants. They both have a significantly higher score on Rotter's Locus of Control Scale, and they are quite xenophobic (54%) according to Bogardus Social Distance Scale. Present research suggests their motives are different. Principle components analysis shows that extremists with internal control reject migrants because of welfare chauvinism and they think that there is some kind of political conspirationism behind the European Refugee Crisis. Contrarily extremist with external control believe in a common enemy and they are significantly more ethnocentric and less skeptical in politics. Results suggest that extremist with internal control shows hostility toward minorities and migrants mainly because of their own reference group.

Keywords: control, extremist, migrant, right-wing

Procedia PDF Downloads 247
10351 Cross Coupling Sliding Mode Synchronization Control of Dual-Driving Feed System

Authors: Hong Lu, Wei Fan, Yongquan Zhang, Junbo Zhang

Abstract:

A cross coupling sliding synchronization control strategy is proposed for the dual-driving feed system. This technology will minimize the position error oscillation and achieve the precise synchronization performance in the high speed and high precision drive system, especially some high speed and high precision machine. Moreover, a cross coupling compensation matrix is provided to offset the mismatched disturbance and the disturbance observer is established to eliminate the chattering phenomenon. Performance comparisons of proposed dual-driving cross coupling sliding mode control (CCSMC), normal cross coupling control (CCC) strategy with PID control, and electronic virtual main shaft control (EVMSC) strategy with SMC control are investigated by simulation and a dual-driving control system; the results show the effectiveness of the proposed control scheme.

Keywords: cross coupling matrix, dual motors, synchronization control, sliding mode control

Procedia PDF Downloads 338
10350 Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither

Authors: Yusuke Kuramitsu, Tomoaki Hashimoto, Hirokazu Tahara

Abstract:

The control problem of underactuated spacecrafts has attracted a considerable amount of interest. The control method for a spacecraft equipped with less than three control torques is useful when one of the three control torques had failed. On the other hand, the quantized control of systems is one of the important research topics in recent years. The random dither quantization method that transforms a given continuous signal to a discrete signal by adding artificial random noise to the continuous signal before quantization has also attracted a considerable amount of interest. The objective of this study is to develop the control method based on random dither quantization method for stabilizing the rotational motion of a rigid spacecraft with two control inputs. In this paper, the effectiveness of random dither quantization control method for the stabilization of rotational motion of spacecrafts with two torque inputs is verified by numerical simulations.

Keywords: spacecraft control, quantized control, nonlinear control, random dither method

Procedia PDF Downloads 144
10349 Hierarchical Control Structure to Control the Power Distribution System Components in Building Systems

Authors: Hamed Sarbazy, Zohre Gholipour Haftkhani, Ali Safari, Pejman Hosseiniun

Abstract:

Scientific and industrial progress in the past two decades has resulted in energy distribution systems based on power electronics, as an enabling technology in various industries and building management systems can be considered. Grading and standardization module power electronics systems and its use in a distributed control system, a strategy for overcoming the limitations of using this system. The purpose of this paper is to investigate strategies for scheduling and control structure of standard modules is a power electronic systems. This paper introduces the classical control methods and disadvantages of these methods will be discussed, The hierarchical control as a mechanism for distributed control structure of the classification module explains. The different levels of control and communication between these levels are fully introduced. Also continue to standardize software distribution system control structure is discussed. Finally, as an example, the control structure will be presented in a DC distribution system.

Keywords: application management, hardware management, power electronics, building blocks

Procedia PDF Downloads 485
10348 Aerobic Bioprocess Control Using Artificial Intelligence Techniques

Authors: M. Caramihai, Irina Severin

Abstract:

This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.

Keywords: bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques

Procedia PDF Downloads 371
10347 Temperature Control Improvement of Membrane Reactor

Authors: Pornsiri Kaewpradit, Chalisa Pourneaw

Abstract:

Temperature control improvement of a membrane reactor with exothermic and reversible esterification reaction is studied in this work. It is well known that a batch membrane reactor requires different control strategies from a continuous one due to the fact that it is operated dynamically. Due to the effect of the operating temperature, the suitable control scheme has to be designed based reliable predictive model to achieve a desired objective. In the study, the optimization framework has been preliminary formulated in order to determine an optimal temperature trajectory for maximizing a desired product. In model predictive control scheme, a set of predictive models have been initially developed corresponding to the possible operating points of the system. The multiple predictive control moves have been further calculated on-line using the developed models corresponding to current operating point. It is obviously seen in the simulation results that the temperature control has been improved compared to the performance obtained by the conventional predictive controller. Further robustness tests have also been investigated in this study.

Keywords: model predictive control, batch reactor, temperature control, membrane reactor

Procedia PDF Downloads 437
10346 Control Algorithm for Home Automation Systems

Authors: Marek Długosz, Paweł Skruch

Abstract:

One of purposes of home automation systems is to provide appropriate comfort to the users by suitable air temperature control and stabilization inside the rooms. The control of temperature level is not a simple task and the basic difficulty results from the fact that accurate parameters of the object of control, that is a building, remain unknown. Whereas the structure of the model is known, the identification of model parameters is a difficult task. In this paper, a control algorithm allowing the present temperature to be reached inside the building within the specified time without the need to know accurate parameters of the building itself is presented.

Keywords: control, home automation system, wireless networking, automation engineering

Procedia PDF Downloads 578
10345 Hybrid Lateral-Directional Robust Flight Control with Propulsive Systems

Authors: Alexandra Monteiro, K. Bousson, Fernando J. O. Moreira, Ricardo Reis

Abstract:

Fixed-wing flying vehicles are usually controlled by means of control surfaces such as elevators, ailerons, and rudders. The failure of these systems may lead to severe or even fatal crashes. These failures resulted in increased popularity for research activities on propulsion control in the last decades. The present work deals with a hybrid control architecture in which the propulsion-controlled vehicle maintains its traditional control surfaces, addressing the issue of robust lateral-directional dynamics control. The challenges stem from the parameter uncertainties in the stability and control derivatives and some unknown terms in the flight dynamics model. Two approaches are implemented and tested: linear quadratic regulation with robustness characteristics and H∞ control. The problem is centered on roll-yaw controller design with full state-feedback, which is able to deal with a standalone propulsion control mode as well as a hybrid mode combining both propulsion control and conventional control surface concepts while maintaining the original flight maneuverability characteristics. The results for both controllers emphasized very good control performances; however, the H∞ controller showed higher stabilization rates and robustness albeit with a slightly higher control magnitude than using the linear quadratic regulator.

Keywords: robust propulsion control, h-infinity control, lateral-directional flight dynamics, parameter uncertainties

Procedia PDF Downloads 110
10344 Robustness of the Fuzzy Adaptive Speed Control of a Multi-Phase Asynchronous Machine

Authors: Bessaad Taieb, Benbouali Abderrahmen

Abstract:

Fuzzy controllers are a powerful tool for controlling complex processes. However, its robustness capacity remains moderately limited because it loses its property for large ranges of parametric variations. In this paper, the proposed control method is designed, based on a fuzzy adaptive controller used as a remedy for this problem. For increase the robustness of the vector control and to maintain the performance of the five-phase asynchronous machine despite the presence of disturbances (variation of rotor resistance, rotor inertia variations, sudden variations in the load etc.), by applying the method of behaviour model control (BMC). The results of simulation show that the fuzzy adaptive control provides best performance and has a more robustness as the fuzzy (FLC) and as a conventional (PI) controller.

Keywords: fuzzy adaptive control, behaviour model control, vector control, five-phase asynchronous machine

Procedia PDF Downloads 52