Search results for: sugar metabolism
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 944

Search results for: sugar metabolism

884 Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop

Authors: S. Rida, O. Saadani Hassani, Q. R’zina, N. Saadaoui, K. Fares

Abstract:

Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop.

Keywords: agriculture, composting, soil, sugar beet lime, wastewater

Procedia PDF Downloads 296
883 Self-Energy Sufficiency Assessment of the Biorefinery Annexed to a Typical South African Sugar Mill

Authors: M. Ali Mandegari, S. Farzad, , J. F. Görgens

Abstract:

Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation biorefinery is defined as a process to use waste fibrous for the production of biofuel, chemicals animal food, and electricity. Bioethanol is by far the most widely used biofuel for transportation worldwide and many challenges in front of bioethanol production were solved. Biorefinery annexed to the existing sugar mill for production of bioethanol and electricity is proposed to sugar industry and is addressed in this study. Since flowsheet development is the key element of the bioethanol process, in this work, a biorefinery (bioethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behaviour of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bioethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive biorefinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bioethanol purification was simulated by two distillation columns with side stream and fuel grade bioethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates that the annexed biorefinery can be self-energy sufficient when 35% of feedstock (tops/trash) bypass the biorefinery process and directly be loaded to the boiler to produce sufficient steam and power for sugar mill and biorefinery plant.

Keywords: biorefinery, self-energy sufficiency, tops/trash, bioethanol, electricity

Procedia PDF Downloads 516
882 A Comprehensive CFD Model for Sugar-Cane Bagasse Heterogeneous Combustion in a Grate Boiler System

Authors: Daniel José de Oliveira Ferreira, Juan Harold Sosa-Arnao, Bruno Cássio Moreira, Leonardo Paes Rangel, Song Won Park

Abstract:

The comprehensive CFD models have been used to represent and study the heterogeneous combustion of biomass. In the present work, the operation of a global flue gas circuit in the sugar-cane bagasse combustion, from wind boxes below primary air grate supply, passing by bagasse insertion in swirl burners and boiler furnace, to boiler bank outlet is simulated. It uses five different meshes representing each part of this system located in sequence: wind boxes and grate, boiler furnace, swirl burners, super heaters and boiler bank. The model considers turbulence using standard k-ε, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The results showed good agreement with expected behavior found in literature and equipment design. The more detailed results view in separated parts of flue gas system allows to observe some flow behaviors that cannot be represented by usual simplifications like bagasse supply under homogeneous axial and rotational vectors and others that can be represented using new considerations like the representation of 26 thousand grate orifices by 144 rectangular inlets.

Keywords: comprehensive CFD model, sugar-cane bagasse combustion, sugar-cane bagasse grate boiler, axial

Procedia PDF Downloads 434
881 Response Surface Methodology for the Optimization of Sugar Extraction from Phoenix dactylifera L.

Authors: Lila Boulekbache-Makhlouf, Kahina Djaoud, Myriam Tazarourte, Samir Hadjal, Khodir Madani

Abstract:

In Algeria, important quantities of secondary date variety (Phoenix dactylifera L.) are generated in each campaign; their chemical composition is similar to that of commercial dates. The present work aims to valorize this common date variety (Degla-Beida) which is often poorly exploited. In this context, we tried to prepare syrup from the secondary date variety and to evaluate the effect of conventional extraction (CE) or water bath extraction (WBE) and alternative extraction (microwaves assisted extraction (MAE), and ultrasounds assisted extraction (UAE)) on its total sugar content (TSC), using response surface methodology (RSM). Then, the analysis of individual sugars was performed by high-performance liquid chromatography (HPLC). Maximum predicted TSC recoveries under the optimized conditions for MAE, UAE and CE were 233.248 ± 3.594 g/l, 202.889 ± 5.797 g/l, and 233.535 ± 5.412 g/l, respectively, which were close to the experimental values: 233.796 ± 1.898 g/l; 202.037 ± 3.401 g/l and 234.380 ± 2.425 g/l. HPLC analysis revealed high similarity in the sugar composition of date juices obtained by MAE (60.11% sucrose, 16.64% glucose and 23.25% fructose) and CE (50.78% sucrose, 20.67% glucose and 28.55% fructose), although a large difference was detected for that obtained by UAE (0.00% sucrose, 46.94% glucose and 53.06% fructose). Microwave-assisted extraction was the best method for the preparation of date syrup with an optimal recovery of total sugar content. However, ultrasound-assisted extraction was the best one for the preparation of date syrup with high content of reducing sugars.

Keywords: dates, extraction, RSM, sugars, syrup

Procedia PDF Downloads 129
880 Effect of Blood Sugar Levels on Short Term and Working Memory Status in Type 2 Diabetics

Authors: Mythri G., Manjunath ML, Girish Babu M., Shireen Swaliha Quadri

Abstract:

Background: The increase in diabetes among the elderly is of concern because in addition to the wide range of traditional diabetes complications, evidence has been growing that diabetes is associated with increased risk of cognitive decline. Aims and Objectives: To find out if there is any association between blood sugar levels and short-term and working memory status in patients of type 2 diabetes. Materials and Methods: The study was carried out in 200 individuals aged between 40-65 years consisting of 100 diagnosed cases of Type 2 Diabetes Mellitus and 100 non-diabetics from OPD of Mc Gann Hospital, Shivamogga. Rye’s Auditory Verbal Learning Test, Verbal Fluency Test and Visual Reproduction Test, Working Digit Span Test and Validation Span Test were used to assess short-term and working memory. Fasting and Post Prandial blood sugar levels were estimated. Statistical analysis was done using SPSS 21. Results: Memory test scores of type 2 diabetics were significantly reduced (p < 0.001) when compared to the memory scores of age and gender matched non-diabetics. Fasting blood sugar levels were found to have a negative correlation with memory scores for all 5 tests: AVLT (r=-0.837), VFT (r=-0.888), VRT(r=-0.787), WDST (r=-0.795) and VST (r=-0.943). Post- Prandial blood sugar levels were found to have a negative correlation with memory scores for all 5 tests: AVLT (r=-0.922), VFT (r=-0.848), VRT(r=-0.707),WDST (r=-0.729) and VST (r=-0.880) Memory scores in all 5 tests were found to be negatively correlated with the FBS and PPBS levels in diabetic patients (p < 0.001). Conclusion: The decreased memory status in diabetic patients may be due to many factors like hyperglycemia, vascular disease, insulin resistance, amyloid deposition and also some of the factor combine to produce additive effects like, type of diabetes, co-morbidities, age of onset, duration of the disease and type of therapy. These observed effects of blood sugar levels of diabetics on memory status are of potential clinical importance because even mild cognitive impairment could interfere with todays’ activities.

Keywords: diabetes, cognition, diabetes, HRV, respiratory medicine

Procedia PDF Downloads 252
879 Application of Refractometric Methodology for Simultaneous Determination of Alcohol and Residual Sugar Concentrations during Alcoholic Fermentation Bioprocess of Date Juice

Authors: Boukhiar Aissa, Halladj Fatima, Iguergaziz Nadia, Lamrani yasmina, Benamara Salem

Abstract:

Determining the alcohol content in alcoholic fermentation bioprocess is of great importance. In fact, it is a key indicator for monitoring this bioprocess. Several methodologies (chemical, spectrophotometric, chromatographic) are used to the determination of this parameter. However, these techniques are very long and they require: rigorous preparations, sometimes dangerous chemical reagents and/or expensive equipment. In the present study, the date juice is used as the substrate of alcoholic fermentation. The extracted juice undergoes an alcoholic fermentation by Saccharomyces cerevisiae. The study of the possible use of refractometry as a sole means for the in situ control of alcoholic fermentation revealed a good correlation (R2=0.98) between initial and final °Brix: °Brixf=0.377×°Brixi. In addition, the relationship between Δ°Brix and alcoholic content of the final product (A,%) has been determined: Δ°Brix/A=1.1. The obtained results allowed us to establish iso-responses abacus, which can be used for the determination of alcohol and residual sugar content, with a mean relative error (MRE) of 5.35%.

Keywords: alcoholic fermentation, date juice, refractometry, residual sugar

Procedia PDF Downloads 310
878 Robustness Analysis of the Carbon and Nitrogen Co-Metabolism Model of Mucor mucedo

Authors: Nahid Banihashemi

Abstract:

An emerging important area of the life sciences is systems biology, which involves understanding the integrated behavior of large numbers of components interacting via non-linear reaction terms. A centrally important problem in this area is an understanding of the co-metabolism of protein and carbohydrate, as it has been clearly demonstrated that the ratio of these metabolites in diet is a major determinant of obesity and related chronic disease. In this regard, we have considered a systems biology model for the co-metabolism of carbon and nitrogen in colonies of the fungus Mucor mucedo. Oscillations are an important diagnostic of underlying dynamical processes of this model. The maintenance of specific patterns of oscillation and its relation to the robustness of this system are the important issues which have been targeted in this paper. In this regard, parametric sensitivity approach as a theoretical approach has been considered for the analysis of the robustness of this model. As a result, the parameters of the model which produce the largest sensitivities have been identified. Furthermore, the largest changes that can be made in each parameter of the model without losing the oscillations in biomass production have been computed. The results are obtained from the implementation of parametric sensitivity analysis in Matlab.

Keywords: system biology, parametric sensitivity analysis, robustness, carbon and nitrogen co-metabolism, Mucor mucedo

Procedia PDF Downloads 292
877 Optimization of Pretreatment Process of Napier Grass for Improved Sugar Yield

Authors: Shashikant Kumar, Chandraraj K.

Abstract:

Perennial grasses have presented interesting choices in the current demand for renewable and sustainable energy sources to alleviate the load of the global energy problem. The perennial grass Napier grass (Pennisetum purpureum Schumach) is a promising feedstock for the production of cellulosic ethanol. The conversion of biomass into glucose and xylose is a crucial stage in the production of bioethanol, and it necessitates optimal pretreatment. Alkali treatment, among the several pretreatments available, effectively reduces lignin concentration and crystallinity of cellulose. Response surface methodology was used to optimize the alkali pretreatment of Napier grass for maximal reducing sugar production. The combined effects of three independent variables, viz. sodium hydroxide concentration, temperature, and reaction time, were studied. A second-order polynomial equation was used to fit the observed data. Maximum reducing sugar (590.54 mg/g) was obtained under the following conditions: 1.6 % sodium hydroxide, a reaction period of 30 min., and 120˚C. The results showed that Napier grass is a desirable feedstock for bioethanol production.

Keywords: Napier grass, optimization, pretreatment, sodium hydroxide

Procedia PDF Downloads 480
876 Fatty Acid Composition, Total Sugar Content and Anti-Diabetic Activity of Methanol and Water Extracts of Nine Different Fruit Tree Leaves Collected from Mediterranean Region of Turkey

Authors: Sengul Uysal, Gokhan Zengin, Abdurrahman Aktumsek, Sukru Karatas

Abstract:

In this research, we determined the total sugar content, fatty acid compositions and α-amylase and α-glucosidase inhibitory activity of methanolic and water extracts of nine different fruit tree leaves. α-amylase and α-glycosidase inhibitory activity were determined by using Caraway-Somogyi–iodine/potassium iodide (IKI) and 4-nitrophenyl-α-D-glucopyranoside (PNPG) as substrate, respectively. Total sugar content of the nine different fruit tree leaves varies from 281.02 mg GE/g (glucose equivalents) to 643.96 mg GE/g. Methanolic extract from avocado leaves had the strongest in α-amylase and α-glucosidase inhibitory activity, 69.21% and 96.26 %, respectively. Fatty acid composition of nine fruit tree leaves was characterized by GC (gas chromatography) and twenty-four components were identified. Among the tested fruit tree leaves, the main component was linolenic acid (49.09%). The level of essential fatty acids are over 50% in mulberry, grape and loquat leaves. PUFAs (polyunsaturated fatty acids) were major group of fatty acids present in oils of mulberry, fig, pomegranate, grape, and loquat leaves. Therefore, these oils can be considered as a good source of polyunsaturated fatty acids. Furthermore, avocado can be regarded as a new source for diabetic therapies.

Keywords: fatty acid compositions, total sugar contents, α-amylase, α-glucosidase, fruit tree leaves, Turkey

Procedia PDF Downloads 452
875 Chemical and Sensorial Evaluation of a Newly Developed Bean Jam

Authors: Raquel P. F. Guiné, Ana R. B. Figueiredo, Paula M. R. Correia, Fernando J. Gonçalves

Abstract:

The purpose of the present work was to develop an innovative food product with nutritional properties as well as appealing organoleptic qualities. The product, a jam, was prepared with the beans’ cooking water combined with fresh apple or carrot, without the addition of any conservatives. Three different jams were produced: bean and carrot, bean and apple and bean, apple and cinnamon. The developed products underwent a sensorial analysis that revealed that the bean, apple and cinnamon jam was globally better accepted. However, with this study, the consumers determined that the bean and carrot jam had the most attractive color and the bean and apple jam the better consistency. Additionally, it was possible to analyze the jams for their chemical components, namely fat, fiber, protein, sugars and antioxidant activity. The obtained results showed that the bean and carrot jam had the highest lipid content, while the bean, apple and cinnamon jam had the highest fiber content, when compared to the other two jams. Regarding the sugar content, both jams with apple revealed similar sugar values, which were higher than the sugar content of the bean and carrot jam. The antioxidant activity was on average 10 mg TE/g.

Keywords: Bean jam, chemical composition, sensorial analysis, product acceptability

Procedia PDF Downloads 383
874 An Efficient Hybrid Feedstock Pretreatment Technique for the Release of Fermentable Sugar from Cassava Peels for Biofuel Production

Authors: Gabriel Sanjo Aruwajoye, E. B. Gueguim Kana

Abstract:

Agricultural residues present a low-cost feedstock for bioenergy production around the world. Cassava peels waste are rich in organic molecules that can be readily converted to value added products such as biomaterials and biofuels. However, due to the presence of high proportion of structural carbohydrates and lignin, the hydrolysis of this feedstock is imperative to achieve maximum substrate utilization and energy yield. This study model and optimises the release of Fermentable Sugar (FS) from cassava peels waste using the Response Surface Methodology. The investigated pretreatment input parameters consisted of soaking temperature (oC), soaking time (hours), autoclave duration (minutes), acid concentration (% v/v), substrate solid loading (% w/v) within the range of 30 to 70, 0 to 24, 5 to 20, 0 to 5 and 2 to 10 respectively. The Box-Behnken design was used to generate 46 experimental runs which were investigated for FS release. The obtained data were used to fit a quadratic model. A coefficient of determination of 0.87 and F value of 8.73 was obtained indicating the good fitness of the model. The predicted optimum pretreatment conditions were 69.62 oC soaking temperature, 2.57 hours soaking duration, 5 minutes autoclave duration, 3.68 % v/v HCl and 9.65 % w/v solid loading corresponding to FS yield of 91.83g/l (0.92 g/g cassava peels) thus 58% improvement on the non-optimised pretreatment. Our findings demonstrate an efficient pretreatment model for fermentable sugar release from cassava peels waste for various bioprocesses.

Keywords: feedstock pretreatment, cassava peels, fermentable sugar, response surface methodology

Procedia PDF Downloads 331
873 Acrylamide Concentration in Cakes with Different Caloric Sweeteners

Authors: L. García, N. Cobas, M. López

Abstract:

Acrylamide, a probable carcinogen, is formed in high-temperature processed food (>120ºC) when the free amino acid asparagine reacts with reducing sugars, mainly glucose and fructose. Cane juices' repeated heating would potentially form acrylamide during brown sugar production. This study aims to determine if using panela in yogurt cake preparation increases acrylamide formation. A secondary aim is to analyze the acrylamide concentration in four cake confections with different caloric sweetener ingredients: beet sugar (BS), cane sugar (CS), panela (P), and a panela and chocolate mix (PC). The doughs were obtained by combining ingredients in a planetary mixer. A model system made up of flour (25%), caloric sweeteners (25 %), eggs (23%), yogurt (15.7%), sunflower oil (9.4%), and brewer's yeast (2 %) was applied to BS, CS and P cakes. The ingredients of PC cakes varied: flour (21.5 %), panela chocolate (21.5 %), eggs (25.9 %), yogurt (18 %), sunflower oil (10.8 %), and brewer’s yeast (2.3 %). The preparations were baked for 45' at 180 ºC. Moisture was estimated by AOAC. Protein was determined by the Kjeldahl method. Ash percentage was calculated by weight loss after pyrolysis (≈ 600 °C). Fat content was measured using liquid-solid extraction in hydrolyzed raw ingredients and final confections. Carbohydrates were determined by difference and total sugars by the Luff-Schoorl method, based on the iodometric determination of copper ions. Finally, acrylamide content was determined by LC-MS by the isocratic system (phase A: 97.5 % water with 0.1% formic acid; phase B: 2.5 % methanol), using a standard internal procedure. Statistical analysis was performed using SPSS v.23. One-way variance analysis determined differences between acrylamide content and compositional analysis, with caloric sweeteners as fixed effect. Significance levels were determined by applying Duncan's t-test (p<0.05). P cakes showed a lower energy value than the other baked products; sugar content was similar to BS and CS, with 6.1 % mean crude protein. Acrylamide content in caloric sweeteners was similar to previously reported values. However, P and PC showed significantly higher concentrations, probably explained by the applied procedure. Acrylamide formation depends on both reducing sugars and asparagine concentration and availability. Beet sugar samples did not present acrylamide concentrations within the detection and quantification limit. However, the highest acrylamide content was measured in the BS. This may be due to the higher concentration of reducing sugars and asparagine in other raw ingredients. The cakes made with panela, cane sugar, or panela with chocolate did not differ in acrylamide content. The lack of asparagine measures constitutes a limitation. Cakes made with panela showed lower acrylamide formation than products elaborated with beet or cane sugar.

Keywords: beet sugar, cane sugar, panela, yogurt cake

Procedia PDF Downloads 38
872 Enzymatic Saccharification of Dilute Alkaline Pre-treated Microalgal (Tetraselmis suecica) Biomass for Biobutanol Production

Authors: M. A. Kassim, R. Potumarthi, A. Tanksale, S. C. Srivatsa, S. Bhattacharya

Abstract:

Enzymatic saccharification of biomass for reducing sugar production is one of the crucial processes in biofuel production through biochemical conversion. In this study, enzymatic saccharification of dilute potassium hydroxide (KOH) pre-treated Tetraselmis suecica biomass was carried out by using cellulase enzyme obtained from Trichoderma longibrachiatum. Initially, the pre-treatment conditions were optimised by changing alkali reagent concentration, retention time for reaction, and temperature. The T. suecica biomass after pre-treatment was also characterized using Fourier Transform Infrared Spectra and Scanning Electron Microscope. These analyses revealed that the functional group such as acetyl and hydroxyl groups, structure and surface of T. suecica biomass were changed through pre-treatment, which is favourable for enzymatic saccharification process. Comparison of enzymatic saccharification of untreated and pre-treated microalgal biomass indicated that higher level of reducing sugar can be obtained from pre-treated T. suecica. Enzymatic saccharification of pre-treated T. suecica biomass was optimised by changing temperature, pH, and enzyme concentration to solid ratio ([E]/[S]). Highest conversion of carbohydrate into reducing sugar of 95% amounted to reducing sugar yield of 20 (wt%) from pre-treated T. suecica was obtained from saccharification, at temperature: 40°C, pH: 4.5 and [E]/[S] of 0.1 after 72 h of incubation. Hydrolysate obtained from enzymatic saccharification of pretreated T. suecica biomass was further fermented into biobutanol using Clostridium saccharoperbutyliticum as biocatalyst. The results from this study demonstrate a positive prospect of application of dilute alkaline pre-treatment to enhance enzymatic saccharification and biobutanol production from microalgal biomass.

Keywords: microalgal biomass, enzymatic saccharification, biobutanol, fermentation

Procedia PDF Downloads 353
871 Cellular Energy Metabolism Decreases with Age in the Trophocytes and Oenocytes of Honeybees (Apis Mellifera)

Authors: Chin-Yuan Hsu, Yu-Lung Chuang

Abstract:

The expression, concentration, and activity of mitochondrial energy-utilized molecules and cellular energy-regulated molecules decreased with age in the trophocytes and oenocytes of honeybees (Apis mellifera), but those of cellular energy-metabolized molecules is unknown. In this study, the expression, concentration, and activity of cellular energy-metabolized molecules were assayed in the trophocytes and fat cells of young and old worker bees by using the techniques of cell and biochemistry. The results showed that (i) the •-hydroxylacyl-coenzyme A dehydrogenase (HOAD) activity/citrate synthase (CS) activity ratio, non-esterified fatty acids concentrations, the expression of eukaryotic initiation factor 4E, and the expression of phosphorylated eIF4E binding protein 1 decreased with age; (ii) fat and glycogen accumulation increased with age; and (iii) the pyruvate dehydrogenase (PDH) activity/citrate synthase (CS) activity ratio was not correlated with age. These finding indicated that •-oxidation (HOAD/CS) and protein synthsis decreased with age. Glycolysis (PDH/CS) was unchanged with age. The most likely reason is that sugars are the vital food of worker bees. Taken together these data reveal that young workers have higher cellular energy metabolism than old workers and that aging results in a decline in the cellular energy metabolism in worker honeybees.

Keywords: aging, energy, honeybee, metabolism

Procedia PDF Downloads 442
870 Effect of Brown Algae, Ecklonia arborea and Silvetia compressa, in Lipidemic and Hepatic Metabolism in Wistar Rats

Authors: Laura Acevedo-Pacheco, Janet Alejandra Gutierrez-Uribe, Lucia Elizabeth Cruz-Suarez, Segio Othon Serna-Saldivar

Abstract:

Seaweeds can generate changes in the metabolism of lipids; as a consequence, this may diminish cholesterol and other lipids in the blood. However, the consumption of marine algae may also alter the functions of other organs. Therefore, the objective of this research was to study the effect of two different sorts of algae (Ecklonia arborea and Silvetia compressa) in the metabolism of lipids, as well as, in the physiology of the liver. Wistar male rats were fed for two months with independent diets composed of 20% of fat and 2.5% of E. arborea and S. compressa each. Blood parameters (cholesterol, lipoproteins, triglycerides, hepatic enzymes) and triglycerides in the liver were quantified, and also hepatic histology analyses were performed. While S. compressa reduced 18% total cholesterol compared to the positive control, E. arborea increased it 5.8%. Animals fed with S. compressa presented a decrement, compared to the positive control, not only in low density lipoproteins levels (53%) but also in triglycerides (67%). The presence of steatosis in the histologies and the high levels of triglycerides showed an evident lipid accumulation in hepatic tissues of rats fed with both algae. These results indicate that even though S. compressa showed a promising resource to decrease total cholesterol and low-density lipoproteins in blood, a detrimental effect was observed in liver physiology. Further investigations should be made to find out if toxic compounds associated with these seaweeds may cause liver damage especially in terms of heavy metals.

Keywords: brown algae, Eisenia arborea, hepatic metabolism, lipidemic metabolism, Pelvetia compressa, steatosis

Procedia PDF Downloads 104
869 Foaming and Structuring Properties of Chickpea Cooking Water (Aquafaba): Effect of Ingredient Added and Their Particle Size

Authors: Carola Cappa

Abstract:

Chickpea cooking water (known as aquafaba, AF) is a “waste” product having interesting technological properties exploitable for sustainable plant-based food applications that can encounter a larger consumers demand. Different process conditions to obtain AF were defined; the addition of hydrocolloid (i.e., guar gum) and lactic acid to improve the techno-functionalities of aquafaba was explored, and the effects of these ingredients on the foaming properties and the quality of plant-based target confectionery products were investigated. Meringues having a solid foam structure and a simple formulation (i.e., foaming agent and sugar) and chocolate mousse were chosen as target foods. The effects of the sugar particle size reduction on the empirical and fundamental rheological properties of the foaming agent and of the mousse were evaluated. The treatment did not significantly change the viscosity of the system, while the overrun and foam stability were affected by sugar particle size, and mousse with coarse sugar was characterized by a higher consistency, confirming the importance of the particle size of the ingredients on the texture of the final product. This study proved that AF, a recycled “waste” product, possesses interesting techno-functionalities properties further enhanced by adding lactic acid and modulable according to ingredient particle size; these AF results are useable for plant-based food applications.

Keywords: foaming properties, foam stability, foam texture, particle size, acidification, aquafaba

Procedia PDF Downloads 42
868 Brand Creation for Community Product: A Case Study at Samut Songkram, Thailand

Authors: Cholpassorn Sitthiwarongchai

Abstract:

The purposes of this paper were to search for the uniqueness of community products from Bang Khonthi District, Samut Songkram Province, Thailand and to create a proper brand for the community products. Four important questions were asked to identify the uniqueness of the community products. The first question: What is the brand of coconut sugar that community wants to imply? The answer was 100 percent authentic coconut sugar. The second question: What is the nature of this product? The answer was that it is a natural product without any harmful chemical. The third question is: Who are the target customers? The answer was that homemakers and tourists are target customers. The fourth question: What is the brand guarantee to customers? The answer was that the brand guarantees that the product is 100 percent natural process with a high quality and it is a community production. The findings revealed that in terms of product, customers rated quality and package as the two most important factors. In terms of price, customers rated lower price and a visible label as the two most important factors. In terms of place, customer rated layout and the cleanliness of the place as the two most important factors. In terms of promotion, customer rated public relations and brochure at the store as the most important factors. From the group discussion, the local community agreed that the brand for the community coconut sugar of Salapi community should be a picture of a green coconut tree and yellow color background. This brand implies the strength of community and authentic of the high quality natural product.

Keywords: coconut sugar, community brand, Samut Songkram, natural product

Procedia PDF Downloads 366
867 The Effects of Applying Wash and Green-A Syrups as Substitution of Sugar on Dough and Cake Properties

Authors: Banafsheh Aghamohammadi, Masoud Honarvar, Babak Ghiassi Tarzi

Abstract:

Usage of different components has been considered to improve the quality and nutritional properties of cakes in recent years. The effects of applying some sweeteners, instead of sugar, have been evaluated in cakes and many bread formulas up to now; but there has not been any research about the usage of by-products of sugar factories such as Wash and Green-A Syrups in cake formulas. In this research, the effects of substituting 25%, 50%, 75% and 100% of sugar with Wash and Green-A Syrups on some dough and cake properties, such as pH, viscosity, density, volume, weight loss, moisture, water activity, texture, staling, color and sensory evaluations, are studied. The results of these experiments showed that the pH values were not significantly different among any of the all cake batters and also most of the cake samples. Although differences among viscosity and specific gravity of all treatments were both significant and insignificant, these two parameters resulted in higher volume in all samples than the blank one. The differences in weight loss, moisture content and water activity of samples were insignificant. Evaluating of texture showed that the softness of most of samples is increased and the staling is decreased. Crumb color and sensory evaluations of samples were also affected by the replacement of sucrose with Wash and Green-A Syrups. According to the results, we can increase the shelf life and improve the quality and nutritional values of cake by using these kinds of syrups in the formulation.

Keywords: cake, green-A syrup, quality tests, sensory evaluation, wash syrup

Procedia PDF Downloads 151
866 Mechanical Performance of Sandwich Square Honeycomb Structure from Sugar Palm Fibre

Authors: Z. Ansari, M. R. M. Rejab, D. Bachtiar, J. P. Siregar

Abstract:

This study focus on the compression and tensile properties of new and recycle square honeycombs structure from sugar palm fibre (SPF) and polylactic acid (PLA) composite. The end data will determine the failure strength and energy absorption for both new and recycle composite. The control SPF specimens were fabricated from short fibre co-mingled with PLA by using a bra-blender set at 180°C and 50 rpm consecutively. The mixture of 30% fibre and 70% PLA were later on the hot press at 180°C into sheets with thickness 3mm consecutively before being assembled into a sandwich honeycomb structure. An INSTRON tensile machine and Abaqus 6.13 software were used for mechanical test and finite element simulation. The percentage of error from the simulation and experiment data was 9.20% and 9.17% for both new and recycled product. The small error of percentages was acceptable due to the nature of the simulation model to be assumed as a perfect model with no imperfect geometries. The energy absorption value from new to recycled product decrease from 312.86kJ to 282.10kJ. With this small decrements, it is still possible to implement a recycle SPF/PLA composite into everyday usages such as a car's interior or a small size furniture.

Keywords: failure modes, numerical modelling, polylactic acid, sugar palm fibres

Procedia PDF Downloads 267
865 Flow Sheet Development and Simulation of a Bio-refinery Annexed to Typical South African Sugar Mill

Authors: M. Ali Mandegari, S. Farzad, J. F. Görgens

Abstract:

Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation bio-refinery is defined as a process to use waste fibrous for the production of bio-fuel, chemicals animal food, and electricity. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide and many challenges in front of bio-ethanol production were solved. Bio-refinery annexed to the existing sugar mill for production of bio-ethanol and electricity is proposed to sugar industry and is addressed in this study. Since flow-sheet development is the key element of the bio-ethanol process, in this work, a bio-refinery (bio-ethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behavior of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bio-ethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive bio-refinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bio-ethanol purification was simulated by two distillation columns with side stream and fuel grade bio-ethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates 256.6 kg bio ethanol per ton of feedstock and 31 MW surplus power were attained from bio-refinery while the process consumes 3.5, 3.38, and 0.164 (GJ/ton per ton of feedstock) hot utility, cold utility and electricity respectively. Developed simulation is a threshold of variety analyses and developments for further studies.

Keywords: bio-refinery, bagasse, tops, trash, bio-ethanol, electricity

Procedia PDF Downloads 495
864 Effect of cold water immersion on bone mineral metabolism in aging rats

Authors: Irena Baranowska-Bosiacka, Mateusz Bosiacki, Patrycja Kupnicka, Anna Lubkowska, Dariusz Chlubek

Abstract:

Physical activity and a balanced diet are among the key factors of "healthy ageing". Physical effort, including swimming in cold water (including bathing in natural water reservoirs), is widely recognized as a hardening factor, with a positive effect on the mental and physical health. At the same time, there is little scientific evidence to verify this hypothesis. In the literature to date, it is possible to obtain data on the impact of these factors on selected physiological and biochemical parameters of the blood, at the same time there are no results of research on the effect of immersing in cold water on mineral metabolism, especially bones, hence it seems important to perform such an analysis in relation to the key elements such as calcium (Ca), magnesium (Mg) and phosphorus (P). Taking the above into account, a hypothesis was put forward about the possibility of a positive effect of exercise in cold water on mineral metabolism and bone density in aging rats. The aim of the study was to evaluate the effect of an 8-week swimming training on mineral metabolism and bone density in aging rats in response to exercise in cold water (5oC) in comparison to swimming in thermal comfort (36oC) and sedentary (control) rats of both sexes. The examination of the concentration of the examined elements in the bones was carried out using inductively coupled plasma atomic emission spectrometry (ICP-OES). The mineral density of the femurs of the rats was measured using the Hologic Horizon DEXA System® densitometer. The results of our study showed that swimming in cold water affects bone mineral metabolism in aging rats by changing the Ca, Mg, P concentration and at the same time increasing their bone density. In males, a decrease in Mg concentration and no changes in bone density were observed. In the light of the research results, it seems that swimming in cold water may be a factor that positively modifies the bone aging process by improving the mechanisms affecting their density.

Keywords: swimming in cold water, adaptation to cold water, bone mineral metabolism, aging

Procedia PDF Downloads 33
863 Laboratory Scale Production of Bio-Based Chemicals from Industrial Waste Feedstock in South Africa

Authors: P. Mandree, S. O. Ramchuran, F. O'Brien, L. Sethunya, S. Khumalo

Abstract:

South Africa is identified as one of the five emerging waste management markets, globally. The waste sector in South Africa influences the areas of energy, water and food at an economic and social level. Recently, South African industries have focused on waste valorization and diversification of the current product offerings in an attempt to reduce industrial waste, target a zero waste-to-landfill initiative and recover energy. South Africa has a number of waste streams including industrial and agricultural biomass, municipal waste and marine waste. Large volumes of agricultural and forestry residues, in particular, are generated which provides significant opportunity for production of bio-based fuels and chemicals. This could directly impact development of a rural economy. One of the largest agricultural industries is the sugar industry, which contributes significantly to the country’s economy and job creation. However, the sugar industry is facing challenges due to fluctuations in sugar prices, increasing competition with low-cost global sugar producers, increasing energy and agricultural input costs, lower consumption and aging facilities. This study is aimed at technology development for the production of various bio-based chemicals using feedstock from the sugar refining process. Various indigenous bacteria and yeast species were assessed for the potential to produce platform chemicals in flask studies and at 30 L fermentation scale. Quantitative analysis of targeted bio-based chemicals was performed using either gas chromatography or high pressure liquid chromatography to assess production yields and techno-economics in order to compare performance to current commercial benchmark processes. The study also creates a decision platform for the research direction that is required for strain development using Industrial Synthetic Biology.

Keywords: bio-based chemicals, biorefinery, industrial synthetic biology, waste valorization

Procedia PDF Downloads 96
862 Linking Metabolism, Pluripotency and Epigenetic Changes during Early Differentiation of Embryonic Stem Cells

Authors: Arieh Moussaieff, Bénédicte Elena-Herrmann, Yaakov Nahmias, Daniel Aberdam

Abstract:

Differentiation of pluripotent stem cells is a slow process, marked by the gradual loss of pluripotency factors over days in culture. While the first few days of differentiation show minor changes in the cellular transcriptome, intracellular signaling pathways remain largely unknown. Recently, several groups demonstrated that the metabolism of pluripotent mouse and human cells is different from that of somatic cells, showing a marked increase in glycolysis previously identified in cancer as the Warburg effect. Here, we sought to identify the earliest metabolic changes induced at the first hours of differentiation. High-resolution NMR analysis identified 35 metabolites and a distinct, gradual transition in metabolism during early differentiation. Metabolic and transcriptional analyses showed the induction of glycolysis toward acetate and acetyl-coA in pluripotent cells, and an increase in cholesterol biosynthesis during early differentiation. Importantly, this metabolic pathway regulated differentiation of human and mouse embryonic stem cells. Acetate delayed differentiation preventing differentiation-induced histone de-acetylation in a dose-dependent manner. Glycolytic inhibitors upstream of acetate caused differentiation of pluripotent cells, while those downstream delayed differentiation. Our data suggests that a rapid loss of glycolysis in early differentiation down-regulates acetate and acetyl-coA production, causing a loss of histone acetylation and concomitant loss of pluripotency. It demonstrate that pluripotent stem cells utilize a novel metabolism pathway to maintain pluripotency through acetate/acetyl-coA and highlights the important role metabolism plays in pluripotency and early differentiation of stem cells.

Keywords: pluripotency, metabolomics, epigenetics, acetyl-coA

Procedia PDF Downloads 440
861 Coffee Consumption and Glucose Metabolism: a Systematic Review of Clinical Trials

Authors: Caio E. G. Reis, Jose G. Dórea, Teresa H. M. da Costa

Abstract:

Objective: Epidemiological data shows an inverse association of coffee consumption with risk of type 2 diabetes mellitus. However, the clinical effects of coffee consumption on the glucose metabolism biomarkers remain controversial. Thus, this paper reviews clinical trials that evaluated the effects of coffee consumption on glucose metabolism. Research Design and Methods: We identified studies published until December 2014 by searching electronic databases and reference lists. We included randomized clinical trials which the intervention group received caffeinated and/or decaffeinated coffee and the control group received water or placebo treatments and measured biomarkers of glucose metabolism. The Jadad Score was applied to evaluate the quality of the studies whereas studies that scored ≥ 3 points were considered for the analyses. Results: Seven clinical trials (total of 237 subjects) were analyzed involving adult healthy, overweight and diabetic subjects. The studies were divided in short-term (1 to 3h) and long-term (2 to 16 weeks) duration. The results for short-term studies showed that caffeinated coffee consumption may increase the area under the curve for glucose response, while for long-term studies caffeinated coffee may improve the glycemic metabolism by reducing the glucose curve and increasing insulin response. These results seem to show that the benefits of coffee consumption occur in the long-term as has been shown in the reduction of type 2 diabetes mellitus risk in epidemiological studies. Nevertheless, until the relationship between long-term coffee consumption and type 2 diabetes mellitus is better understood and any mechanism involved identified, it is premature to make claims about coffee preventing type 2 diabetes mellitus. Conclusion: The findings suggest that caffeinated coffee may impairs glucose metabolism in short-term but in the long-term the studies indicate reduction of type 2 diabetes mellitus risk. More clinical trials with comparable methodology are needed to unravel this paradox.

Keywords: coffee, diabetes mellitus type 2, glucose, insulin

Procedia PDF Downloads 432
860 Reducing Metabolism Residues in Maintenance Goldfish (Carrasius auratus auratus) by Phytoremediation Plant

Authors: Anna Nurkhasanah, Hamzah Muhammad Ihsan, Nurul Wulandari

Abstract:

Water quality affects the body condition of aquatic organisms. One of the methods to manage water quality, usually called phytoremediation, involves using aquatic plants. The purpose of this study is to find out the best aquatic plants to reducing metabolism residues from aquatic organism. 5 aquariums (40x30x30 cm) containing 100 grams from each 4 different plants such as water hyacinth (Eichhornia crassipes), salvinia (Salvinia molesta), cabomba (Cabomba caroliniana), and hydrilla (Hydrilla verticillata), thirteen goldfis (Carrasius auratus auratus) are maintained. The maintenance is conducted through a week and water quality measurements are performed three times. The results show that pH value tends to range between 7,22-8,72. The temperature varies between 25-26 °C. DO values varies between 5,2-10,5 mg/L. Amoniac value is between 0,005–5,2 mg/L. Nitrite value is between 0,005 mg/L-2,356 mg/L. Nitrate value is between 0,791 mg/L-1,737 mg/L. CO2 value is between 2,2 mg/L-6,1 mg/L. The result of survival rate of goldfish for all treatments is 100%. Based on this study, the best aquatic plant to reduce metabolism residues is hydrilla.

Keywords: phytoremediation, goldfish, aquatic plants, water quality

Procedia PDF Downloads 489
859 Silicon Nanoparticles and Irradiated Chitosan: Sustainable Elicitors for PS II Activity and Antioxidant Mediated Plant Immunity

Authors: Mohammad Mukarram, M. Masroor A. Khan, Daniel Kurjak, Marek Fabrika

Abstract:

Lemongrass (Cymbopogon flexuosus (Steud.) Wats) is an aromatic grass with great industrial potential. It is cultivated for its essential oil (EO), which has great economic value due to its numerous medicinal, cosmetic, and culinary applications. The present study had the goal to evaluate whether the combined application of silicon nanoparticles (SiNPs) 150 mg L⁻¹ and irradiated chitosan (ICH) 120 mg L⁻¹ can upgrade lemongrass crop and render enhanced growth and productivity. The analyses of growth and photosynthetic parameters, leaf-nitrogen, and reactive oxygen species metabolism, as well as the content of total essential oil, indicated that combined foliar sprays of SiNPs and ICH can significantly (p≤0.05) trigger a general activation of lemongrass metabolism. Overall, the data indicate that concomitant SiNPs and ICH application elicit lemongrass physiology and defence system, and opens new possibilities for their biotechnological application on other related plant species with agronomic potential.

Keywords: photosynthesis, Cymbopogon, antioxidant metabolism, essential oil, ROS, nanoparticles, polysaccharides

Procedia PDF Downloads 58
858 A Proposal to Integrate Spatially Explicit Ecosystem Services with Urban Metabolic Modelling

Authors: Thomas Elliot, Javier Babi Almenar, Benedetto Rugani

Abstract:

The integration of urban metabolism (UM) with spatially explicit ecosystem service (ES) stocks has the potential to advance sustainable urban development. It will correct the lack of spatially specificity of current urban metabolism models. Furthermore, it will include into UM not only the physical properties of material and energy stocks and flows, but also the implications to the natural capital that provides and maintains human well-being. This paper presents the first stages of a modelling framework by which urban planners can assess spatially the trade-offs of ES flows resulting from urban interventions of different character and scale. This framework allows for a multi-region assessment which takes into account sustainability burdens consequent to an urban planning event occurring elsewhere in the environment. The urban boundary is defined as the Functional Urban Audit (FUA) method to account for trans-administrative ES flows. ES are mapped using CORINE land use within the FUA. These stocks and flows are incorporated into a UM assessment method to demonstrate the transfer and flux of ES arising from different urban planning implementations.

Keywords: ecological economics, ecosystem services, spatial planning, urban metabolism

Procedia PDF Downloads 304
857 Viability of Sub-Surface Drip Irrigation in Agronomic and Vegetable Crops Production

Authors: Ali Montazar

Abstract:

This study aims to assess the viability of sub-surface drip irrigation (SDI) using several ongoing and conducted researches in the low desert region of California. The experiments were carried out in the University of California Desert Research and Extension Center (UC DREC) and ten commercial fields at alfalfa, sugar beets, dehydrated onions, and spinach crops. The results demonstrated greater yields, actual crop water consumption, and water productivity of SDI as compared with conventional irrigation practices (border, furrow, and sprinkler irrigation) with an average increase of 21%, 7%, and 15%, respectively. The severity of plant disease, particularly root rot in sugar beet, and downy mildew in onions and spinach, were significantly lower in SDI than furrow and sprinkler irrigation (an average of 3-5 times). While utilizing this irrigation technology may have ability to achieve higher yields, conserve water, improve the efficiency of water and nutrient use, and manage food safety risks and plant disease, further work is required to better understand the impact of management practices and strategies on the viability of SDI application, and maintain its profitability in various agricultural production systems as water, labor costs, and environmental concerns increase.

Keywords: alfalfa, onions, spinach, sugar beets, subsurface drip irrigation

Procedia PDF Downloads 99
856 Fatty Acid Metabolism in Hypertension

Authors: Yin Hua Zhang

Abstract:

Cardiac metabolism is essential in myocardial contraction. In addition to glucose, fatty acids (FA) are essential in producing energy in the myocardium since FA-dependent beta-oxidation accounts for > 70-90% of cellular ATP under resting conditions. However, metabolism shifts from FAs to glucose utilization during disease progression (e.g. hypertrophy and ischemic myocardium), where glucose oxidation and glycolysis become the predominant sources of cellular ATP. At advanced failing stage, both glycolysis and beta-oxidation are dysregulated, result in insufficient supply of intracellular ATP and weakened myocardial contractility. Undeniably, our understandings of myocyte function in healthy and diseased hearts are based on glucose (10 mM)-dependent metabolism because glucose is the “sole” metabolic substrate in most of the physiological experiments. In view of the importance of FAs in cardiovascular health and diseases, we aimed to elucidate the impacts of FA supplementation on myocyte contractility and evaluate cellular mechanisms those mediate the functions in normal heart and with pathological stress. In particular, we have investigated cardiac excitation-contraction (E-C) coupling in the presence and absence of FAs in normal and hypertensive rat left ventricular (LV) myocytes. Our results reveal that FAs increase mitochondrial activity, intracellular [Ca²+]i, and LV myocyte contraction in healthy LV myocytes, whereas FA-dependent cardiac inotropyis attenuated in hypertension. FA-dependent myofilament Ca²+ desensitization could be fundamental in regulating [Ca²+]i. Collectively, FAs supplementation resets cardiac E-C coupling scheme in healthy and diseased hearts.

Keywords: hypertension, fatty acid, heart, calcium

Procedia PDF Downloads 80
855 Water Productivity as an Indicator of Bioenergetic Sustainability in Sugarcane

Authors: Rubens Duarte Coelho, Timóteo Herculino da Silva Barros, Jefferson de Olveira Costa

Abstract:

Brazil has an electrical matrix of predominantly renewable origin, with emphasis on water sources, which account for 65.2%, biomass energy for 8.2%, wind for 6.8% and solar for 0.13% of the domestic supply. Among these sources, sugarcane cultivation stands out, aiming both at the production of bioethanol and biomass to supply “clean energy”. However, like all other crops, sugar cane demands a large volume of a natural resource that is increasingly “scarce” in quantity and quality: water. Adequate and strategic water management throughout the entire sugarcane cycle is of fundamental importance, and water productivity can be used to adjust irrigation planning and decision-making, increasing the productivity of stalks, bioethanol, biomass, and sugar. In this way, water productivity is a good indicator for analysis and decision-making considering the sustainability of cultivation, as it allows evaluation of the variation in the ratio between production and the amount of water used, suggesting values that maximize the use of this natural resource. In this context, studies that relate water demand, in this case, expressed by water productivity, with the energy production of this crop, in this case, expressed by the production of bioethanol, biomass and sugar, are fundamental to obtaining an efficient production of renewable energy, which aims at the rational use of natural resources, especially water. The objective of the present work was to evaluate the response of sugarcane varieties subjected to different water availability to obtain better sustainability in bioenergy production, presenting water productivity indices for Bioethanol, Sugar and Biomass. The variety that responded best was RB966928, with a bioethanol yield of 68.7 L Mg-1. Future research should focus on the water response under each of the sugarcane fractions in terms of their elemental composition so that the influence of water on the energy supply of this crop can be better understood.

Keywords: energy matrix, water use, water use efficiency, sustainability

Procedia PDF Downloads 35