Search results for: stable isotope probing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1963

Search results for: stable isotope probing

1963 Stable Isotope Analysis of Faunal Remains of Ancient Kythnos Island for Paleoenvironmental Reconstruction

Authors: M. Tassi, E. Dotsika, P. Karalis, A. Trantalidou, A. Mazarakis Ainian

Abstract:

The Kythnos Island in Greece is of particular archaeological interest, as it has been inhabited from the 12th BC until the 7th AD. From island excavations, numerous faunal and human skeletal remains have been recovered. This work is the first attempt at the paleoenvironmental reconstruction of the island via stable isotope analysis. Specifically, we perform 13C and 18O isotope analysis in faunal bone apatite in order to investigate the climate conditions that prevailed in the area. Additionally, we conduct 13C and 15N isotope analysis in faunal bone collagen, which will constitute the baseline for the subsequent diet reconstruction of the ancient Kythnos population.

Keywords: stable isotopes analysis, bone collagen stable isotope analysis, bone apatite stable isotope analysis, paleodiet, palaeoclimate

Procedia PDF Downloads 144
1962 Identifying Dominant Anaerobic Microorganisms for Degradation of Benzene

Authors: Jian Peng, Wenhui Xiong, Zheng Lu

Abstract:

An optimal recipe of amendment (nutrients and electron acceptors) was developed and dominant indigenous benzene-degrading microorganisms were characterized in this study. Lessons were learnt from the development of the optimal amendment recipe: (1) salinity and substantial initial concentration of benzene were detrimental for benzene biodegradation; (2) large dose of amendments can shorten the lag time for benzene biodegradation occurrence; (3) toluene was an essential co-substance for promoting benzene degradation activity. The stable isotope probing study identified incorporation 13C from 13C-benzene into microorganisms, which can be considered as a direct evidence of the occurrence of benzene biodegradation. The dominant mechanism for benzene removal was identified by quantitative polymerase chain reaction analysis to be nitrate reduction. Microbial analyses (denaturing gradient gel electrophoresis and 16S ribosomal RNA) demonstrated that members of genus Dokdonella spp., Pusillimonas spp., and Advenella spp. were predominant within the microbial community and involved in the anaerobic benzene bioremediation.

Keywords: benzene, enhanced anaerobic bioremediation, stable isotope probing, biosep biotrap

Procedia PDF Downloads 341
1961 Studying the Moisture Sources and the Stable Isotope Characteristic of Moisture in Northern Khorasan Province, North-Eastern Iran

Authors: Mojtaba Heydarizad, Hamid Ghalibaf Mohammadabadi

Abstract:

Iran is a semi-arid and arid country in south-western Asia in the Middle East facing intense climatological drought from the early times. Therefore, studying the precipitation events and the moisture sources and air masses causing precipitation has great importance in this region. In this study, the moisture sources and stable isotope content of precipitation moisture in three main events in 2015 have been studied in North-Eastern Iran. HYSPLIT model backward trajectories showed that the Caspian Sea and the mixture of the Caspian and Mediterranean Seas are dominant moisture sources for the studied events. This showed the role of cP (Siberian) and Mediterranean (MedT) air masses. Stable isotope studies showed that precipitation events originated from the Caspian Sea with lower Sea Surface Temperature (SST) have more depleted isotope values. However, precipitation events sourced from the mixture of the Caspian and the Mediterranean Seas (with higher SST) showed more enriched isotope values.

Keywords: HYSPLIT, Iran, Northern Khorasan, stable isotopes

Procedia PDF Downloads 132
1960 Stable Isotope Ratios Data for Tracing the Origin of Greek Olive Oils and Table Olives

Authors: Efthimios Kokkotos, Kostakis Marios, Beis Alexandros, Angelos Patakas, Antonios Avgeris, Vassilios Triantafyllidis

Abstract:

H, C, and O stable isotope ratios were measured in different olive oils and table olives originating from different regions of Greece. In particular, the stable isotope ratios of different olive oils produced in the Lakonia region (Peloponesse – South Greece) from different varieties, i.e., cvs ‘Athinolia’ and ‘koroneiki’, were determined. Additionally, stable isotope ratios were also measured in different table olives (cvs ‘koroneiki’ and ‘kalamon’) produced in the same region (Messinia). The aim of this study was to provide sufficient isotope ratio data regarding each variety and region of origin that could be used in discriminative studies of oil olives and table olives produced by different varieties in other regions. In total, 97 samples of olive oil (cv ‘Athinolia’ and ‘koroneiki’) and 67 samples of table olives (cvs ‘kalmon’ and ‘koroneiki’) collected during two consecutive sampling periods (2021-2022 and 2022-2023) were measured. The C, H, and O isotope ratios were measured using Isotope Ratio Mass Spectrometry (IRMS), and the results obtained were analyzed using chemometric techniques. The measurements of the isotope ratio analyses were expressed in permille (‰) using the delta δ notation (δ=Rsample/Rstandard-1, where Rsample and Rstandardis represent the isotope ratio of sample and standard). Results indicate that stable isotope ratios of C, H, and O ranged between -28,5+0,45‰, -142,83+2,82‰, 25,86+0,56‰ and -29,78+0,71‰, -143,62+1,4‰, 26,32+0,55‰ in olive oils produced in Lakonia region from ‘Athinolia’ and ‘koroneiki ‘varieties, respectively. The C, H, and O values from table olives originated from Messinia region were -28,58+0,63‰, -138,09+3,27‰, 25,45+0,62‰ and -29,41+0,59‰,-137,67+1,15‰, 24,37+0,6‰ for ‘Kalamon’ and ‘koroneiki’ olives respectively. Acknowledgments: This research has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH—CREATE—INNOVATE (Project code: T2EDK-02637; MIS 5075094, Title: ‘Innovative Methodological Tools for Traceability, Certification and Authenticity Assessment of Olive Oil and Olives’).

Keywords: olive oil, table olives, Isotope ratio, IRMS, geographical origin

Procedia PDF Downloads 57
1959 Studying the Spatial Variations of Stable Isotopes (18O and 2H) in Precipitation and Groundwater Resources in Zagros Region

Authors: Mojtaba Heydarizad

Abstract:

Zagros mountain range is a very important precipitation zone in Iran as it receives high average annual precipitation compared to other parts of this country. Although this region is important precipitation zone in semi-arid an arid country like Iran, accurate method to study water resources in this region has not been applied yet. In this study, stable isotope δ18O content of precipitation and groundwater resources showed spatial variations across Zagros region as southern parts of Zagros region showed more enriched isotope values compared to the northern parts. This is normal as southern Zagros region is much drier with higher air temperature and evaporation compared to northern parts. In addition, the spatial variations of stable isotope δ18O in precipitation in Zagros region have been simulated by the models which consider the altitude and latitude variations as input to simulate δ18O in precipitation.

Keywords: groundwater, precipitation, simulation, stable isotopes, Zagros region

Procedia PDF Downloads 138
1958 Cold Stunned Sea Turtle Diet Analysis In Cape Cod Bay from 2015-2020

Authors: Lucille McWilliams

Abstract:

As water temperatures drop in November, Kemp’s Ridley, Loggerhead, and Green sea turtles cold-stun in Cape Cod Bay. The foraging ecology of these sea turtles remains an understudied area of research. In this study, we aim to assess the diet of these turtles using a multi-tissue stable isotope analysis of cold-stunned kemp’s ridley, loggerhead, and green sea turtles stranded from 2015 to 2020. Stable isotope ratios of carbon and nitrogen were measured in blood, front and rear flipper, liver, muscle, skin, and scute tissue samples. We predict an elevated level of Nitrogen isotope ratios in kemp’s ridley and loggerhead turtles compared to green turtles due to the carnivorous loggerheads and kemp ridleys’ carnivorous diet and the greens herbivorous diet. We anticipate empty stomachs due to starvation while stranded, and a variety of foraging strategies, migration patterns, and trophic positions between these species. Data collected from this study will add to the knowledge of these turtles’ prey species and aid managers in the preservation of these species as a mitigation strategy for these turtles' extinction.

Keywords: sea turtles, kemp's ridleys, greens, loggerheads, cold-stunning, diet analysis, stable isotope analysis, environmental science, marine biology

Procedia PDF Downloads 119
1957 Effect of Salinity on Carbon Isotope Discrimination in Chamomile

Authors: Mehdi Ghanavati

Abstract:

The Effects of salinity level and duration on carbon isotope discrimination (Δ) of Matricaria chamomilla and Matricaria aurea were evaluated. Four ecotypes of M. chamomilla and four ecotypes of M. aurea were grown at different NaCl concentrations (control, 6, 12 and 18 dS/m) in sand culture condition. Carbon isotope discrimination (Δ) varied significantly (p<0.001) among ecotypes. The amount of carbon isotope discrimination (Δ) increased in first salinity level (6 dS/m), but in other levels (12 and 18 dS/m) it did not increase. Stages of salinity treatments (two stages: first from seedling stage until the end of the experiment and second stage of stress exertion began at stem elongation and seedlings emergence from rosette stage to harvest) had not a significant difference. Study of two spices of chamomile showed the M. aurea had a higher amount of carbon isotope discrimination (Δ) (22.9%) than M. chamomilla (22.48%).

Keywords: salinity, carbon isotope discrimination, Matricaria chamomilla, Matricaria aurea

Procedia PDF Downloads 442
1956 Groundwater Recharge Pattern in East and West Coast of India: Evidence of Dissimilar Moisture Sources

Authors: Ajit Kumar Behera, Saranya P., Sudhir Kumar, Krishnakumar A

Abstract:

The stable isotope (δ¹⁸ O and δ²H) composition of groundwater of the coastal areas of Periyar and Mahanadi basins falling along East and West coast of India during North-East (NE) monsoon season have been studied. The east and west coast regions are surrounded by the Bay of Bengal and the Arabian Sea respectively, which are considered to be the primary sources for precipitation over India. The major difference between the Bay of Bengal and the Arabian Sea is that a number of large rivers feed the Bay of Bengal, whereas the Arabian Sea is fed by very few small rivers, resulting in enriched stable isotopic composition of the Arabian Sea than the Bay of Bengal. Previous studies have reported depleted ratios of stable isotopes during Northeast monsoon along East and West coasts due to the influence of the Bay of Bengal moisture source. The isotopic composition of groundwater of the Mahanadi delta in the east coast region varies from -6.87 ‰ to -3.40 ‰ for δ¹⁸ O and -45.42 ‰ to -22.43‰ for δ²H. However, the groundwater of the Periyar basin in the west coast has enriched stable isotope value varying from -4.3‰ to -2.5 ‰ for δ¹⁸ O and for δ²H from -23.7 to -6.4 ‰ which is a characteristic of South-West monsoon season. This suggests the groundwater system of the Mahanadi delta and the Periyar basins are influenced by dissimilar moisture sources. The δ¹⁸ O and δ² H relationship (δ²H= 6.513 δ¹⁸ O - 1.39) and d-excess value (< 10) in the east coast region indicates the influence of NE monsoon implying the quick groundwater recharge after precipitation with significant amount of evaporation. In contrast, the δ¹⁸ O and δ²H regression line (δ²H= 8.408 δ¹⁸ O + 11.71) with high d-excess value (>10) in the west coast region implies delayed recharge due to SW monsoon. The observed isotopic enrichment in west coast suggests that NE winter monsoon rainfall does not replenish groundwater quick enough to produce isotopic depletion during the season.

Keywords: Arabian sea, bay of Bengal, groundwater, monsoon, stable isotope

Procedia PDF Downloads 377
1955 Geographic Origin Determination of Greek Rice (Oryza Sativa L.) Using Stable Isotopic Ratio Analysis

Authors: Anna-Akrivi Thomatou, Anastasios Zotos, Eleni C. Mazarakioti, Efthimios Kokkotos, Achilleas Kontogeorgos, Athanasios Ladavos, Angelos Patakas

Abstract:

It is well known that accurate determination of geographic origin to confront mislabeling and adulteration of foods is considered as a critical issue worldwide not only for the consumers, but also for producers and industries. Among agricultural products, rice (Oryza sativa L.) is the world’s third largest crop, providing food for more than half of the world’s population. Consequently, the quality and safety of rice products play an important role in people’s life and health. Despite the fact that rice is predominantly produced in Asian countries, rice cultivation in Greece is of significant importance, contributing to national agricultural sector income. More than 25,000 acres are cultivated in Greece, while rice exports to other countries consist the 0,5% of the global rice trade. Although several techniques are available in order to provide information about the geographical origin of rice, little data exist regarding the ability of these methodologies to discriminate rice production from Greece. Thus, the aim of this study is the comparative evaluation of stable isotope ratio methodology regarding its discriminative ability for geographical origin determination of rice samples produced in Greece compared to those from three other Asian countries namely Korea, China and Philippines. In total eighty (80) samples were collected from selected fields of Central Macedonia (Greece), during October of 2021. The light element (C, N, S) isotope ratios were measured using Isotope Ratio Mass Spectrometry (IRMS) and the results obtained were analyzed using chemometric techniques, including principal components analysis (PCA). Results indicated that the 𝜹 15N and 𝜹 34S values of rice produced in Greece were more markedly influenced by geographical origin compared to the 𝜹 13C. In particular, 𝜹 34S values in rice originating from Greece was -1.98 ± 1.71 compared to 2.10 ± 1.87, 4.41 ± 0.88 and 9.02 ± 0.75 for Korea, China and Philippines respectively. Among stable isotope ratios studied, values of 𝜹 34S seem to be the more appropriate isotope marker to discriminate rice geographic origin between the studied areas. These results imply the significant capability of stable isotope ratio methodology for effective geographical origin discrimination of rice, providing a valuable insight into the control of improper or fraudulent labeling. Acknowledgement: This research has been financed by the Public Investment Programme/General Secretariat for Research and Innovation, under the call “YPOERGO 3, code 2018SE01300000: project title: ‘Elaboration and implementation of methodology for authenticity and geographical origin assessment of agricultural products.

Keywords: geographical origin, authenticity, rice, isotope ratio mass spectrometry

Procedia PDF Downloads 89
1954 Oxygen and Sulfur Isotope Composition of Gold Bearing Granite Gneiss and Quartz Veins of Megele Area, Western Ethiopia: Implication for Fluid Source

Authors: Temesgen Oljira, Olugbenga Akindeji Okunlola, Akinade Shadrach Olatunji, Dereje Ayalew, Bekele A. Bedada, Tasin Godlove Bafon

Abstract:

The Megele area gold-bearing Neoproterozoic rocks in the Western Ethiopian Shield has been under exploration for the last few decades. The geochemical and ore petrological characterization of the gold-bearing granite gneiss and associated quartz vein is crucial in understanding the gold's genesis. The present study concerns the ore petrological, geochemical, and stable O2 and S characterization of the gold-bearing granite gneiss and associated quartz vein. This area is known for its long history of placer gold mining. The presence of quartz veins of different generations and orientations, visible sulfide mineralization, and oxidation suggests that the Megele area is geologically fertile for mineralization. The Au and base metals analysis also indicate that Megele area rocks are characterized by Cu (2-22 ppm av. 7.83 ppm), Zn (2-53 ppm av. 29.33 ppm), Co (1-27 ppm av. 13.33 ppm), Ni (2-16 ppm av. 10 ppm), Pb (5-10 ppm av. 8.33 ppm), Au (1-5 ppb av. 2.11 ppb), Ag (0.5 ppm), As (5-12 ppm av. 7.83 ppm), Cd (0.5ppm), Li (0.5 ppm), Mo (1-4 ppm av. 1.6 ppm), Sc (5-13 ppm av. 9.3 ppm), and Tl (10 ppm). The oxygen isotope (δ18O) values of gold-bearing granite gneiss and associated quartz veins range from +8.6 to +11.5 ‰, suggesting the mixing of metamorphic water with magmatic water within the ore-forming fluid. The Sulfur isotope (δ34S) values of gold-bearing granite gneiss range from -1.92 to -0.45 ‰ (mean value of -1.13 ‰) indicating the narrow range of value. This suggests that the sulfides have been precipitated from the fluid system originating from a single source of the magmatic component under sulfur isotopic fractionation equilibrium condition. The tectonic setting of the host rocks, the occurrence of ore bodies, mineral assemblages of the host rocks and proposed ore-forming fluids of the Megele area gold prospects have similarities with features of orogenic gold deposit. The δ18O and δ34S isotopic values also suggested a metamorphic origin with the magmatic components. Thus, the Megele gold prospect could be related to an orogenic gold deposit related to metamorphism and associated intrusions.

Keywords: fluid source, gold mineralization, oxygen isotope, stable isotope, sulfur isotope

Procedia PDF Downloads 73
1953 Polygenetic Iron Mineralization in the Baba-Ali and Galali Deposits, Further Evidences from Stable (S, O, H) Isotope Data, NW Hamedan, Iran

Authors: Ghodratollah Rostami Paydar

Abstract:

The Baba-Ali and Galali iron deposits are located in northwest Hamedan and the Iranian Sanandaj-Sirjan geological structural zone. The host rocks of these deposits are metavolcanosedimentary successions of Songhor stratigraphic series with permo-trriassic age. Field investigation, ore geometry, textures and structures and paragenetic sequence of minerals, all indicate that the ore minerals are crystallized in four stages: primary volcanosedimentary stage, secondary regional metamorphism with formation of ductile shear zones, contact metamorphism and metasomatism stage and the finally late hydrothermal mineralization within uplift and exposure. Totally 29 samples of sulfide, oxide-silicate and carbonate minerals of iron orees and gangue has been purified for stable isotope analysis. The isotope ratio data assure that occurrence of dynamothermal metamorphism in these areas typically involves a lengthy period of time, which results in a tendency toward isotopic homogenization specifically in O and H stable isotopes and showing the role of metamorphic waters in mineralization process. Measurement of δ34S (CDT) in first generation of pyrite is higher than another ones, so it confirms the volcanogenic origin of primary iron mineralization. δ13C data measurements in Galali carbonate country rocks show a marine origin. δ18O in magnetite and skarn forming silicates, δ18O and δ13C in limestone and skarn calcite and δ34S in sulphides are all consistent with the interaction of a magmatic-equilibrated fluid with Galali limestone, and a dominantly magmatic source for S. All these data imply skarn formation and mineralisation in a magmatic-hydrothermal system that maintained high salinity to relatively late stages resulting in the formation of the regional Na metasomatic alteration halo. Late stage hydrothermal quartz-calcite veinlets are important for gold mineralization, but the economic evaluation is required to detailed geochemical studies.

Keywords: iron, polygenetic, stable isotope, BabaAli, Galali

Procedia PDF Downloads 301
1952 Mechanical Response Investigation of Wafer Probing Test with Vertical Cobra Probe via the Experiment and Transient Dynamic Simulation

Authors: De-Shin Liu, Po-Chun Wen, Zhen-Wei Zhuang, Hsueh-Chih Liu, Pei-Chen Huang

Abstract:

Wafer probing tests play an important role in semiconductor manufacturing procedures in accordance with the yield and reliability requirement of the wafer after the backend-of-the-line process. Accordingly, the stable physical and electrical contact between the probe and the tested wafer during wafer probing is regarded as an essential issue in identifying the known good die. The probe card can be integrated with multiple probe needles, which are classified as vertical, cantilever and micro-electro-mechanical systems type probe selections. Among all potential probe types, the vertical probe has several advantages as compared with other probe types, including maintainability, high probe density and feasibility for high-speed wafer testing. In the present study, the mechanical response of the wafer probing test with the vertical cobra probe on 720 μm thick silicon (Si) substrate with a 1.4 μm thick aluminum (Al) pad is investigated by the experiment and transient dynamic simulation approach. Because the deformation mechanism of the vertical cobra probe is determined by both bending and buckling mechanisms, the stable correlation between contact forces and overdrive (OD) length must be carefully verified. Moreover, the decent OD length with corresponding contact force contributed to piercing the native oxide layer of the Al pad and preventing the probing test-induced damage on the interconnect system. Accordingly, the scratch depth of the Al pad under various OD lengths is estimated by the atomic force microscope (AFM) and simulation work. In the wafer probing test configuration, the contact phenomenon between the probe needle and the tested object introduced large deformation and twisting of mesh gridding, causing the subsequent numerical divergence issue. For this reason, the arbitrary Lagrangian-Eulerian method is utilized in the present simulation work to conquer the aforementioned issue. The analytic results revealed a slight difference when the OD is considered as 40 μm, and the simulated is almost identical to the measured scratch depths of the Al pad under higher OD lengths up to 70 μm. This phenomenon can be attributed to the unstable contact of the probe at low OD length with the scratch depth below 30% of Al pad thickness, and the contact status will be being stable when the scratch depth over 30% of pad thickness. The splash of the Al pad is observed by the AFM, and the splashed Al debris accumulates on a specific side; this phenomenon is successfully simulated in the transient dynamic simulation. Thus, the preferred testing OD lengths are found as 45 μm to 70 μm, and the corresponding scratch depths on the Al pad are represented as 31.4% and 47.1% of Al pad thickness, respectively. The investigation approach demonstrated in this study contributed to analyzing the mechanical response of wafer probing test configuration under large strain conditions and assessed the geometric designs and material selections of probe needles to meet the requirement of high resolution and high-speed wafer-level probing test for thinned wafer application.

Keywords: wafer probing test, vertical probe, probe mark, mechanical response, FEA simulation

Procedia PDF Downloads 57
1951 Evaluation of Stable Isotope in Life History and Mating Behaviour of Mediterranean Fruit Fly Ceratitis capitata (Diptera: Tephidae) in Laboratory Conditions

Authors: Hasan AL-Khshemawee, Manjree Agarwal, Xin Du, Yonglin Ren

Abstract:

The possibility use of stable isotopes to study Medfly mating and life history were investigated in these experiments. 13C6 glucose was incorporated in the diet of the Mediterranean fruit fly Ceratitis capitata (Diptera: Tephidae). Treatments included labelling and unlabelled of either the media or adult sugar water. The measured started from egg hatching till the adults have died. After mating, the adults were analysed for 13C6 glucose ratio using Liquid chromatography-mass spectrometry LC-MS in two periods of time immediately and after three days of mating. Results showed that stable isotopes were used successfully for labelling Medfly in laboratory conditions, and there were significant differences between labelled and unlabelled treatment in eggs hatching, larval development, pupae emergence, survival of adults and mating behaviour. Labelling during larval development and combined labelling of larvae and adults resulted in detectable values. The label glucose in larvae stage did not effect on mating behaviour, however, the label glucose in adults’ stage was affected by mating behaviour. We recommended that it is possible to label adults of Mediterranean fruit fly C. capitata and detected the label after mating. This method offers good tools to study mating behaviour in Medfly and other types of insects and could be providing useful tools in genetic studies, sterile insect technique (SIT) or agricultural pest management. Also, we recommended using this technique in the field.

Keywords: stable isotope, sterile insect technique (SIT), medfly, mating behaviour

Procedia PDF Downloads 256
1950 Study on Hydrogen Isotope Permeability of High Entropy Alloy Coating

Authors: Long Wang, Yongjin Feng, Xiaofang Luo

Abstract:

Tritium permeation through structural materials is a significant issue for fusion demonstration (DEMO) reactor blankets in terms of fuel cycle efficiency and radiological safety. Reduced activation ferritic (RAFM) steel CLF-1 is a prime candidate for the China’s CFETR blanket structural material, facing high permeability of hydrogen isotopes at reactor operational temperature. To confine tritium as much as possible in the reactor, surface modification of the steels including fabrication of tritium permeation barrier (TPB) attracts much attention. As a new alloy system, high entropy alloy (HEA) contains at least five principal elements, each of which ranges from 5 at% to 35 at%. This high mixing effect entitles HEA extraordinary comprehensive performance. So it is attractive to lead HEA into surface alloying for protective use. At present, studies on the hydrogen isotope permeability of HEA coatings is still insufficient and corresponding mechanism isn’t clear. In our study, we prepared three kinds of HEA coatings, including AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O. After comprehensive characterization of SEM, XPS, AFM, XRD and TEM, the structure and composition of the HEA coatings were obtained. Deuterium permeation tests were conducted to evaluate the hydrogen isotope permeability of AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings. Results proved that the (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings had better hydrogen isotope permeation resistance. Through analyzing and characterizing the hydrogen isotope permeation results of the corroded samples, an internal link between hydrogen isotope permeation behavior and structure of HEA coatings was established. The results provide valuable reference in engineering design of structural and TPB materials for future fusion device.

Keywords: high entropy alloy, hydrogen isotope permeability, tritium permeation barrier, fusion demonstration reactor

Procedia PDF Downloads 172
1949 Identification and Characterization of Groundwater Recharge Sites in Kuwait

Authors: Dalal Sadeqi

Abstract:

Groundwater is an important component of Kuwait’s water resources. Although limited in quantity and often poor in quality, the significance of this natural source of water cannot be overemphasized. Recharge of groundwater in Kuwait occurs during periodical storm events, especially in open desert areas. Runoff water dissolves accumulated surficial meteoric salts and subsequently leaches them into the groundwater following a period of evaporative enrichment at or near the soil surface. Geochemical processes governing groundwater recharge vary in time and space. Stable isotope (18O and 2H) and geochemical signatures are commonly used to gain some insight into recharge processes and groundwater salinization mechanisms, particularly in arid and semiarid regions. This article addresses the mechanism used in identifying and characterizing the main water shed areas in Kuwait using stable isotopes in an attempt to determine favorable groundwater recharge sites in the country. Stable isotopes of both rainwater and groundwater were targeted in different hydrogeological settings. Additionally, data and information obtained from subsurface logs in the study area were collected and analyzed to develop a better understanding of the lateral and vertical extent of the groundwater aquifers. Geographic Information System (GIS) and RockWorks 3D modelling software were used to map out the hydrogeomorphology of the study area and the subsurface lithology of the investigated aquifers. The collected data and information, including major ion chemistry, isotopes, subsurface characteristics, and hydrogeomorphology, were integrated in a GIS platform to identify and map out suitable natural recharge areas as part of an integrated water resources management scheme that addresses the challenges of the sustainability of the groundwater reserves in the country.

Keywords: scarcity, integrated, recharge, isotope

Procedia PDF Downloads 115
1948 Quantum Sieving for Hydrogen Isotope Separation

Authors: Hyunchul Oh

Abstract:

One of the challenges in modern separation science and technology is the separation of hydrogen isotopes mixtures since D2 and H2 consist of almost identical size, shape and thermodynamic properties. Recently, quantum sieving of isotopes by confinement in narrow space has been proposed as an alternative technique. Despite many theoretical suggestions, however, it has been difficult to discover a feasible microporous material up to now. Among various porous materials, the novel class of microporous framework materials (COFs, ZIFs and MOFs) is considered as a promising material class for isotope sieving due to ultra-high porosity and uniform pore size which can be tailored. Hence, we investigate experimentally the fundamental correlation between D2/H2 molar ratio and pore size at optimized operating conditions by using different ultramicroporous frameworks. The D2/H2 molar ratio is strongly depending on pore size, pressure and temperature. An experimentally determined optimum pore diameter for quantum sieving lies between 3.0 and 3.4 Å which can be an important guideline for designing and developing feasible microporous frameworks for isotope separation. Afterwards, we report a novel strategy for efficient hydrogen isotope separation at technologically relevant operating pressure through the development of quantum sieving exploited by the pore aperture engineering. The strategy involves installation of flexible components in the pores of the framework to tune the pore surface.

Keywords: gas adsorption, hydrogen isotope, metal organic frameworks(MOFs), quantum sieving

Procedia PDF Downloads 265
1947 Hydrological Challenges and Solutions in the Nashik Region: A Multi Tracer and Geochemistry Approach to Groundwater Management

Authors: Gokul Prasad, Pennan Chinnasamy

Abstract:

The degradation of groundwater resources, attributed to factors such as excessive abstraction and contamination, has emerged as a global concern. This study delves into the stable isotopes of water) in a hard-rock aquifer situated in the Upper Godavari watershed, an agriculturally rich region in India underlain by Basalt. The higher groundwater draft (> 90%) poses significant risks; comprehending groundwater sources, flow patterns, and their environmental impacts is pivotal for researchers and water managers. The region has faced five droughts in the past 20 years; four are categorized as medium. The recharge rates are variable and show a very minimum contribution to groundwater. The rainfall pattern shows vast variability, with the region receiving seasonal monsoon rainfall for just four months and the rest of the year experiencing minimal rainfall. This research closely monitored monsoon precipitation inputs and examined spatial and temporal fluctuations in δ18O and δ2H in both groundwater and precipitation. By discerning individual recharge events during monsoons, it became possible to identify periods when evaporation led to groundwater quality deterioration, characterized by elevated salinity and stable isotope values in the return flow. The locally derived meteoric water line (LMWL) (δ2H = 6.72 * δ18O + 1.53, r² = 0.6) provided valuable insights into the groundwater system. The leftward shift of the Nashik LMWL in relation to the GMWL and LMWL indicated groundwater evaporation (-33 ‰), supported by spatial variations in electrical conductivity (EC) data. Groundwater in the eastern and northern watershed areas exhibited higher salinity > 3000uS/cm, expanding > 40% of the area compared to the western and southern regions due to geological disparities (alluvium vs basalt). The findings emphasize meteoric precipitation as the primary groundwater source in the watershed. However, spatial variations in isotope values and chemical constituents indicate other contributing factors, including evaporation, groundwater source type, and natural or anthropogenic (specifically agricultural and industrial) contaminants. Therefore, the study recommends focused hydro geochemistry and isotope analysis in areas with strong agricultural and industrial influence for the development of holistic groundwater management plans for protecting the groundwater aquifers' quantity and quality.

Keywords: groundwater quality, stable isotopes, salinity, groundwater management, hard-rock aquifer

Procedia PDF Downloads 47
1946 Ytterbium Advantages for Brachytherapy

Authors: S. V. Akulinichev, S. A. Chaushansky, V. I. Derzhiev

Abstract:

High dose rate (HDR) brachytherapy is a method of contact radiotherapy, when a single sealed source with an activity of about 10 Ci is temporarily inserted in the tumor area. The isotopes Ir-192 and (much less) Co-60 are used as active material for such sources. The other type of brachytherapy, the low dose rate (LDR) brachytherapy, implies the insertion of many permanent sources (up to 200) of lower activity. The pulse dose rate (PDR) brachytherapy can be considered as a modification of HDR brachytherapy, when the single source is repeatedly introduced in the tumor region in a pulse regime during several hours. The PDR source activity is of the order of one Ci and the isotope Ir-192 is currently used for these sources. The PDR brachytherapy is well recommended for the treatment of several tumors since, according to oncologists, it combines the medical benefits of both HDR and LDR types of brachytherapy. One of the main problems for the PDR brachytherapy progress is the shielding of the treatment area since the longer stay of patients in a shielded canyon is not enough comfortable for them. The use of Yb-169 as an active source material is the way to resolve the shielding problem for PDR, as well as for HRD brachytherapy. The isotope Yb-169 has the average photon emission energy of 93 KeV and the half-life of 32 days. Compared to iridium and cobalt, this isotope has a significantly lower emission energy and therefore requires a much lighter shielding. Moreover, the absorption cross section of different materials has a strong Z-dependence in that photon energy range. For example, the dose distributions of iridium and ytterbium have a quite similar behavior in the water or in the body. But the heavier material as lead absorbs the ytterbium radiation much stronger than the iridium or cobalt radiation. For example, only 2 mm of lead layer is enough to reduce the ytterbium radiation by a couple of orders of magnitude but is not enough to protect from iridium radiation. We have created an original facility to produce the start stable isotope Yb-168 using the laser technology AVLIS. This facility allows to raise the Yb-168 concentration up to 50 % and consumes much less of electrical power than the alternative electromagnetic enrichment facilities. We also developed, in cooperation with the Institute of high pressure physics of RAS, a new technology for manufacturing high-density ceramic cores of ytterbium oxide. Ceramics density reaches the limit of the theoretical values: 9.1 g/cm3 for the cubic phase of ytterbium oxide and 10 g/cm3 for the monoclinic phase. Source cores from this ceramics have high mechanical characteristics and a glassy surface. The use of ceramics allows to increase the source activity with fixed external dimensions of sources.

Keywords: brachytherapy, high, pulse dose rates, radionuclides for therapy, ytterbium sources

Procedia PDF Downloads 491
1945 Periodical System of Isotopes

Authors: Andriy Magula

Abstract:

With the help of a special algorithm being the principle of multilevel periodicity, the periodic change of properties at the nuclear level of chemical elements was discovered and the variant for the periodic system of isotopes was presented. The periodic change in the properties of isotopes, as well as the vertical symmetry of subgroups, was checked for consistency in accordance with the following ten types of experimental data: mass ratio of fission fragments; quadrupole moment values; magnetic moment; lifetime of radioactive isotopes; neutron scattering; thermal neutron radiative capture cross-sections (n, γ); α-particle yield cross-sections (n, α); isotope abundance on Earth, in the Solar system and other stellar systems; features of ore formation and stellar evolution. For all ten cases, the correspondences for the proposed periodic structure of the nucleus were obtained. The system was formed in the usual 2D table, similar to the periodic system of elements, and the mass series of isotopes was divided into 8 periods and 4 types of ‘nuclear’ orbitals: sn, dn, pn, fn. The origin of ‘magic’ numbers as a set of filled charge shells of the nucleus was explained. Due to the isotope system, the periodic structure is shown at a new level of the universe, and the prospects of its practical use are opened up.

Keywords: periodic system, isotope, period, subgroup, “nuclear” orbital, nuclear reaction

Procedia PDF Downloads 17
1944 Evidence of Total Mercury Biomagnification in Tropical Estuary Lagoon in East Coast of Peninsula, Malaysia

Authors: Quang Dung Le, Kentaro Tanaka, Viet Dung Luu, Kotaro Shirai

Abstract:

Mercury pollutant is great concerns in globe due to its toxicity and biomagnification through the food web. Recently increasing approaches of stable isotope analyses which have applied in food-web structure are enabled to elucidate more insight trophic transfer of pollutants in ecosystems. In this study, the integration of total mercury (Hg) and stable isotopic analyses (δ13C and δ15N) were measured from basal food sources to invertebrates and fishes in order to determine Hg transfer in Setiu lagoon food webs. The average Hg concentrations showed the increasing trend from low to high trophic levels. The result also indicated that potential Hg exposure from inside mangrove could be higher than that from the tidal flat of mangrove creek. Fish Hg concentrations are highly variable, and many factors driving this variability need further examinations. A positive correlation found between Hg concentrations and δ15N values (the trophic magnification factor was 3.02), suggesting Hg biomagnification through the lagoon food web. Almost all Hg concentrations in fishes and mud crabs did not present a risk for human consumption, however, the Hg concentrations of Caranx ignobilis exceed the permitted level could raise a concern of the potential risk for the marine system. Further investigations should be done to elucidate whether trophic relay relates to high Hg concentrations of some fish species in coastal systems.

Keywords: mercury, transfer, stable isotopes, health risk, mangrove, food web

Procedia PDF Downloads 308
1943 Isotope Effects on Inhibitors Binding to HIV Reverse Transcriptase

Authors: Agnieszka Krzemińska, Katarzyna Świderek, Vicente Molinier, Piotr Paneth

Abstract:

In order to understand in details the interactions between ligands and the enzyme isotope effects were studied between clinically used drugs that bind in the active site of Human Immunodeficiency Virus Reverse Transcriptase, HIV-1 RT, as well as triazole-based inhibitor that binds in the allosteric pocket of this enzyme. The magnitudes and origins of the resulting binding isotope effects were analyzed. Subsequently, binding isotope effect of the same triazole-based inhibitor bound in the active site were analyzed and compared. Together, these results show differences in binding origins in two sites of the enzyme and allow to analyze binding mode and place of newly synthesized inhibitors. Typical protocol is described below on the example of triazole ligand in the allosteric pocket. Triazole was docked into allosteric cavity of HIV-1 RT with Glide using extra-precision mode as implemented in Schroedinger software. The structure of HIV-1 RT was obtained from Protein Data Bank as structure of PDB ID 2RKI. The pKa for titratable amino acids was calculated using PROPKA software, and in order to neutralize the system 15 Cl- were added using tLEaP package implemented in AMBERTools ver.1.5. Also N-terminals and C-terminals were build using tLEaP. The system was placed in 144x160x144Å3 orthorhombic box of water molecules using NAMD program. Missing parameters for triazole were obtained at the AM1 level using Antechamber software implemented in AMBERTools. The energy minimizations were carried out by means of a conjugate gradient algorithm using NAMD. Then system was heated from 0 to 300 K with temperature increment 0.001 K. Subsequently 2 ns Langevin−Verlet (NVT) MM MD simulation with AMBER force field implemented in NAMD was carried out. Periodic Boundary Conditions and cut-offs for the nonbonding interactions, range radius from 14.5 to 16 Å, are used. After 2 ns relaxation 200 ps of QM/MM MD at 300 K were simulated. The triazole was treated quantum mechanically at the AM1 level, protein was described using AMBER and water molecules were described using TIP3P, as implemented in fDynamo library. Molecules 20 Å apart from the triazole were kept frozen, with cut-offs established on range radius from 14.5 to 16 Å. In order to describe interactions between triazole and RT free energy of binding using Free Energy Perturbation method was done. The change in frequencies from ligand in solution to ligand bounded in enzyme was used to calculate binding isotope effects.

Keywords: binding isotope effects, molecular dynamics, HIV, reverse transcriptase

Procedia PDF Downloads 431
1942 Selective and Highly Sensitive Measurement of ¹⁵NH₃ Using Photoacoustic Spectroscopy for Environmental Applications

Authors: Emily Awuor, Helga Huszar, Zoltan Bozoki

Abstract:

Isotope analysis has found numerous applications in the environmental science discipline, most common being the tracing of environmental contaminants on both regional and global scales. Many environmental contaminants contain ammonia (NH₃) since it is the most abundant gas in the atmosphere and its largest sources are from agricultural and industrial activities. NH₃ isotopes (¹⁴NH₃ and ¹⁵NH₃) are therefore important and can be used in the traceability studies of these atmospheric pollutants. The goal of the project is the construction of a photoacoustic spectroscopy system that is capable of measuring ¹⁵NH₃ isotope selectively in terms of its concentration. A further objective is for the system to be robust, easy-to-use, and automated. This is provided by using two telecommunication type near-infrared distributed feedback (DFB) diode lasers and a laser coupler as the light source in the photoacoustic measurement system. The central wavelength of the lasers in use was 1532 nm, with the tuning range of ± 1 nm. In this range, strong absorption lines can be found for both ¹⁴NH₃ and ¹⁵NH₃. For the selective measurement of ¹⁵NH₃, wavelengths were chosen where the cross effect of ¹⁴NH₃ and water vapor is negligible. We completed the calibration of the photoacoustic system, and as a result, the lowest detectable concentration was 3.32 ppm (3Ϭ) in the case of ¹⁵NH₃ and 0.44 ppm (3Ϭ) in the case of ¹⁴NH₃. The results are most useful in the environmental pollution measurement and analysis.

Keywords: ammonia isotope, near-infrared DFB diode laser, photoacoustic spectroscopy, environmental monitoring

Procedia PDF Downloads 148
1941 Probing Language Models for Multiple Linguistic Information

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, large-scale pre-trained language models have achieved state-of-the-art performance on a variety of natural language processing tasks. The word vectors produced by these language models can be viewed as dense encoded presentations of natural language that in text form. However, it is unknown how much linguistic information is encoded and how. In this paper, we construct several corresponding probing tasks for multiple linguistic information to clarify the encoding capabilities of different language models and performed a visual display. We firstly obtain word presentations in vector form from different language models, including BERT, ELMo, RoBERTa and GPT. Classifiers with a small scale of parameters and unsupervised tasks are then applied on these word vectors to discriminate their capability to encode corresponding linguistic information. The constructed probe tasks contain both semantic and syntactic aspects. The semantic aspect includes the ability of the model to understand semantic entities such as numbers, time, and characters, and the grammatical aspect includes the ability of the language model to understand grammatical structures such as dependency relationships and reference relationships. We also compare encoding capabilities of different layers in the same language model to infer how linguistic information is encoded in the model.

Keywords: language models, probing task, text presentation, linguistic information

Procedia PDF Downloads 110
1940 Heroin and Opiates Metabolites Tracing by Gas-Chromatography Isotope Ratio Mass Spectrometry

Authors: Yao-Te Yen, Chao-Hsin Cheng, Meng-Shun Huang, Shan-Zong Cyue

Abstract:

'Poppy-seed defense' has been a serious problem all over the world, that is because the opiates metabolites in urine are difficult to distinguish where they come from precisely. In this research, a powerful analytic method has been developed to trace the opiates metabolites in urine by Gas-Chromatography Isotope Ratio Mass Spectrometry (GC-IRMS). In order to eliminate the interference of synthesis to heroin or metabolism through human body, opiates metabolites in urine and sized heroin were hydrolyzed to morphine. Morphine is the key compound for tracing between opiates metabolites and seized heroin in this research. By matching δ13C and δ15N values through morphine, it is successful to distinguish the opiates metabolites coming from heroin or medicine. We tested seven heroin abuser’s metabolites and seized heroin in crime sites, the result showed that opiates metabolites coming from seized heroin, the variation of δ13C and δ15N for morphine are within 0.2 and 2.5‰, respectively. The variation of δ13C and δ15N for morphine are reasonable with the result of matrix match experiments. Above all, the uncertainty of 'Poppy-seed defense' can be solved easily by this analytic method, it provides the direct evidence for judge to make accurate conviction without hesitation.

Keywords: poppy-seed defense, heroin, opiates metabolites, isotope ratio mass spectrometry

Procedia PDF Downloads 239
1939 Re-Os Application to Petroleum System: Implications from the Geochronology and Oil-Source Correlation of Duvernay Petroleum System, Western Canadian Sedimentary Basin

Authors: Junjie Liu, David Selby, Mark Obermajer, Andy Mort

Abstract:

The inaugural application of Re-Os dating, which is based on the beta decay of 187Re to 187Os with a long half-life of 41.577 ± 0.12 Byr and initially used for sulphide minerals and organic rich rocks, to petroleum systems was performed on bitumen of the Polaris Mississippi Valley Type Pb-Zn deposit, Canada. To further our understanding of the Re-Os system and its application to petroleum systems, here we present a study on Duvernay Petroleum System, Western Canadian Sedimentary Basin. The Late Devonian Duvernay Formation organic-rich shales are the only source of the petroleum system. The Duvernay shales reached maturation only during the Laramide Orogeny (80 – 35 Ma) and the generated oil migrated short distances into the interfingering Leduc reefs and overlying Nisku carbonates with no or little secondary alteration post oil-generation. Although very low in Re and Os, the asphaltenes of Duvernay-sourced Leduc and Nisku oils define a Laramide Re-Os age. In addition, the initial Os isotope compositions of the oil samples are similar to that of the Os isotope composition of the Duvernay Formation at the time of oil generation, but are very different to other oil-prone intervals of the basin, showing the ability of the Os isotope composition as an inorganic oil-source correlation tool. In summary, the ability of the Re-Os geochronometer to record the timing of oil generation and trace the source of an oil is confirmed in the Re-Os study of Duvernay Petroleum System.

Keywords: Duvernay petroleum system, oil generation, oil-source correlation, Re-Os

Procedia PDF Downloads 310
1938 The Study of Stable Isotopes (18O, 2H & 13C) in Kardeh River and Dam Reservoir, North-Eastern Iran

Authors: Hossein Mohammadzadeh, Mojtaba Heydarizad

Abstract:

Among various water resources, the surface water has a dominant role in providing water supply in the arid and semi-arid region of Iran. Andarokh-Kardeh basin is located in 50 km from Mashhad city - the second biggest city of Iran (NE of Iran), draining by Kardeh river which provides a significant portion of potable and irrigation water needs for Mashhad. The stable isotopes (18O, 2H,13C-DIC, and 13C-DOC), as reliable and precious water fingerprints, have been measured in Kardeh river (Kharket, Mareshk, Jong, All and Kardeh stations) and in Kardeh dam reservoirs (at five different sites S1 to S5) during March to June 2011 and June 2012. On δ18O vs. δ2H diagram, the river samples were plotted between Global and Eastern Mediterranean Meteoric Water lines (GMWL and EMMWL) which demonstrate that various moisture sources are providing humidity for precipitation events in this area. The enriched δ18O and δ2H values (-6.5 ‰ and -44.5 ‰ VSMOW) of Kardeh dam reservoir are compared to Kardeh river (-8.6‰and-54.4‰), and its deviation from Mashhad meteoric water line (MMWL- δ2H=7.16δ18O+11.22) is due to evaporation from the open surface water body. The enriched value of δ 13C-DIC and high amount of DIC values (-7.9 ‰ VPDB and 57.23 ppm) in the river and Kardeh dam reservoir (-7.3 ‰ VPDB and 55.53 ppm) is due to dissolution of Mozdooran Carbonate Formation lithology (Jm1 to Jm3 units) (contains enriched δ13C DIC values of 9.2‰ to 27.7‰ VPDB) in the region. Because of the domination of C3 vegetations in Andarokh_Kardeh basin, the δ13C-DOC isotope of the river (-28.4‰ VPDB) and dam reservoir (-32.3‰ VPDB) demonstrate depleted values. Higher DOC concentration in dam reservoir (2.57 ppm) compared to the river (0.72 ppm) is due to more biologogical activities and organic matters in dam reservoir.

Keywords: Dam reservoir, Iran, Kardeh river, Khorasan razavi, Stable isotopes

Procedia PDF Downloads 270
1937 Chemical and Oxygen Isotope Analysis of Roman Glasses from Northern Greece

Authors: P. Karalis, E. Dotsika, A. Godelitsas, M. Tassi, D. Ignatiadou

Abstract:

Glass artefacts originated from Northern Greece, dated between 1st and 6th AC, were analyzed for their oxygen isotopic and chemical compositions in order to identify their raw materials provenance. The chemical composition of these glasses is rather heterogeneous although they are all obtained with natron as flux, having both K₂O and MgO contents lower than 1.5 wt%. The majority of these samples have a homogeneous oxygen isotopic composition (𝛿18O= 16‰,), which is equal to or very close to the mean value of “Roman” glass (from about 15‰ to 16.0‰). The rest of the samples present heavily enriched 𝛿18O values that indicate that their raw materials differ from those normally used in Roman and Medieval glass production, and this matches with the possibility of the different origins of these materials. So, all these fragments are soda-lime-silica natron-glass produced from natron, possibly coming from more than one source.

Keywords: ancient glass, provenance of raw materials of ancient glass, roman glass, oxygen isotope analysis in glass

Procedia PDF Downloads 129
1936 Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia

Authors: Belhaj Mohamed, M. Saidi, N. Boucherab, N. Ouertani, I. Bouazizi, M. Ben Jrad

Abstract:

Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected from Sousse aquifer (Central Tunisia). The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS), capillary GC with flame-ionization detection, Compund Specific Isotope Analysis, Rock Eval Pyrolysis. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The oil and gas seeps have been investigated using biomarker and stable carbon isotope analyses to perform oil-oil and oil-source rock correlations. The seepage gases are characterized by high CH4 content, very low δ13CCH4 values (-71,9 ‰) and high C1/C1–5 ratios (0.95–1.0), light deuterium–hydrogen isotope ratios (-198 ‰) and light δ13CC2 and δ13CCO2 values (-23,8‰ and-23,8‰ respectively) indicating a thermogenic origin with the contribution of the biogenic gas. An organic geochemistry study was carried out on the more ten oil seep samples. This study includes light hydrocarbon and biomarkers analyses (hopanes, steranes, n-alkanes, acyclic isoprenoids, and aromatic steroids) using GC and GC-MS. The studied samples show at least two distinct families, suggesting two different types of crude oil origins: the first oil seeps appears to be highly mature, showing evidence of chemical and/or biological degradation and was derived from a clay-rich source rock deposited in suboxic conditions. It has been sourced mainly by the lower Fahdene (Albian) source rocks. The second oil seeps was derived from a carbonate-rich source rock deposited in anoxic conditions, well correlated with the Bahloul (Cenomanian-Turonian) source rock.

Keywords: biomarkers, oil and gas seeps, organic geochemistry, source rock

Procedia PDF Downloads 443
1935 Mind-Wandering and Attention: Evidence from Behavioral and Subjective Perspective

Authors: Riya Mishra, Trayambak Tiwari, Anju Lata Singh, I. L. Singh, Tara Singh

Abstract:

Decrement in vigilance task performance echoes impediment in effortful attention; here attention fluctuated in the realm of external and internal milieu of a person. To examine this fluctuation across time period, we employed two experiments of vigilance task with variation in thought probing rate, which was embedded in the task. The thought probe varies in terms of <2 minute per thought probe and <4 minute per thought probe during vigilance task. A 2x4 repeated measure factorial design was used. 15 individuals participated in this study with an age range of 20-26 years. It was found that thought probing rate has a negative trend with vigilance task performance whereas the subjective measures of mind-wandering have a positive relation with thought probe rate.

Keywords: criterion response, mental status, mind-wandering, thought probe, vigilance

Procedia PDF Downloads 425
1934 Sources of Precipitation and Hydrograph Components of the Sutri Dhaka Glacier, Western Himalaya

Authors: Ajit Singh, Waliur Rahaman, Parmanand Sharma, Laluraj C. M., Lavkush Patel, Bhanu Pratap, Vinay Kumar Gaddam, Meloth Thamban

Abstract:

The Himalayan glaciers are the potential source of perennial water supply to Asia’s major river systems like the Ganga, Brahmaputra and the Indus. In order to improve our understanding about the source of precipitation and hydrograph components in the interior Himalayan glaciers, it is important to decipher the sources of moisture and their contribution to the glaciers in this river system. In doing so, we conducted an extensive pilot study in a Sutri Dhaka glacier, western Himalaya during 2014-15. To determine the moisture sources, rain, surface snow, ice, and stream meltwater samples were collected and analyzed for stable oxygen (δ¹⁸O) and hydrogen (δD) isotopes. A two-component hydrograph separation was performed for the glacier stream using these isotopes assuming the contribution of rain, groundwater and spring water contribution is negligible based on field studies and available literature. To validate the results obtained from hydrograph separation using above method, snow and ice melt ablation were measured using a network of bamboo stakes and snow pits. The δ¹⁸O and δD in rain samples range from -5.3% to -20.8% and -31.7% to -148.4% respectively. It is noteworthy to observe that the rain samples showed enriched values in the early season (July-August) and progressively get depleted at the end of the season (September). This could be due to the ‘amount effect’. Similarly, old snow samples have shown enriched isotopic values compared to fresh snow. This could because of the sublimation processes operating over the old surface snow. The δ¹⁸O and δD values in glacier ice samples range from -11.6% to -15.7% and -31.7% to -148.4%, whereas in a Sutri Dhaka meltwater stream, it ranges from -12.7% to -16.2% and -82.9% to -112.7% respectively. The mean deuterium excess (d-excess) value in all collected samples exceeds more than 16% which suggests the predominant moisture source of precipitation is from the Western Disturbances. Our detailed estimates of the hydrograph separation of Sutri Dhaka meltwater using isotope hydrograph separation and glaciological field methods agree within their uncertainty; stream meltwater budget is dominated by glaciers ice melt over snowmelt. The present study provides insights into the sources of moisture, controlling mechanism of the isotopic characteristics of Sutri Dhaka glacier water and helps in understanding the snow and ice melt components in Chandra basin, Western Himalaya.

Keywords: D-excess, hydrograph separation, Sutri Dhaka, stable water isotope, western Himalaya

Procedia PDF Downloads 152