Search results for: structural element
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6781

Search results for: structural element

1111 Antioxidant Activity of Friedelin, Eudesmic Acid and Methyl-3,4,5-Trimethoxybenzoate from Tapinanthus bangwensis (Engl., and K. Krause) [Loranthaceae] Grown in Nigeria

Authors: Odunayo Christy Atewolara-Odule, Olapeju O. Aiyelaagbe

Abstract:

The search for new natural anti-oxidants has grown tremendously over the years because reactive oxygen species (ROS) production and oxidative stress have been linked to a large number of human degenerative diseases, such as cancer, cardiovascular diseases, inflammation, and diabetes. Tapinanthus bangwensis, a parasitic plant commonly known as mistletoe belonging to the Loranthaceae family, is mostly employed traditionally to treat inflammation, cancer, diabetes, and hypertension to mention a few. In this study, air-dried pulverized leaves and stem of Tapinanthus bangwensis were successively extracted with n-hexane, ethyl acetate, and methanol to give the corresponding crude extracts. The extracts were purified by column chromatography and high-performance liquid chromatography to give the isolated compounds. Structural elucidation was done using mass spectrometry, Fourier transform infra-red, 1D and 2D NMR spectroscopy. The antioxidant activity of the compounds was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ascorbic acid as standard. Three compounds; Friedelin, Eudesmic acid (3,4,5-trimethoxybenzoic) and Methyl-3,4,5-trimethoxybenzoate were isolated from the extracts of Tapinanthus bangwensis. Friedelin was isolated from the ethyl acetate extract of the stem while the two other compounds were isolated from the methanol extract of the leaves. The percentages of free radical scavenging activities of the compounds are as follows: Friedelin, 73.69%, methyl-3,4,5-trimethoxybenzoate, 79.33% and eudesmic, 87.68% anti-oxidant activity which were quite comparable to 93.96% given by ascorbic acid. We are reporting, to our best knowledge, for the first time the occurrence of friedelin and eudesmic acid in Tapinanthus bangwensis. The high anti-oxidant activity of these compounds supports the use of this plant in the management of diabetes and hypertension as they will be useful in combating complications arising from the disease.

Keywords: column chromatography, eudesmic acid, friedelin, Tapinanthus bangwensis

Procedia PDF Downloads 241
1110 Impact of Stress on Physical-Mental Wellbeing of Working Women in India: Awareness and Acceptability

Authors: Meera Shanker

Abstract:

Excellent education and financial need have encouraged Indian women to go out and work in well-paid and high-status occupations. In the era of cutthroat competition, women are expected to work hard to produce the desired result; hence, workload and expectations haveincreased. At home, they are anticipated to take care of family members, children, and household work. Women are stretching themselves mechanically to remain in the job competition and try to give their best at home. Consequentially, they are under tremendous pressure, stressed, and having issues related to physical-mental wellness. Mental healthcare is often ignored and not accepted due to a lack of awareness and cultural barriers. These further compounds the problem, resulting in decreased productivity in economic terms and an increase in stress-related physical-mental ailments. The main objective of the study was to find out the impact of stress on the physical-mental wellbeing of working women in India, along with their awareness and acceptability related to mental health. Six hundred and one woman working at various levels took part in this study, responding to the items related to stress and physical-mental illness. Finally, 21 items were retained under four meaningful factors measuring stress dimensions along with 17 items with three factors measuring physical-mental wellbeing. Confirmatory Factor Analysis (CFA), path analysis, in Structural Equation Modeling (SEM), was used to get a relationship, validity of the instruments. The psychometric properties of items and Cronbach’s Alpha reliabilities calculated for the subscales were relatively acceptable. The subscale correlations, regression, and path analysis of stress dimensions with physical-mental illness were found to be positive, indicating the growing stress among working women in India, which is impacting their physical-mental health. Single item analysis revealed that 77 percent of women have never visited psychologists. However, 70 percent of working women were not ready to seek the help of a psychologist.

Keywords: working women, stress, physical-mental well-being, confirmatory factor analysis

Procedia PDF Downloads 179
1109 Clove Oil Incorporated Biodegradable Film for Active Food Packaging

Authors: Shubham Sharma, Sandra Barkauskaite, Brendan Duffy, Swarna Jaiswal, Amit K. Jaiswal

Abstract:

Food packaging protects food from temperature, light, and humidity; preserves food and guarantees the safety and the integrity of the food. Advancement in packaging research leads to development of active packaging system with numerous properties such as oxygen scavengers, carbon-dioxide generating systems, antimicrobial active packaging, moisture control packaging, ethylene scavengers etc. In the active packaging, several additives such as essential oils, polyphenols etc. are incorporated into packaging film or within the packaging material to achieve the desired properties. This study investigates the effect on the structural, thermal and functional properties of different poly(lactide) – poly (butylene adipate-co-terephthalate) (PLA-PBAT) blend films incorporated with clove essential oil. The PLA-PBAT films were prepared by a solution casting method and then characterized based on their optical, mechanical properties, surface hydrophobicity, chemical composition, antimicrobial activity against S. aureus and E. coli, and inhibition of biofilm formation of E. coli. Results showed that, the developed packaging film containing clove oil has significant UV-blocking property (80%). However, incorporation of clove oil resulted in reduced transparency and tensile strength of the film as the concentration of clove oil increased. The surface hydrophobicity of packaging film was improved with the increasing concentration of essential oil. Similarly, thickness of the clove oil containing films increased from 36.71 µm to 106.67 µm as the concentration increases. The antimicrobial activity and biofilm inhibition study showed that the clove-incorporated PLA-PBAT composite film was effective against tested bacteria E. coli and S. aureus. This study showed that the PLA-PBAT – Clove oil composite film has significant antimicrobial and UV-blocking properties and can be used as an active food packaging film.

Keywords: active packaging, clove oil, poly(butylene adipate-co-terephthalate), poly(lactide)

Procedia PDF Downloads 145
1108 Sodium-glucose Co-transporter-2 Inhibitors in Heart Failure with Mildly Reduced Reduced Ejection Fraction: Future Perspectives in Patients with Neoplasia

Authors: M. A. Munteanu, A. M. Lungu, A. I. Chivescu, V. Teodorescu, E. Tufanoiu, C. Nicolae, T. I. Nanea

Abstract:

Introduction: Sodium-glucose co-transporter 2 inhibitors (SGLT2i), which were first developed as antidiabetic medications, have demonstrated numerous positive benefits on the cardiovascular system, especially in the prevention of heart failure (HF). HF is a challenging, multifaceted disease that needs all-encompassing therapy. It should not be viewed as a limited form of heart illness but rather as a systemic disease that leads to multiple organ failure and death. SGLT2i is an extremely effective tool for treating HF by using its pleiotropic effects. In addition to its use in patients with diabetes mellitus who are at high cardiovascular risk or who have already experienced a cardiovascular event, SGLT2i administration has been shown to have positive effects on a variety of HF manifestations and stages, regardless of the patient's presence of diabetes mellitus. Material and Methods: According to the guide, 110 patients (83 males and 27 females) with heart failure with mildly reduced ejection fraction (HFmrEF), with T2D and neoplasia, were enrolled in the prospective study. The structural and functional state of the left ventricle myocardium and ejection fraction was assessed through echocardiography. Patients were randomized to receive once-daily dapagliflozin 10 mg. Results: Patients with HFmrEF were divided into 3 subgroups according to age. 7% (8) patients aged < 45 years, 35% (28) patients aged between 46-59 years, and 58% (74) patients aged> 60 years. The most prevalent comorbidities were hypertension (43.1%), coronary heart disease (40%), and obesity (33.2%). Study drug discontinuation and serious adverse events were not frequent in the subgroups, in either men or women, until now. Conclusions: SGLT-2 inhibitors are a novel class of antidiabetic agents that have demonstrated positive efficacy and safety outcomes in the setting of HFmrEF. Until now, in our study, dapagliflozin was safe and well-tolerated irrespective of sex.

Keywords: diabetes mellitus type 2, Sodium-glucose co-transporters-2 inhibitors, heart failure, neoplasia

Procedia PDF Downloads 82
1107 Three-Dimensional Fluid-Structure-Thermal Coupling Dynamics Simulation Model of a Gas-Filled Fluid-Resistance Damper and Experimental Verification

Authors: Wenxue Xu

Abstract:

Fluid resistance damper is an important damping element to attenuate vehicle vibration. It converts vibration energy into thermal energy dissipation through oil throttling. It is a typical fluid-solid-heat coupling problem. A complete three-dimensional flow-structure-thermal coupling dynamics simulation model of a gas-filled fluid-resistance damper was established. The flow-condition-based interpolation (FCBI) method and direct coupling calculation method, the unit's FCBI-C fluid numerical analysis method and iterative coupling calculation method are used to achieve the damper dynamic response of the piston rod under sinusoidal excitation; the air chamber inflation pressure, spring compression characteristics, constant flow passage cross-sectional area and oil parameters, etc. The system parameters, excitation frequency, and amplitude and other excitation parameters are analyzed and compared in detail for the effects of differential pressure characteristics, velocity characteristics, flow characteristics and dynamic response of valve opening, floating piston response and piston rod output force characteristics. Experiments were carried out on some simulation analysis conditions. The results show that the node-based FCBI (flow-condition-based interpolation) fluid numerical analysis method and direct coupling calculation method can better guarantee the conservation of flow field calculation, and the calculation step is larger, but the memory is also larger; if the chamber inflation pressure is too low, the damper will become cavitation. The inflation pressure will cause the speed characteristic hysteresis to increase, and the sealing requirements are too strict. The spring compression characteristics have a great influence on the damping characteristics of the damper, and reasonable damping characteristic needs to properly design the spring compression characteristics; the larger the cross-sectional area of the constant flow channel, the smaller the maximum output force, but the more stable when the valve plate is opening.

Keywords: damper, fluid-structure-thermal coupling, heat generation, heat transfer

Procedia PDF Downloads 138
1106 BIM4Cult Leveraging BIM and IoT for Enhancing Fire Safety in Historical Buildings

Authors: Anastasios Manos, Despina Elisabeth Filippidou

Abstract:

Introduction: Historical buildings are an inte-gral part of the cultural heritage of every place, and beyond the obvious need for protection against risks, they have specific requirements regarding the handling of hazards and disasters such as fire, floods, earthquakes, etc. Ensuring high levels of protection and safety for these buildings is impera-tive for two distinct but interconnected reasons: a) they themselves constitute cultural heritage, and b) they are often used as museums/cultural spaces, necessitating the protection of both human life (vis-itors and workers) and the cultural treasures they house. However, these buildings present serious constraints in implementing the necessary measures to protect them from destruction due to their unique architecture, construction methods, and/or the structural materials used in the past, which have created an existing condition that is sometimes challenging to reshape and operate within the framework of modern regulations and protection measures. One of the most devastating risks that threaten historical buildings is fire. Catastrophic fires demonstrate the need for timely evaluation of fire safety measures in historical buildings. Recog-nizing the criticality of protecting historical build-ings from the risk of fire, the Confederation of Fire Protection Associations in Europe (CFPA E) issued specific guidelines in 2013 (CFPA-E Guideline No 30:2013 F) for the fire protection of historical buildings at the European level. However, until now, few actions have been implemented towards leveraging modern technologies in the field of con-struction and maintenance of buildings, such as Building Information Modeling (BIM) and the Inter-net of Things (IoT), for the protection of historical buildings from risks like fires, floods, etc. The pro-ject BIM4Cult has bee developed in order to fill this gap. It is a tool for timely assessing and monitoring of the fire safety level of historical buildings using BIM and IoT technologies in an integrated manner. The tool serves as a decision support expert system for improving the fire safety of historical buildings by continuously monitoring, controlling and as-sessing critical risk factors for fire.

Keywords: Iot, fire, BIM, expert system

Procedia PDF Downloads 63
1105 Producing and Mechanical Testing of Urea-Formaldehyde Resin Foams Reinforced by Waste Phosphogypsum

Authors: Krasimira Georgieva, Yordan Denev

Abstract:

Many of thermosetting resins have application only in filled state, reinforced with different mineral fillers. The co-filling of polymers with mineral filler and gases creates a possibility for production of polymer composites materials with low density. This processing leads to forming of new materials – gas-filled plastics (polymer foams). The properties of these materials are determined mainly by the shape and size of internal structural elements (pores). The interactions on the phase boundaries have influence on the materials properties too. In the present work, the gas-filled urea-formaldehyde resins were reinforced by waste phosphogypsum. The waste phosphogypsum (CaSO4.2H2O) is a solid by-product in wet phosphoric acid production processes. The values of the interactions polymer-filler were increased by using two modifying agents: polyvinyl acetate for polymer matrix and sodium metasilicate for filler. Technological methods for gas-filling and recipes of urea-formaldehyde based materials with apparent density 20-120 kg/m3 were developed. The heat conductivity of the samples is between 0.024 and 0.029 W/moK. Tensile analyses were carried out at 10 and 50% deformation and show values 0.01-0.14 MPa and 0.01-0.09 MPa, respectively. The apparent density of obtained materials is between 20 and 92 kg/m3. The changes in the tensile properties and density of these materials according to sodium metasilicate content were studied too. The mechanism of phosphogypsum adsorption modification was studied using methods of FT-IR spectroscopy. The structure of the gas-filled urea-formaldehyde resins was described by results of electron scanning microscopy at three different magnification ratios – x50, x150 and x 500. The aim of present work is to study the possibility of the usage of phosphogypsum as mineral filler for urea-formaldehyde resins and development of a technology for the production of gas-filled reinforced polymer composite materials. The structure and the properties of obtained composite materials are suitable for thermal and sound insulation applications.

Keywords: urea formaldehyde resins, gas-filled thermostes, phosphogypsum, mechanical properties

Procedia PDF Downloads 102
1104 Laminar Separation Bubble Prediction over an Airfoil Using Transition SST Turbulence Model on Moderate Reynolds Number

Authors: Younes El Khchine, Mohammed Sriti

Abstract:

A parametric study has been conducted to analyse the flow around S809 airfoil of a wind turbine in order to better understand the characteristics and effects of laminar separation bubble (LSB) on aerodynamic design for maximizing wind turbine efficiency. Numerical simulations were performed at low Reynolds numbers by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations based on C-type structural mesh and using the γ-Reθt turbulence model. A two-dimensional study was conducted for the chord Reynolds number of 1×10⁵ and angles of attack (AoA) between 0 and 20.15 degrees. The simulation results obtained for the aerodynamic coefficients at various angles of attack (AoA) were compared with XFoil results. A sensitivity study was performed to examine the effects of Reynolds number and free-stream turbulence intensity on the location and length of the laminar separation bubble and the aerodynamic performances of wind turbines. The results show that increasing the Reynolds number leads to a delay in the laminar separation on the upper surface of the airfoil. The increase in Reynolds number leads to an accelerated transition process, and the turbulent reattachment point moves closer to the leading edge owing to an earlier reattachment of the turbulent shear layer. This leads to a considerable reduction in the length of the separation bubble as the Reynolds number is increased. The increase in the level of free-stream turbulence intensity leads to a decrease in separation bubble length and an increase in the lift coefficient while having negligible effects on the stall angle. When the AoA increased, the bubble on the suction airfoil surface was found to move upstream to the leading edge of the airfoil, that causes earlier laminar separation.

Keywords: laminar separation bubble, turbulence intensity, S809 airfoil, transition model, Reynolds number

Procedia PDF Downloads 74
1103 Hydraulics of 3D Aerators with Lateral Enlargements

Authors: Nirmala Lama

Abstract:

The construction of high dams has led to significant challenges in managing flow rates discharging over spillways, resulting in cavitation damages on hydraulic surfaces. To address this, aerator devices were designed and installed to promote fore aeration, thereby controlling and mitigating damages caused by cavitation. Consequently, these aerator types, three-dimensional aerators (3DAEs), have demonstrated superior efficiency in introducing forced air into the flow.This research focuses on the installation and evaluation of three-dimensional aerator devices at the high discharge spillway surface. In the laboratory, the air concentration downstream of the hydraulic structures was extensively measured, and the data were analyzed in details.Multiple flow scenarios and structural arrangements of the aerators were adopted for the study. The outcomes of these experiments are listed as In terms of air concentration value, the comparison between 3 DAE (three-dimensional aerator) with offset only and offset with ramp reveals significant differences. The concentration value on the side wall was justified. The side cavity length was found to increase with higher approach Froude numbers and lateral enlargement widths. Furthermore, 3DAE exhibited shorter side cavity lengths compared to three-dimensional aerator devices without ramps (3DAD), a beneficial features for controlling water fins. An empirical formula to express the side cavity length was derived from the measured data. Also, the comparison were made on the basis of water fin formation between the different arrangements of 3D aerators. In conclusion, this research provides valuable insights into the performance of three-dimensional aerators in mitigating cavitation damages and controlling water fins in high dam spillways. The findings offer practical implications for designers and engineers seeking to enhance the efficiency and safety of hydraulic structures subjected to high flow rates.

Keywords: three-dimension aerator, cavity, water fin, air entrainment

Procedia PDF Downloads 63
1102 Environmental Factors and Executive Functions of Children in 5-Year-Old Kindergarten

Authors: Stephanie Duval

Abstract:

The concept of educational success, combined with the overall development of the child in kindergarten, is at the center of current interests, both in research and in the environments responsible for the education of young children. In order to promote it, researchers emphasize the importance of studying the executive functions [EF] of children in preschool education. More precisely, the EFs, which refers to working memory [WM], inhibition, mental flexibility and planning, would be the pivotal element of the child’s educational success. In order to support the EFs of the child, and even his educational success, the quality of the environments is beginning to be explored more and more. The question that arises now is how to promote EFs for young children in the educational environment, in order to support their educational success? The objective of this study is to investigate the link between the quality of interactions in 5-year-old kindergarten and child’s EFs. The sample consists of 118 children (70 girls, 48 boys) in 12 classes. The quality of the interactions is observed from the Classroom Assessment Scoring System [CLASS], and the EFs (i.e., working memory, inhibition, cognitive flexibility, and planning) are measured with administered tests. The hypothesis of this study was that the quality of teacher-child interactions in preschool education, as measured by the CLASS, was associated with the child’s EFs. The results revealed that the quality of emotional support offered by adults in kindergarten, included in the CLASS tool, was positively and significantly related to WM and inhibition skills. The results also suggest that WM is a key skill in the development of EFs, which may be associated with the educational success of the child. However, this hypothesis remains to be clarified, as is the link with educational success. In addition, results showed that factors associated to the family (ex. parents’ income) moderate the relationship between the domain ‘instructional support’ of the CLASS (ex. concept development) and child’s WM skills. These data suggest a moderating effect related to family characteristics in the link between ‘quality of classroom interactions’ and ‘EFs’. This project proposes, as a future avenue, to check the distinctive effect of different environments (familial and educational) on the child’s EFs. More specifically, future study could examine the influence of the educational environment on EF skills, as well as whether or not there is a moderating effect of the family environment (ex. parents' income) on the link between the quality of the interactions in the classroom and the EFs of the children, as anticipated by this research.

Keywords: executive functions [EFs], environmental factors, quality of interactions, preschool education

Procedia PDF Downloads 361
1101 Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Multipoint Optimal Minimum Entropy Deconvolution in Railway Bearings Fault Diagnosis

Authors: Yao Cheng, Weihua Zhang

Abstract:

Although the measured vibration signal contains rich information on machine health conditions, the white noise interferences and the discrete harmonic coming from blade, shaft and mash make the fault diagnosis of rolling element bearings difficult. In order to overcome the interferences of useless signals, a new fault diagnosis method combining Complete Ensemble Empirical Mode Decomposition with adaptive noise (CEEMDAN) and Multipoint Optimal Minimum Entropy Deconvolution (MOMED) is proposed for the fault diagnosis of high-speed train bearings. Firstly, the CEEMDAN technique is applied to adaptively decompose the raw vibration signal into a series of finite intrinsic mode functions (IMFs) and a residue. Compared with Ensemble Empirical Mode Decomposition (EEMD), the CEEMDAN can provide an exact reconstruction of the original signal and a better spectral separation of the modes, which improves the accuracy of fault diagnosis. An effective sensitivity index based on the Pearson's correlation coefficients between IMFs and raw signal is adopted to select sensitive IMFs that contain bearing fault information. The composite signal of the sensitive IMFs is applied to further analysis of fault identification. Next, for propose of identifying the fault information precisely, the MOMED is utilized to enhance the periodic impulses in composite signal. As a non-iterative method, the MOMED has better deconvolution performance than the classical deconvolution methods such Minimum Entropy Deconvolution (MED) and Maximum Correlated Kurtosis Deconvolution (MCKD). Third, the envelope spectrum analysis is applied to detect the existence of bearing fault. The simulated bearing fault signals with white noise and discrete harmonic interferences are used to validate the effectiveness of the proposed method. Finally, the superiorities of the proposed method are further demonstrated by high-speed train bearing fault datasets measured from test rig. The analysis results indicate that the proposed method has strong practicability.

Keywords: bearing, complete ensemble empirical mode decomposition with adaptive noise, fault diagnosis, multipoint optimal minimum entropy deconvolution

Procedia PDF Downloads 364
1100 Traumatic Chiasmal Syndrome Following Traumatic Brain Injury

Authors: Jiping Cai, Ningzhi Wangyang, Jun Shao

Abstract:

Traumatic brain injury (TBI) is one of the major causes of morbidity and mortality that leads to structural and functional damage in several parts of the brain, such as cranial nerves, optic nerve tract or other circuitry involved in vision and occipital lobe, depending on its location and severity. As a result, the function associated with vision processing and perception are significantly affected and cause blurred vision, double vision, decreased peripheral vision and blindness. Here two cases complaining of monocular vision loss (actually temporal hemianopia) due to traumatic chiasmal syndrome after frontal head injury were reported, and were compared the findings with individual case reports published in the literature. Reported cases of traumatic chiasmal syndrome appear to share some common features, such as injury to the frontal bone and fracture of the anterior skull base. The degree of bitemporal hemianopia and visual loss acuity have a variable presentation and was not necessarily related to the severity of the craniocerebral trauma. Chiasmal injury may occur even in the absence bony chip impingement. Isolated bitemporal hemianopia is rare and clinical improvement usually may not occur. Mechanisms of damage to the optic chiasm after trauma include direct tearing, contusion haemorrhage and contusion necrosis, and secondary mechanisms such as cell death, inflammation, edema, neurogenesis impairment and axonal damage associated with TBI. Beside visual field test, MRI evaluation of optic pathways seems to the strong objective evidence to demonstrate the impairment of the integrity of visual systems following TBI. Therefore, traumatic chiasmal syndrome should be considered as a differential diagnosis by both neurosurgeons and ophthalmologists in patients presenting with visual impairment, especially bitemporal hemianopia after head injury causing frontal and anterior skull base fracture.

Keywords: bitemporal hemianopia, brain injury, optic chiasma, traumatic chiasmal syndrome.

Procedia PDF Downloads 72
1099 Advancing Entrepreneurial Knowledge Through Re-Engineering Social Studies Education

Authors: Chukwuka Justus Iwegbu, Monye Christopher Prayer

Abstract:

Propeller aircraft engines, and more generally engines with a large rotating part (turboprops, high bypass ratio turbojets, etc.) are widely used in the industry and are subject to numerous developments in order to reduce their fuel consumption. In this context, unconventional architectures such as open rotors or distributed propulsion appear, and it is necessary to consider the influence of these systems on the aircraft's stability in flight. Indeed, the tendency to lengthen the blades and wings on which these propulsion devices are fixed increases their flexibility and accentuates the risk of whirl flutter. This phenomenon of aeroelastic instability is due to the precession movement of the axis of rotation of the propeller, which changes the angle of attack of the flow on the blades and creates unsteady aerodynamic forces and moments that can amplify the motion and make it unstable. The whirl flutter instability can ultimately lead to the destruction of the engine. We note the existence of a critical speed of the incident flow. If the flow velocity is lower than this value, the motion is damped and the system is stable, whereas beyond this value, the flow provides energy to the system (negative damping) and the motion becomes unstable. A simple model of whirl flutter is based on the work of Houbolt & Reed who proposed an analytical expression of the aerodynamic load on a rigid blade propeller whose axis orientation suffers small perturbations. Their work considered a propeller subjected to pitch and yaw movements, a flow undisturbed by the blades and a propeller not generating any thrust in the absence of precession. The unsteady aerodynamic forces were then obtained using the thin airfoil theory and the strip theory. In the present study, the unsteady aerodynamic loads are expressed for a general movement of the propeller (not only pitch and yaw). The acceleration and rotation of the flow by the propeller are modeled using a Blade Element Momentum Theory (BEMT) approach, which also enable to take into account the thrust generated by the blades. It appears that the thrust has a stabilizing effect. The aerodynamic model is further developed using Theodorsen theory. A reduced order model of the aerodynamic load is finally constructed in order to perform linear stability analysis.

Keywords: advancing, entrepreneurial, knowledge, industralization

Procedia PDF Downloads 89
1098 Exploring Attachment Mechanisms of Sulfate-Reducing Bacteria Biofilm to X52 Carbon Steel and Effective Mitigation Through Moringa Oleifera Extract

Authors: Hadjer Didouh, Mohammed Hadj Melliani, Izzeddine Sameut Bouhaik

Abstract:

Corrosion is a serious problem in industrial installations or metallic transport pipes. Corrosion is an interfacial process controlled by several parameters. The presence of microorganisms affects the kinetics of corrosion. This type of corrosion is often referred as bio-corrosion or corrosion influenced by microorganisms (MIC). The action of a microorganism or a bacterium is carried out by the formation of biofilm following its attachment to the metal surface. The formation of biofilm isolates the metal surface from its environment and allows the bacteria to control the parameters of the metal/bacteria interface. Biofilm formation by sulfate-reducing bacteria (SRB) X52 steel, poses substantial challenges in oil and gas industry SONATRACH of Algeria. This research delves into the complex attachment mechanisms employed by SRB biofilm on X52 carbon steel and investigates strategies for effective mitigation using biocides. The exploration commences by elucidating the underlying mechanisms facilitating SRB biofilm adhesion to X52 carbon steel, considering factors such as surface morphology, electrostatic interactions, and microbial extracellular substances. Advanced microscopy and spectroscopic techniques provide a support to the attachment processes, laying the foundation for targeted mitigation strategies. The use of 100 ppm of Moringa Oleifera extract biocide as a promising approach to control and prevent SRB biofilm formation on X52 carbon steel surfaces. Green extract undergo evaluation for their effectiveness in disrupting biofilm development while ensuring the integrity of the steel substrate. Systematic analysis is conducted on the biocide's impact on the biofilm's structural integrity, microbial viability, and overall attachment strength. This two-pronged investigation aims to deepen our comprehension of SRB biofilm dynamics and contribute to the development of effective strategies for mitigating its impact on X52 carbon steel.

Keywords: bio-corrosion, biofilm, attachement, metal/bacteria interface

Procedia PDF Downloads 7
1097 Effects of Earthquake Induced Debris to Pedestrian and Community Street Network Resilience

Authors: Al-Amin, Huanjun Jiang, Anayat Ali

Abstract:

Reinforced concrete frames (RC), especially Ordinary RC frames, are prone to structural failures/collapse during seismic events, leading to a large proportion of debris from the structures, which obstructs adjacent areas, including streets. These blocked areas severely impede post-earthquake resilience. This study uses computational simulation (FEM) to investigate the amount of debris generated by the seismic collapse of an ordinary reinforced concrete moment frame building and its effects on the adjacent pedestrian and road network. A three-story ordinary reinforced concrete frame building, primarily designed for gravity load and earthquake resistance, was selected for analysis. Sixteen different ground motions were applied and scaled up until the total collapse of the tested building to evaluate the failure mode under various seismic events. Four types of collapse direction were identified through the analysis, namely aligned (positive and negative) and skewed (positive and negative), with aligned collapse being more predominant than skewed cases. The amount and distribution of debris around the collapsed building were assessed to investigate the interaction between collapsed buildings and adjacent street networks. An interaction was established between a building that collapsed in an aligned direction and the adjacent pedestrian walkway and narrow street located in an unplanned old city. The FEM model was validated against an existing shaking table test. The presented results can be utilized to simulate the interdependency between the debris generated from the collapse of seismic-prone buildings and the resilience of street networks. These findings provide insights for better disaster planning and resilient infrastructure development in earthquake-prone regions.

Keywords: building collapse, earthquake-induced debris, ORC moment resisting frame, street network

Procedia PDF Downloads 82
1096 Automated, Objective Assessment of Pilot Performance in Simulated Environment

Authors: Maciej Zasuwa, Grzegorz Ptasinski, Antoni Kopyt

Abstract:

Nowadays flight simulators offer tremendous possibilities for safe and cost-effective pilot training, by utilization of powerful, computational tools. Due to technology outpacing methodology, vast majority of training related work is done by human instructors. It makes assessment not efficient, and vulnerable to instructors’ subjectivity. The research presents an Objective Assessment Tool (gOAT) developed at the Warsaw University of Technology, and tested on SW-4 helicopter flight simulator. The tool uses database of the predefined manoeuvres, defined and integrated to the virtual environment. These were implemented, basing on Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft (ADS-33), with predefined Mission-Task-Elements (MTEs). The core element of the gOAT enhanced algorithm that provides instructor a new set of information. In details, a set of objective flight parameters fused with report about psychophysical state of the pilot. While the pilot performs the task, the gOAT system automatically calculates performance using the embedded algorithms, data registered by the simulator software (position, orientation, velocity, etc.), as well as measurements of physiological changes of pilot’s psychophysiological state (temperature, sweating, heart rate). Complete set of measurements is presented on-line to instructor’s station and shown in dedicated graphical interface. The presented tool is based on open source solutions, and flexible for editing. Additional manoeuvres can be easily added using guide developed by authors, and MTEs can be changed by instructor even during an exercise. Algorithm and measurements used allow not only to implement basic stress level measurements, but also to reduce instructor’s workload significantly. Tool developed can be used for training purpose, as well as periodical checks of the aircrew. Flexibility and ease of modifications allow the further development to be wide ranged, and the tool to be customized. Depending on simulation purpose, gOAT can be adjusted to support simulator of aircraft, helicopter, or unmanned aerial vehicle (UAV).

Keywords: automated assessment, flight simulator, human factors, pilot training

Procedia PDF Downloads 146
1095 A One-Dimensional Model for Contraction in Burn Wounds: A Sensitivity Analysis and a Feasibility Study

Authors: Ginger Egberts, Fred Vermolen, Paul van Zuijlen

Abstract:

One of the common complications in post-burn scars is contractions. Depending on the extent of contraction and the wound dimensions, the contracture can cause a limited range-of-motion of joints. A one-dimensional morphoelastic continuum hypothesis-based model describing post-burn scar contractions is considered. The beauty of the one-dimensional model is the speed; hence it quickly yields new results and, therefore, insight. This model describes the movement of the skin and the development of the strain present. Besides these mechanical components, the model also contains chemical components that play a major role in the wound healing process. These components are fibroblasts, myofibroblasts, the so-called signaling molecules, and collagen. The dermal layer is modeled as an isotropic morphoelastic solid, and pulling forces are generated by myofibroblasts. The solution to the model equations is approximated by the finite-element method using linear basis functions. One of the major challenges in biomechanical modeling is the estimation of parameter values. Therefore, this study provides a comprehensive description of skin mechanical parameter values and a sensitivity analysis. Further, since skin mechanical properties change with aging, it is important that the model is feasible for predicting the development of contraction in burn patients of different ages, and hence this study provides a feasibility study. The variability in the solutions is caused by varying the values for some parameters simultaneously over the domain of computation, for which the results of the sensitivity analysis are used. The sensitivity analysis shows that the most sensitive parameters are the equilibrium concentration of collagen, the apoptosis rate of fibroblasts and myofibroblasts, and the secretion rate of signaling molecules. This suggests that most of the variability in the evolution of contraction in burns in patients of different ages might be caused mostly by the decreasing equilibrium of collagen concentration. As expected, the feasibility study shows this model can be used to show distinct extents of contractions in burns in patients of different ages. Nevertheless, contraction formation in children differs from contraction formation in adults because of the growth. This factor has not been incorporated in the model yet, and therefore the feasibility results for children differ from what is seen in the clinic.

Keywords: biomechanics, burns, feasibility, fibroblasts, morphoelasticity, sensitivity analysis, skin mechanics, wound contraction

Procedia PDF Downloads 148
1094 Reverse Engineering of a Secondary Structure of a Helicopter: A Study Case

Authors: Jose Daniel Giraldo Arias, Camilo Rojas Gomez, David Villegas Delgado, Gullermo Idarraga Alarcon, Juan Meza Meza

Abstract:

The reverse engineering processes are widely used in the industry with the main goal to determine the materials and the manufacture used to produce a component. There are a lot of characterization techniques and computational tools that are used in order to get this information. A study case of a reverse engineering applied to a secondary sandwich- hybrid type structure used in a helicopter is presented. The methodology used consists of five main steps, which can be applied to any other similar component: Collect information about the service conditions of the part, disassembly and dimensional characterization, functional characterization, material properties characterization and manufacturing processes characterization, allowing to obtain all the supports of the traceability of the materials and processes of the aeronautical products that ensure their airworthiness. A detailed explanation of each step is covered. Criticality and comprehend the functionalities of each part, information of the state of the art and information obtained from interviews with the technical groups of the helicopter’s operators were analyzed,3D optical scanning technique, standard and advanced materials characterization techniques and finite element simulation allow to obtain all the characteristics of the materials used in the manufacture of the component. It was found that most of the materials are quite common in the aeronautical industry, including Kevlar, carbon, and glass fibers, aluminum honeycomb core, epoxy resin and epoxy adhesive. The stacking sequence and volumetric fiber fraction are a critical issue for the mechanical behavior; a digestion acid method was used for this purpose. This also helps in the determination of the manufacture technique which for this case was Vacuum Bagging. Samples of the material were manufactured and submitted to mechanical and environmental tests. These results were compared with those obtained during reverse engineering, which allows concluding that the materials and manufacture were correctly determined. Tooling for the manufacture was designed and manufactured according to the geometry and manufacture process requisites. The part was manufactured and the mechanical, and environmental tests required were also performed. Finally, a geometric characterization and non-destructive techniques allow verifying the quality of the part.

Keywords: reverse engineering, sandwich-structured composite parts, helicopter, mechanical properties, prototype

Procedia PDF Downloads 410
1093 Performance of a Sailing Vessel with a Solid Wing Sail Compared to a Traditional Sail

Authors: William Waddington, M. Jahir Rizvi

Abstract:

Sail used to propel a vessel functions in a similar way to an aircraft wing. Traditionally, cloth and ropes were used to produce sails. However, there is one major problem with traditional sail design, the increase in turbulence and flow separation when compared to that of an aircraft wing with the same camber. This has led to the development of the solid wing sail focusing mainly on the sail shape. Traditional cloth sails are manufactured as a single element whereas solid wing sail is made of two segments. To the authors’ best knowledge, the phenomena behind the performances of this type of sail at various angles of wind direction with respect to a sailing vessel’s direction (known as the angle of attack) is still an area of mystery. Hence, in this study, the thrusts of a sailing vessel produced by wing sails constructed with various angles (22°, 24°, 26° and 28°) between the two segments have been compared to that of a traditional cloth sail made of carbon-fiber material. The reason for using carbon-fiber material is to achieve the correct and the exact shape of a commercially available mainsail. NACA 0024 and NACA 0016 foils have been used to generate two-segment wing sail shape which incorporates a flap between the first and the second segments. Both the two-dimensional and the three-dimensional sail models designed in commercial CAD software Solidworks have been analyzed through Computational Fluid Dynamics (CFD) techniques using Ansys CFX considering an apparent wind speed of 20.55 knots with an apparent wind angle of 31°. The results indicate that the thrust from traditional sail increases from 8.18 N to 8.26 N when the angle of attack is increased from 5° to 7°. However, the thrust value decreases if the angle of attack is further increased. A solid wing sail which possesses 20° angle between its two segments, produces thrusts from 7.61 N to 7.74 N with an increase in the angle of attack from 7° to 8°. The thrust remains steady up to 9° angle of attack and drops dramatically beyond 9°. The highest thrust values that can be obtained for the solid wing sails with 22°, 24°, 26° and 28° angle respectively between the two segments are 8.75 N, 9.10 N, 9.29 N and 9.19 N respectively. The optimum angle of attack for each of the solid wing sails is identified as 7° at which these thrust values are obtained. Therefore, it can be concluded that all the thrust values predicted for the solid wing sails of angles between the two segments above 20° are higher compared to the thrust predicted for the traditional sail. However, the best performance from a solid wing sail is expected when the sail is created with an angle between the two segments above 20° but below or equal to 26°. In addition, 1/29th scale models in the wind tunnel have been tested to observe the flow behaviors around the sails. The experimental results support the numerical observations as the flow behaviors are exactly the same.

Keywords: CFD, drag, sailing vessel, thrust, traditional sail, wing sail

Procedia PDF Downloads 270
1092 Study of Evaluation Model Based on Information System Success Model and Flow Theory Using Web-scale Discovery System

Authors: June-Jei Kuo, Yi-Chuan Hsieh

Abstract:

Because of the rapid growth of information technology, more and more libraries introduce the new information retrieval systems to enhance the users’ experience, improve the retrieval efficiency, and increase the applicability of the library resources. Nevertheless, few of them are discussed the usability from the users’ aspect. The aims of this study are to understand that the scenario of the information retrieval system utilization, and to know why users are willing to continuously use the web-scale discovery system to improve the web-scale discovery system and promote their use of university libraries. Besides of questionnaires, observations and interviews, this study employs both Information System Success Model introduced by DeLone and McLean in 2003 and the flow theory to evaluate the system quality, information quality, service quality, use, user satisfaction, flow, and continuing to use web-scale discovery system of students from National Chung Hsing University. Then, the results are analyzed through descriptive statistics and structural equation modeling using AMOS. The results reveal that in web-scale discovery system, the user’s evaluation of system quality, information quality, and service quality is positively related to the use and satisfaction; however, the service quality only affects user satisfaction. User satisfaction and the flow show a significant impact on continuing to use. Moreover, user satisfaction has a significant impact on user flow. According to the results of this study, to maintain the stability of the information retrieval system, to improve the information content quality, and to enhance the relationship between subject librarians and students are recommended for the academic libraries. Meanwhile, to improve the system user interface, to minimize layer from system-level, to strengthen the data accuracy and relevance, to modify the sorting criteria of the data, and to support the auto-correct function are required for system provider. Finally, to establish better communication with librariana commended for all users.

Keywords: web-scale discovery system, discovery system, information system success model, flow theory, academic library

Procedia PDF Downloads 96
1091 Improved Benzene Selctivity for Methane Dehydroaromatization via Modifying the Zeolitic Pores by Dual Templating Approach

Authors: Deepti Mishra, K. K Pant, Xiu Song Zhao, Muxina Konarova

Abstract:

Catalytic transformation of simplest hydrocarbon methane into benzene and valuable chemicals over Mo/HZSM-5 has a great economic potential, however, it suffers serious hurdles due to the blockage in the micropores because of extensive coking at high temperature during methane dehydroaromatization (MDA). Under such conditions, it necessitates the design of micro/mesoporous ZSM-5, which has the advantages viz. uniform dispersibility of MoOx species, consequently the formation of active Mo sites in the micro/mesoporous channel and lower carbon deposition because of improved mass transfer rate within the hierarchical pores. In this study, we report a unique strategy to control the porous structures of ZSM-5 through a dual templating approach, utilizing C6 and C12 -surfactants as porogen. DFT studies were carried out to correlate the ZSM-5 framework development using the C6 and C12 surfactants with structure directing agent. The structural and morphological parameters of the synthesized ZSM-5 were explored in detail to determine the crystallinity, porosity, Si/Al ratio, particle shape, size, and acidic strength, which were further correlated with the physicochemical and catalytic properties of Mo modified HZSM-5 catalysts. After Mo incorporation, all the catalysts were tested for MDA reaction. From the activity test, it was observed that C6 surfactant-modified hierarchically porous Mo/HZSM-5(H) showed the highest benzene formation rate (1.5 μmol/gcat. s) and longer catalytic stability up to 270 min of reaction as compared to the conventional microporous Mo/HZSM-5(C). In contrary, C12 surfactant modified Mo/HZSM-5(D) is inferior towards MDA reaction (benzene formation rate: 0.5 μmol/gcat. s). We ascribed that the difference in MDA activity could be due to the hierarchically interconnected meso/microporous feature of Mo/HZSM-5(H) that precludes secondary reaction of coking from benzene and hence contributing substantial stability towards MDA reaction.

Keywords: hierarchical pores, Mo/HZSM-5, methane dehydroaromatization, coke deposition

Procedia PDF Downloads 75
1090 Crossing the Interdisciplinary Border: A Multidimensional Linguistics Analysis of a Legislative Discourse

Authors: Manvender Kaur Sarjit Singh

Abstract:

There is a crucial mismatch between classroom written language tasks and real world written language requirements. Realizing the importance of reducing the gap between the professional needs of the legal practitioners and the higher learning institutions that offer the legislative education in Malaysia, it is deemed necessary to develop a framework that integrates real-life written communication with the teaching of content-based legislative discourse to future legal practitioners. By highlighting the actual needs of the legal practitioners in the country, the present teaching practices will be enhanced and aligned with the actual needs of the learners thus realizing the vision and aspirations of the Malaysian Education Blueprint 2013-2025 and Legal Profession Qualifying Board. The need to focus future education according to the actual needs of the learners can be realized by developing a teaching framework which is designed within the prospective requirements of its real-life context. This paper presents the steps taken to develop a specific teaching framework that fulfills the fundamental real-life context of the prospective legal practitioners. The teaching framework was developed based on real-life written communication from the legal profession in Malaysia, using the specific genre analysis approach which integrates a corpus-based approach and a structural linguistics analysis. This approach was adopted due to its fundamental nature of intensive exploration of the real-life written communication according to the established strategies used. The findings showed the use of specific moves and parts-of-speech by the legal practitioners, in order to prepare the selected genre. The teaching framework is hoped to enhance the teachings of content-based law courses offered at present in the higher learning institutions in Malaysia.

Keywords: linguistics analysis, corpus analysis, genre analysis, legislative discourse

Procedia PDF Downloads 380
1089 Assessment of Sperm Aneuploidy Using Advanced Sperm Fish Technique in Infertile Patients

Authors: Archana. S, Usha Rani. G, Anand Balakrishnan, Sanjana.R, Solomon F, Vijayalakshmi. J

Abstract:

Background: There is evidence that male factors contribute to the infertility of up to 50% of couples, who are evaluated and treated for infertility using advanced assisted reproductive technologies. Genetic abnormalities, including sperm chromosome aneuploidy as well as structural aberrations, are one of the major causes of male infertility. Recent advances in technology expedite the evaluation of sperm aneuploidy. The purpose of the study was to de-termine the prevalence of sperm aneuploidy in infertile males and the degree of association between DNA fragmentation and sperm aneuploidy. Methods: In this study, 75 infertile men were included, and they were divided into four abnormal groups (Oligospermia, Terato-spermia, Asthenospermia and Oligoasthenoteratospermia (OAT)). Men with children who were normozoospermia served as the control group. The Fluorescence in situ hybridization (FISH) method was used to test for sperm aneuploidy, and the Sperm Chromatin Dispersion Assay (SCDA) was used to measure the fragmentation of sperm DNA. Spearman's correla-tion coefficient was used to evaluate the relationship between sperm aneuploidy and sperm DNA fragmentation along with age. P < 0.05 was regarded as significant. Results: 75 partic-ipants' ages varied from 28 to 48 years old (35.5±5.1). The percentage of spermatozoa bear-ing X and Y was determined to be statistically significant (p-value < 0.05) and was found to be 48.92% and 51.18% of CEP X X 1 – nucish (CEP XX 1) [100] and CEP Y X 1 – nucish (CEP Y X 1) [100]. When compared to the rate of DNA fragmentation, it was discovered that infertile males had a greater frequency of sperm aneuploidy. Asthenospermia and OAT groups in sex chromosomal aneuploidy were significantly correlated (p<0.05). Conclusion: Sperm FISH and SCDA assay results showed increased sperm aneuploidy frequency, and DNA fragmentation index in infertile men compared with fertile men. There is a significant relationship observed between sperm aneuploidy and DNA fragmentation in OAT patients. When evaluating male variables and idiopathic infertility, the sperm FISH screening method can be used as a valuable diagnostic tool.

Keywords: ale infertility, dfi (dna fragmentation assay) (scd-sperm chromatin dispersion).art (artificial reproductive technology), trisomy, aneuploidy, fish (fluorescence in-situ hybridization), oat (oligoasthoteratospermia)

Procedia PDF Downloads 48
1088 Prednisone and Its Active Metabolite Prednisolone Attenuate Lipid Accumulation in Macrophages

Authors: H. Jeries, N. Volkova, C. G. Iglesias, M. Najjar, M. Rosenblat, M. Aviram, T. Hayek

Abstract:

Background: Synthetic forms of glucocorticoids (e.g., prednisone, prednisolone) are anti-inflammatory drugs which are widely used in clinical practice. The role of glucocorticoids (GCs) in cardiovascular diseases including atherosclerosis is highly controversial, and their impact on macrophage foam cell formation is still unknown. Our aim was to investigate the effects of prednisone or its active metabolite, prednisolone, on macrophage oxidative stress and lipid metabolism using in-vivo, ex-vivo and in-vitro systems. Methods: The in-vivo study included C57BL/6 mice which were intraperitoneally injected with prednisone or prednisolone (5mg/kg) for 4 weeks, followed by lipid metabolism analyses in the mice aorta, and in peritoneal macrophages (MPM). In the ex-vivo study, we analyzed the effect of serum samples obtained from 9 healthy volunteers before or after treatment with oral prednisone (20mg for 5 days), on J774A.1 macrophage atherogenicity. In-vitro studies were conducted using J774A.1 macrophages, human monocyte derived macrophages (HMDM) and fibroblasts. Cells were incubated with increasing concentrations (0-200 ng/ml) of prednisone or prednisolone, followed by determination of cellular oxidative status, triglyceride and cholesterol metabolism. Results: Prednisone or prednisolone treatment resulted in a significant reduction in triglycerides and mainly in cholesterol cellular accumulation in MPM or in J774A.1 macrophages incubated with human serum. Similar resulted were noted in HMDM or in J774A.1 macrophages which were directly incubated with the GCs. These effects were associated with GCs inhibitory effect on triglycerides and cholesterol biosynthesis rates, throughout downregulation of diacylglycerol acyltransferase1 (DGAT1) expression, and of the sterol regulatory element binding protein (SREBP2) and HMGCR expression, respectively. In parallel to prednisone or prednisolone induced reduction in macrophage triglyceride content, paraoxonase 2 (PON2) expression was significantly upregulated. GCs-induced reduction of cellular triglyceride and cholesterol mass was mediated by the GCs receptors on macrophages since the GCs receptor antagonist (RU 486) abolished these effects. In fibroblasts, unlike macrophages, prednisone or prednisolone showed no anti-atherogenic effects. Conclusions: Prednisone or prednisolone are anti-atherogenic since they protected macrophages from lipid accumulation and foam cell formation.

Keywords: atherosclerosis, cholesterol, foam cell, macrophage, prednisone, prednisolone, triglycerides

Procedia PDF Downloads 139
1087 Melaninic Discrimination among Primary School Children

Authors: Margherita Cardellini

Abstract:

To our knowledge, dark skinned children are often victims of discrimination from adults and society, but few studies specifically focus on skin color discrimination on children coming from the same children. Even today, the 'color blind children' ideology is widespread among adults, teachers, and educators and maybe also among scholars, which seem really careful about study expressions of racism in childhood. This social and cultural belief let people think that all the children, because of their age and their brief experience in the world, are disinterested in skin color. Sometimes adults think that children are even incapable of perceiving skin colors and that it could be dangerous to talk about melaninic differences with them because they finally could notice this difference, producing prejudices and racism. Psychology and neurology research projects are showing for many years that even the newborns are already capable of perceiving skin color and ethnic differences by the age of 3 months. Starting from this theoretical framework we conducted a research project to understand if and how primary school children talk about skin colors, picking up any stereotypes or prejudices. Choosing to use the focus group as a methodology to stimulate the group dimension and interaction, several stories about skin color discrimination's episodes within their classroom or school have emerged. Using the photo elicitation technique we chose to stimulate talk about the research object, which is the skin color, asking the children what was ‘the first two things that come into your mind’ when they look the photographs presented during the focus group, which represented dark and light skinned women and men. So, this paper will present some of these stories about episodes of discrimination with an escalation grade of proximity related to the discriminatory act. It will be presented a story of discrimination happened within the school, in an after-school daycare, in the classroom and even episode of discrimination that children tell during the focus groups in the presence of the discriminated child. If it is true that the Declaration of the Right of the Child state that every child should be discrimination free, it’s also true that every adult should protect children from every form of discrimination. How, as adults, can we defend children against discrimination if we cannot admit that even children are potential discrimination’s actors? Without awareness, we risk to devalue these episodes, implicitly confident that the only way to fight against discrimination is to keep her quiet. The right not to be discriminated goes through the right to talk about its own experiences of discrimination and the right to perceive the unfairness of the constant depreciation about skin color or any element of physical diversity. Intercultural education could act as spokesperson for this mission in the belief that difference and plurality could really become elements of potential enrichment for humanity, starting from children.

Keywords: colorism, experiences of discrimination, primary school children, skin color discrimination

Procedia PDF Downloads 191
1086 Exploring Attachment Mechanisms of Sulfate-Reducing Bacteria Biofilm to X52 Carbon Steel and Effective Mitigation Through Moringa Oleifera Extract

Authors: Hadjer Didouh, Mohammed Hadj Melliani, Izzeddine Sameut Bouhaik

Abstract:

Corrosion is a serious problem in industrial installations or metallic transport pipes. Corrosion is an interfacial process controlled by several parameters. The presence of microorganisms affects the kinetics of corrosion. This type of corrosion is often referred to as bio-corrosion or corrosion influenced by microorganisms (MIC). The action of a microorganism or a bacterium is carried out by the formation of biofilm following its attachment to the metal surface. The formation of biofilm isolates the metal surface from its environment and allows the bacteria to control the parameters of the metal/bacteria interface. Biofilm formation by sulfate-reducing bacteria (SRB) X52 steel poses substantial challenges in the oil and gas industry SONATRACH of Algeria. This research delves into the complex attachment mechanisms employed by SRB biofilm on X52 carbon steel and investigates innovative strategies for effective mitigation using biocides. The exploration commences by elucidating the underlying mechanisms facilitating SRB biofilm adhesion to X52 carbon steel, considering factors such as surface morphology, electrostatic interactions, and microbial extracellular substances. Advanced microscopy and spectroscopic techniques provide support to the attachment processes, laying the foundation for targeted mitigation strategies. The use of 100 ppm of Moringa Oleifera extract biocide as a promising approach to control and prevent SRB biofilm formation on X52 carbon steel surfaces. Green extracts undergo evaluation for their effectiveness in disrupting biofilm development while ensuring the integrity of the steel substrate. Systematic analysis is conducted on the biocide's impact on the biofilm's structural integrity, microbial viability, and overall attachment strength. This two-pronged investigation aims to deepen our comprehension of SRB biofilm dynamics and contribute to the development of effective strategies for mitigating its impact on X52 carbon steel.

Keywords: attachment, bio-corrosion, biofilm, metal/bacteria interface

Procedia PDF Downloads 66
1085 Reviewers’ Perception of the Studio Jury System: How They View its Value in Architecture and Design Education

Authors: Diane M. Bender

Abstract:

In architecture and design education, students learn and understand their discipline through lecture courses and within studios. A studio is where the instructor works closely with students to help them understand design by doing design work. The final jury is the culmination of the studio learning experience. It’s value and significance are rarely questioned. Students present their work before their peers, instructors, and invited reviewers, known as jurors. These jurors are recognized experts who add a breadth of feedback to students mostly in the form of a verbal critique of the work. Since the design review or jury has been a common element of studio education for centuries, jurors themselves have been instructed in this format. Therefore, they understand its value from both a student and a juror perspective. To better understand how these reviewers see the value of a studio review, a survey was distributed to reviewers at a multi-disciplinary design school within the United States. Five design disciplines were involved in this case study: architecture, graphic design, industrial design, interior design, and landscape architecture. Respondents (n=108) provided written comments about their perceived value of the studio review system. The average respondent was male (64%), between 40-49 years of age, and has attained a master’s degree. Qualitative analysis with thematic coding revealed several themes. Reviewers view the final jury as important because it provides a variety of perspectives from unbiased external practitioners and prepares students for similar presentation challenges they will experience in professional practice. They also see it as a way to validate the assessment and evaluation of students by faculty. In addition, they see a personal benefit for themselves and their firm – the ability to network with fellow jurors, professors, and students (i.e., future colleagues). Respondents also provided additional feedback about the jury system and studio education in general. Typical responses included a desire for earlier engagement with students; a better explanation from the instructor about the project parameters, rubrics/grading, and guidelines for juror involvement; a way to balance giving encouraging feedback versus overly critical comments; and providing training for jurors prior to reviews. While this study focused on the studio review, the findings are equally applicable to other disciplines. Suggestions will be provided on how to improve the preparation of guests in the learning process and how their interaction can positively influence student engagement.

Keywords: assessment, design, jury, studio

Procedia PDF Downloads 59
1084 Educational Engineering Tool on Smartphone

Authors: Maya Saade, Rafic Younes, Pascal Lafon

Abstract:

This paper explores the transformative impact of smartphones on pedagogy and presents a smartphone application developed specifically for engineering problem-solving and educational purposes. The widespread availability and advanced capabilities of smartphones have revolutionized the way we interact with technology, including in education. The ubiquity of smartphones allows learners to access educational resources anytime and anywhere, promoting personalized and self-directed learning. The first part of this paper discusses the overall influence of smartphones on pedagogy, emphasizing their potential to improve learning experiences through mobile technology. In the context of engineering education, this paper focuses on the development of a dedicated smartphone application that serves as a powerful tool for both engineering problem-solving and education. The application features an intuitive and user-friendly interface, allowing engineering students and professionals to perform complex calculations and analyses on their smartphones. The smartphone application primarily focuses on beam calculations and serves as a comprehensive beam calculator tailored to engineering education. It caters to various engineering disciplines by offering interactive modules that allow students to learn key concepts through hands-on activities and simulations. With a primary emphasis on beam analysis, this application empowers users to perform calculations for statically determinate beams, statically indeterminate beams, and beam buckling phenomena. Furthermore, the app includes a comprehensive library of engineering formulas and reference materials, facilitating a deeper understanding and practical application of the fundamental principles in beam analysis. By offering a wide range of features specifically tailored for beam calculation, this application provides an invaluable tool for engineering students and professionals looking to enhance their understanding and proficiency in this crucial aspect of a structural engineer.

Keywords: mobile devices in education, solving engineering problems, smartphone application, engineering education

Procedia PDF Downloads 63
1083 On the Right an Effective Administrative Justice in the Republic of Macedonia: Challenges and Problems

Authors: Arlinda Memetaj

Abstract:

A sound system of administrative justice represents a vital element of democratic governance. The proper control of public administration consists not only of a sound civil service framework and legislative oversight, but empowerment of the public and courts to hold public officials accountable for their decision-making through the application of fair administrative procedural rules and the use of appropriate administrative appeals processes and judicial review. The establishment of effective public administration, has been since 1990s among the most 'important and urgent' final strategic objectives of the Republic of Macedonia. To this aim the country has so far adopted a huge series of legislative and strategic documents related to any aspects of the administrative justice system. The latter is designed to strengthen the legal position of citizens, businesses, civic organizations, and other societal subjects. 'Changes and reforms' in this field have been thus the most frequent terms being used in the country for the last more than 20 years. Several years ago the County established Administrative Courts, while permanently amending the Law on the General Administrative procedure (LGAP). The new LGAP was adopted in 2015 and it introduced considerable innovations concerned. The most recent inputs in this regard includes the National Public Administration Reform Strategy 2017 – 2022, one of the key expected result of which includes both providing effective protection of the citizens` rights. In doing the aforesaid however there is still a series of interrelated shortcomings in this regard, such as (just to mention few) the complex appeal procedure, delays in enforcing court rulings, etc. Against the above background, the paper firstly describes the Macedonian institutional and legislative framework in the above field, and then illustrates the shortcomings therein. It finally claims that the current status quo situation may be overcome only if there is a proper implementation of the administrative courts decisions and far stricter international monitoring process thereof. A new approach and strong political commitment from the highest political leadership is thus absolutely needed to ensure the principles of transparency, accountability and merit in public administration. The main method used in this paper is the descriptive, analytical and comparative one due to the very character of the paper itself.

Keywords: administrative justice, administrative procedure, administrative courts/disputes, European Human Rights Court, human rights, monitoring, reform, benefit.

Procedia PDF Downloads 149
1082 Effect of Duration and Frequency on Ground Motion: Case Study of Guwahati City

Authors: Amar F. Siddique

Abstract:

The Guwahati city is one of the fastest growing cities of the north-eastern region of India, situated on the South Bank of the Brahmaputra River falls in the highest seismic zone level V. The city has witnessed many high magnitude earthquakes in the past decades. The Assam earthquake occurred on August 15, 1950, of moment magnitude 8.7 epicentered near Rima, Tibet was one of the major earthquakes which caused a serious structural damage and widespread soil liquefaction in and around the region. Hence the study of ground motion characteristics of Guwahati city is very essential. In this present work 1D equivalent linear ground response analysis (GRA) has been adopted using Deep soil software. The analysis has been done for two typical sites namely, Panbazar and Azara comprising total four boreholes location in Guwahati city of India. GRA of the sites is carried out by using an input motion recorded at Nongpoh station (recorded PGA 0.048g) and Nongstoin station (recorded PGA 0.047g) of 1997 Indo-Burma earthquake. In comparison to motion recorded at Nongpoh, different amplifications of bedrock peak ground acceleration (PGA) are obtained for all the boreholes by the motion recorded at Nongstoin station; although, the Fourier amplitude ratios (FAR) and fundamental frequencies remain almost same. The difference in recorded duration and frequency content of the two motions mainly influence the amplification of motions thus getting different surface PGA and amplification factor keeping a constant bedrock PGA. From the results of response spectra, it is found that at the period of less than 0.2 sec the ground motion recorded at Nongpoh station will give a high spectral acceleration (SA) on the structures than at Nongstoin station. Again for a period greater than 0.2 sec the ground motion recorded at Nongstoin station will give a high SA on the structures than at Nongpoh station.

Keywords: fourier amplitude ratio, ground response analysis, peak ground acceleration, spectral acceleration

Procedia PDF Downloads 177