Search results for: stability and performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14892

Search results for: stability and performance

14862 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks

Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith

Abstract:

Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.

Keywords: clustering, heterogeneous, stability, scalability, IoT, WSN

Procedia PDF Downloads 100
14861 Global Stability Of Nonlinear Itô Equations And N. V. Azbelev's W-method

Authors: Arcady Ponosov., Ramazan Kadiev

Abstract:

The work studies the global moment stability of solutions of systems of nonlinear differential Itô equations with delays. A modified regularization method (W-method) for the analysis of various types of stability of such systems, based on the choice of the auxiliaryequations and applications of the theory of positive invertible matrices, is proposed and justified. Development of this method for deterministic functional differential equations is due to N.V. Azbelev and his students. Sufficient conditions for the moment stability of solutions in terms of the coefficients for sufficiently general as well as specific classes of Itô equations are given.

Keywords: asymptotic stability, delay equations, operator methods, stochastic noise

Procedia PDF Downloads 187
14860 Effect of Core Stability Exercises on Balance between Trunk Muscles in Healthy Adult Subjects

Authors: Amir A. Beltagi, Ahmed R. Abdelbaki

Abstract:

Background: Core stability training has recently attracted attention for optimizing performance and improving muscle balance for healthy and unhealthy individuals. The purpose of this study was to investigate the effect of beginner’s core stability exercises on the trunk flexors’/extensors’ peak torque ratio and trunk flexors’ and extensors’ peak torques. Methods: Thirty five healthy individuals, randomly assigned into two groups; experimental (group I) and control (group II), participated in the study. Group I involved 20 participants (10 male & 10 female) with mean ±SD age, weight, and height of 20.7±2.4 years, 66.5±12.1 kg and 166.7±7.8 cm respectively. Group II involved 15 participants (6 male & 9 female) with mean ±SD age, weight, and height of 20.3±0.61 years, 68.57±12.2 kg and 164.28 ±7.59 cm respectively. Data were collected using the Biodex Isokinetic system. The participants were tested twice; before and after a 6-week period during which the experimental group performed a core stability training program. Findings: Statistical analysis using the 2x2 Mixed Design ANOVA revealed that there were no significant differences in the trunk flexors’/extensors’ peak torque ratio between the ‘pre’ and ‘post’ tests for either group (p > 0.025). Moreover, there were no significant differences in the trunk flexors’/extensors’ ratios between both groups at either test (p > 0.025). Meanwhile, the 2x2 Mixed Design MANOVA revealed that there were significant differences in the trunk flexors’ and extensors’ peak torques between the ‘pre’ and ‘post’ tests for group I (p < 0.025), while there were no significant differences inbetween for group II (p > 0.025). Moreover, there were no significant differences between both groups for the tested muscles’ peak torques at either test except for that of the trunk flexors at the ‘post’ test only (p < 0.025). Interpretation: The improvement in muscle performance indicated by the increase in the trunk flexors’ and extensors’ peak torques in the experimental group recommends including core stability training in the exercise programs that aim to improve muscle performance.

Keywords: core stability, isokinetic, trunk muscles, muscle balance

Procedia PDF Downloads 275
14859 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System

Authors: Sheela Tiwari, R. Naresh, R. Jha

Abstract:

The paper presents an investigation into the effect of neural network predictive control of UPFC on the transient stability performance of a multi-machine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers and an improved damping of the power oscillations as compared to the conventional PI controller.

Keywords: identification, neural networks, predictive control, transient stability, UPFC

Procedia PDF Downloads 352
14858 New Suspension Mechanism for a Formula Car using Camber Thrust

Authors: Shinji Kajiwara

Abstract:

The basic ability of a vehicle is the ability to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle is vital in automotive engineering. Stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswind and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle especially with the worrying increase of vehicle collision every day. With better safety performance on a vehicle, every driver will be more confidence driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in four-wheel vehicle especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on performance of both suspension systems.

Keywords: automobile, camber thrust, cornering force, suspension

Procedia PDF Downloads 290
14857 Sufficient Conditions for Exponential Stability of Stochastic Differential Equations with Non Trivial Solutions

Authors: Fakhreddin Abedi, Wah June Leong

Abstract:

Exponential stability of stochastic differential equations with non trivial solutions is provided in terms of Lyapunov functions. The main result of this paper establishes that, under certain hypotheses for the dynamics f(.) and g(.), practical exponential stability in probability at the small neighborhood of the origin is equivalent to the existence of an appropriate Lyapunov function. Indeed, we establish exponential stability of stochastic differential equation when almost all the state trajectories are bounded and approach a sufficiently small neighborhood of the origin. We derive sufficient conditions for exponential stability of stochastic differential equations. Finally, we give a numerical example illustrating our results.

Keywords: exponential stability in probability, stochastic differential equations, Lyapunov technique, Ito's formula

Procedia PDF Downloads 21
14856 Impact of Using Pyrolytic Carbon Black as Asphalt Modifier on Wearing Course of Flexible Pavement

Authors: Samiya Siddique, Taslima Akter Elma, Shahrina Mahzabin, Tamanna Jerin, Mohammed Russedul Islam

Abstract:

In the maneuver and designing of highway engineering, pavement performance is a principal concern. Quality of construction and materials, traffic volume, climate, etc. are the factors that affect the performance of asphalt concrete. Modified asphalt requires to attain greater strength and stability even at inimical circumstances. In this point of view, pyrolytic carbon black (PCB), which is a by-product of waste tire pyrolysis, holds incomparable properties that individualizes it from other conventional fillers by making it an imminent modifier of bitumen. Optimum asphalt content of 60/70 penetration grade asphalt is determined 5% through the Marshall Stability and Flow test for the wearing course of flexible pavement. 5, 10, and 15 percentages of PCB are then used with neat asphalt for modification. Deviations of physical and rheological properties are investigated on both PCB modified and neat asphalt by going through several laboratory tests such as penetration, softening point, and ductility tests. The obtained results reveal that the performance of paving asphalt can be upgraded by modifying it with PCB. With the increasing percentage of PCB, ductility is gradually decreased, and also penetration grade is gradually reduced from 60/70 to 30/40. Furthermore, asphalt mixtures modified with PCB demonstrate higher stability and lower flow values. The research discloses that the apposite percentage of PCB used in asphalt concrete plays a significant role in the advancement of pavement performances and reutilizing of waste tires.

Keywords: asphalt modification, pavement performances, pyrolytic carbon black, marshall stability, wearing course

Procedia PDF Downloads 113
14855 Core Stability Index for Healthy Young Sri Lankan Population

Authors: V. M. B. K. T. Malwanage, S. Samita

Abstract:

Core stability is one of the major determinants that contribute to preventing injuries, enhance performance, and improve quality of life of the human. Endurance of the four major muscle groups of the central ‘core’ of the human body is identified as the most reliable determinant of core stability amongst the other numerous causes which contribute to readily make one’s core stability. This study aimed to develop a ‘Core Stability Index’ to confer a single value for an individual’s core stability based on the four endurance test scores. Since it is possible that at least some of the test scores are not independent, possibility of constructing a single index using the multivariate method exploratory factor analysis was investigated in the study. The study sample was consisted of 400 healthy young individuals with the mean age of 23.74 ± 1.51 years and mean BMI (Body Mass Index) of 21.1 ± 4.18. The correlation analysis revealed highly significant (P < 0.0001) correlations between test scores and thus construction an index using these highly inter related test scores using the technique factor analysis was justified. The mean values of all test scores were significantly different between males and females (P < 0.0001), and therefore two separate core stability indices were constructed for the two gender groups. Moreover, having eigen values 3.103 and 2.305 for males and females respectively, indicated one factor exists for all four test scores and thus a single factor based index was constructed. The 95% reference intervals constructed using the index scores were -1.64 to 2.00 and -1.56 to 2.29 for males and females respectively. These intervals can effectively be used to diagnose those who need improvement in core stability. The practitioners should find that with a single value measure, they could be more consistent among themselves.

Keywords: construction of indices, endurance test scores, muscle endurance, quality of life

Procedia PDF Downloads 135
14854 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion

Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen

Abstract:

In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.

Keywords: adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm

Procedia PDF Downloads 413
14853 Effect of Solvents in the Extraction and Stability of Anthocyanin from the Petals of Caesalpinia pulcherrima for Natural Dye-Sensitized Solar Cell

Authors: N. Prabavathy, R. Balasundaraprabhu, S. Shalini, Dhayalan Velauthapillai, S. Prasanna, N. Muthukumarasamy

Abstract:

Dye sensitized solar cell (DSSC) has become a significant research area due to their fundamental and scientific importance in the area of energy conversion. Synthetic dyes as sensitizer in DSSC are efficient and durable but they are costlier, toxic and have the tendency to degrade. Natural sensitizers contain plant pigments such as anthocyanin, carotenoid, flavonoid, and chlorophyll which promote light absorption as well as injection of charges to the conduction band of TiO2 through the sensitizer. But, the efficiency of natural dyes is not up to the mark mainly due to instability of the pigment such as anthocyanin. The stability issues in vitro are mainly due to the effect of solvents on extraction of anthocyanins and their respective pH. Taking this factor into consideration, in the present work, the anthocyanins were extracted from the flower Caesalpinia pulcherrima (C. pulcherrimma) with various solvents and their respective stability and pH values are discussed. The usage of citric acid as solvent to extract anthocyanin has shown good stability than other solvents. It also helps in enhancing the sensitization properties of anthocyanins with Titanium dioxide (TiO2) nanorods. The IPCE spectra show higher photovoltaic performance for dye sensitized TiO2nanorods using citric acid as solvent. The natural DSSC using citric acid as solvent shows a higher efficiency compared to other solvents. Hence citric acid performs to be a safe solvent for natural DSSC in boosting the photovoltaic performance and maintaining the stability of anthocyanins.

Keywords: Caesalpinia pulcherrima, citric acid, dye sensitized solar cells, TiO₂ nanorods

Procedia PDF Downloads 254
14852 An Innovative Non-Invasive Method To Improve The Stability Of Orthodontic Implants: A Pilot Study

Authors: Dr., Suchita Daokar

Abstract:

Background: Successful orthodontic treatment has always relied on anchorage. The stability of the implants depends on bone quantity, mini-implant design, and placement conditions. Out of the various methods of gaining stability, Platelet concentrations are gaining popularity for various reasons. PRF is a minimally invasive method, and there are various studies that has shown its role in enhancing the stability of general implants. However, there is no literature found regarding the effect of PRF in enhancing the stability of the orthodontic implant. Therefore, this study aimed to evaluate and assess the efficacy of PRF on the stability of the orthodontic implant. Methods: The study comprised of 9 subjects aged above 18 years of age. The split mouth technique was used; Group A (where implants were coated before insertion) and group B (implant were normally inserted). The stability of the implant was measured using resonance frequency analysis at insertion (T0), 24 hours (T1), 2 weeks (T2), at 4 weeks (T3), at 6 weeks (T4), and 8 weeks (T5) after insertion. Result: Statistically significant findings were found when group A was compared to group B using ANOVA test (p<0.05). The stability of the implant of group A at each time interval was greater than group B. The implant stability was high at T0 and reduces at T2, and increasing through T3 to T5. The stability was highest at T5. Conclusion: A chairside, minimally invasive procedure ofPRF coating on implants have shown promising results in improving the stability of orthodontic implants and providing scope for future studies.

Keywords: Orthodontic implants, stablity, resonance Frequency Analysis, pre

Procedia PDF Downloads 173
14851 Evaluation of Postural Stability in Patients with Flat Feet: A Controlled Trial

Authors: Ghada Mohamed Rashad, Doaa Ayoub Elimy, Mohamed Hussein Elgendy, Ahmed Mohamed Fathi Elshiwi, Mahmoud Ghazy

Abstract:

Background: Flat feet cause changes in foot mobility, foot posture, and load distribution under the foot which influences dynamic balance, that is essential in activities of daily living and for optimal performance in sports activity. Purpose: To investigate the effect of flat feet on dynamic balance including overall stability index (OAI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI). Study Design: The design of the study was an experimental design. Subjects: Forty subjects from both sexes were selected from the Faculty of Physical Therapy, Cairo University, their mean age (23.55 ± 1.74 ) years, divided into two groups, group A (8 males and 12 females) with flat feet, and group B (9 males and 11 females) with normal feet. Methods: The Navicular Drop Test was used to determine if the feet were pronated and Biodex Balance System was used to assess dynamic balance at level 8 and level 4 for both groups. Results: There was no significant difference in dynamic balance including (OSI, APSI and MLSI) of the Biodex at stability level (8) (most stable) (p = 0.56). While there was a significant difference between both groups in all dependent variables at stability level (4) (less stable level) (p = 0.0001). Conclusion: It may be concluded that flat feet have an effect on dynamic balance and there is balance affection in subjects with flat feet.

Keywords: flat feet, dynamic balance, postural stability, types of flat feet, eversion strength

Procedia PDF Downloads 491
14850 On the Mathematical Modelling of Aggregative Stability of Disperse Systems

Authors: Arnold M. Brener, Lesbek Tashimov, Ablakim S. Muratov

Abstract:

The paper deals with the special model for coagulation kernels which represents new control parameters in the Smoluchowski equation for binary aggregation. On the base of the model the new approach to evaluating aggregative stability of disperse systems has been submitted. With the help of this approach the simple estimates for aggregative stability of various types of hydrophilic nano-suspensions have been obtained.

Keywords: aggregative stability, coagulation kernels, disperse systems, mathematical model

Procedia PDF Downloads 286
14849 The Effect of Microgrid on Power System Oscillatory Stability

Authors: Burak Yildirim, Muhsin Tunay Gencoglu

Abstract:

This publication shows the effects of Microgrid (MG) integration on the power systems oscillating stability. Generated MG model power systems were applied to the IEEE 14 bus test system which is widely used in stability studies. Stability studies were carried out with the help of eigenvalue analysis over linearized system models. In addition, Hopf bifurcation point detection was performed to show the effect of MGs on the system loadability margin. In the study results, it is seen that MGs affect system stability positively by increasing system loadability margin and has a damper effect on the critical modes of the system and the electromechanical local modes, but they make the damping amount of the electromechanical interarea modes reduce.

Keywords: Eigenvalue analysis, microgrid, Hopf bifurcation, oscillatory stability

Procedia PDF Downloads 247
14848 Comparative Study for Power Systems Transient Stability Improvement Using SFCL ,SVC,TCBR

Authors: Sabir Messalti, Ahmed Gherbi, Ahmed Bouchlaghem

Abstract:

This paper presents comparative study for power systems transient stability improvement using three FACTS devices: the SVC(Static Var Compensator), the Thyristor Control Breaking Resistor (TCBR) and superconducting fault current limiter (SFCL)The transient stability is assessed by the criterion of relative rotor angles. Critical Clearing Time (CCT) is used as an index for evaluated transient stability. The present study is tested on the WSCC3 nine-bus system in the case of three-phase short circuit fault on one transmission line.

Keywords: SVC, TCBR, SFCL, power systems transient stability improvement

Procedia PDF Downloads 617
14847 Advanced Stability Criterion for Time-Delayed Systems of Neutral Type and Its Application

Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon

Abstract:

This paper investigates stability problem for linear systems of neutral type with time-varying delay. By constructing various Lyapunov-Krasovskii functional, and utilizing some mathematical techniques, the sufficient stability conditions for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by various effective optimization algorithms. Finally, some illustrative examples are given to show the effectiveness of the proposed criterion.

Keywords: neutral systems, time-delay, stability, Lyapnov method, LMI

Procedia PDF Downloads 324
14846 Effect of Rice Husk Ash on Properties of Cold Bituminous Emulsion Mix

Authors: Sampada Katekar, Namdeo Hedaoo

Abstract:

Cold Bituminous Emulsion Mixtures (CBEMs) are generally produced by mixing unheated aggregate, binder and filler at ambient temperature. Cold bituminous emulsion mixtures have several environmental and cost-effective benefits. But CBEMs offer poor early life properties too and they require long curing time to achieve maximum strength. The main focus of this study is to overcome inferiority of CBEMs by incorporating Rice Husk Ash (RHA) and Ordinary Portland Cement (OPC). In this study, RHA and OPC are substituted for conventional mineral filler in an increased percentage from 0 to 3% with an increment of 1%. Marshall stability, retained stability and tensile strength tests were conducted to evaluate the enhancement in performance of CBEMs. The experimental results have shown that Marshall stability and tensile strength of CBEMs increased significantly by replacing the conventional mineral filler with RHA and OPC. The addition of RHA and OPC in CBEMs result in a reduction in moisture induced damages. However, stability and tensile strength values of RHA modified CBEMs are higher than that of OPC modified CBEMs.

Keywords: cold bituminous emulsion mixtures, Marshall stability test, ordinary Portland cement, rice husk ash

Procedia PDF Downloads 137
14845 The Amount of Information Processing and Balance Performance in Children: The Dual-Task Paradigm

Authors: Chin-Chih Chiou, Tai-Yuan Su, Ti-Yu Chen, Wen-Yu Chiu, Chungyu Chen

Abstract:

The purpose of this study was to investigate the effect of reaction time (RT) or balance performance as the number of stimulus-response choices increases, the amount of information processing of 0-bit and 1-bit conditions based on Hick’s law, using the dual-task design. Eighteen children (age: 9.38 ± 0.27 years old) were recruited as the participants for this study, and asked to assess RT and balance performance separately and simultaneously as following five conditions: simple RT (0-bit decision), choice RT (1-bit decision), single balance control, balance control with simple RT, and balance control with choice RT. Biodex 950-300 balance system and You-Shang response timer were used to record and analyze the postural stability and information processing speed (RT) respectively for the participants. Repeated measures one-way ANOVA with HSD post-hoc test and 2 (balance) × 2 (amount of information processing) repeated measures two-way ANOVA were used to test the parameters of balance performance and RT (α = .05). The results showed the overall stability index in the 1-bit decision was lower than in 0-bit decision, and the mean deflection in the 1-bit decision was lower than in single balance performance. Simple RTs were faster than choice RTs both in single task condition and dual task condition. It indicated that the chronometric approach of RT could use to infer the attention requirement of the secondary task. However, this study did not find that the balance performance is interfered for children by the increasing of the amount of information processing.

Keywords: capacity theory, reaction time, Hick’s law, balance

Procedia PDF Downloads 423
14844 Effect of Core Stability Exercises on Trunk Proprioception in Healthy Adult Individuals

Authors: Omaima E. S. Mohammed, Amira A. A. Abdallah, Amal A. M. El Borady

Abstract:

Background: Core stability training has recently attracted attention for improving muscle performance. Purpose: This study investigated the effect of beginners' core stability exercises on trunk active repositioning error at 30° and 60° trunk flexion. Methods: Forty healthy males participated in the study. They were divided into two equal groups; experimental “group I” and control “group II”. Their mean age, weight and height were 19.35±1.11 vs 20.45±1.64 years, 70.15±6.44 vs 72.45±6.91 kg and 174.7±7.02 vs 176.3±7.24 cm for group I vs group II. Data were collected using the Biodex Isokinetic system at an angular velocity of 60º/s. The participants were tested twice; before and after a 6-week period during which group I performed a core stability training program. Results: The Mixed 3-way ANOVA revealed significant increases (p<0.05) in the absolute error (AE) at 30˚ compared with 60˚ flexion in the pre-test condition of group I and II and the post-test condition of group II. Moreover, there were significant decreases (p<0.05) in the AE in the post-test condition compared with the pre-test in group I at both 30˚ and 60˚ flexion with no significant differences for group II. Finally, there were significant decreases (p<0.05) in the AE in group I compared with group II in the post-test condition at 30˚ and 60˚ flexion with no significant differences for the pre-test condition Interpretation/Conclusion: The improvement in trunk proprioception indicated by the decrease in the active repositioning error in the experimental group recommends including core stability training in the exercise programs that aim to improve trunk proprioception.

Keywords: core stability, isokinetic, trunk proprioception, biomechanics

Procedia PDF Downloads 446
14843 Preparation of Ag-Doped and MOFs Coupled-LaFeO₃ Nanosheet for Electrochemical CO₂ Conversion

Authors: Iltaf Khan, Munzir H. Suliman, Muhammad Usman

Abstract:

The rapid growth of modern industries has led to increased energy demand and worsened fossil fuel depletion, resulting in global warming, while organic pollutants pose significant threats to aquatic environments due to their stability, insolubleness, and non-biodegradability. So, scientists are investigating high-performance materials to resolve these issues. In this study, we prepared LaFeO₃ nanosheets (LFONS) employing a solvothermal method via a soft template such as polyvinylpyrrolidone (PVP). The LFONS have good performance regarding surface area and charge separation as compared to LaFeO₃ nanoparticles (LFONP). To improve the efficiency of LFONS, it was further modified with Ag and ZIF-67 and utilized for CO₂ conversion. Herein, the results confirm that Ag-doped and ZIF-67 coupled LFONS (ZIF-67/Ag-LFONS) exhibit superior performance compared to pristine LFONP. In addition, the stability tests confirm that our optimal sample is the most active and stable one among various nanocomposites. Ultimately, our studies will open a new pave for cost-effective, eco-friendly, and electroactive nanomaterials for CO₂ conversion.

Keywords: LaFeO₃ nanosheets, Ag incorporation, MOFs coupling, CO₂ conversion

Procedia PDF Downloads 23
14842 Slope Stability Considering the Top Building Load

Authors: Micke Didit, Xiwen Zhang, Weidong Zhu

Abstract:

Slope stability is one of the most important subjects of geotechnics. The slope top-loading plays a key role in the stability of slopes in hill slope areas. Therefore, it is of great importance to study the relationship between the load and the stability of the slope. This study aims to analyze the influence of the building load applied on the top of the slope and deduces its effect on the slope stability. For this purpose, a three-dimensional slope model under different building loads with different distances to the slope shoulder was established using the finite-difference analysis software Flac3D. The results show that the loads applied at different distances on the top of the slope have different effects on the slope stability. The slope factor of safety (fos) increases with the increase of the distance between the top-loading and the slope shoulder, resulting in the decrease of the coincidence area between the load-deformation and the potential sliding surface. The slope is no longer affected by the potential risk of sliding at approximately 20 m away from the slope shoulder.

Keywords: building load, finite-difference analysis, FLAC3D software, slope factor of safety, slope stability

Procedia PDF Downloads 147
14841 Landfill Design for Reclamation of Şırnak Coal Mine Dumps: Shalefill Stability and Risk Assessment

Authors: Yıldırım I. Tosun, Halim Cevizci, Hakan Ceylan

Abstract:

By GEO5 FEM program with four rockfill slope modeling and stability analysis was performed for S1, S2, S3 and S4 slopes where landslides of the shalefills were limited. Effective angle of internal friction (φ'°) 17°-22.5°, the effective cohesion (c') from 0.5 to 1.8 kPa, saturated unit weight 1.78-2.43 g/cm3, natural unit weight 1.9-2.35 g/cm3, dry unit weight 1.97-2.40 g/cm3, the permeability coefficient of 1x10-4 - 6.5x10-4 cm/s. In cross-sections of the slope, GEO 5 FEM program possible critical surface tension was examined. Rockfill dump design was made to prevent sliding slopes. Bulk material designated geotechnical properties using also GEO5 programs FEM and stability program via a safety factor determined and calculated according to the values S3 and S4 No. slopes are stable S1 and S2 No. slopes were close to stable state that has been found to be risk. GEO5 programs with limestone rock fill dump through FEM program was found to exhibit stability.

Keywords: slope stability, stability analysis, rockfills, sock stability

Procedia PDF Downloads 455
14840 ANSYS Investigation on Stability and Performance of a Solar Driven Inline Alpha Stirling Engine

Authors: Joseph Soliman, Youssef Attia, Khairy Megalla

Abstract:

The stable operation of an inline Stirling engine will be achieved when both engine configurations and operating conditions are optimum. This paper presents stability and performance investigation of an inline Stirling engine using ANSYS. Dynamic motion of engine pistons such as the displacer and the power piston are both obtained. For engine design, the optimum parameters are given such as engine specifications, engine characteristics and working conditions to yield the maximum efficiency and reliability. The prototype was built and tested and it is used as a validation case. The comparison of both experimental and simulation results are provided and discussed. Results were found to be encouraging to initiate a Stirling engine project for 3 kW power output. The working fluids are air, hydrogen, nitrogen and helum.

Keywords: stirling engine, solar energy, new energy, dynamic motion

Procedia PDF Downloads 383
14839 Study on the Stability of Large Space Expandable Parabolic Cylindrical Antenna

Authors: Chuanzhi Chen, Wenjing Yu

Abstract:

Parabolic cylindrical deployable antenna has the characteristics of wide cutting width, strong directivity, high gain, and easy automatic beam scanning. While, due to its large size, high flexibility, and strong coupling, the deployment process of parabolic cylindrical deployable antenna presents such problems as unsynchronized deployment speed, large local deformation and discontinuous switching of deployment state. A large deployable parabolic cylindrical antenna is taken as the research object, and the problem of unfolding process instability of cylindrical antenna is studied in the paper, which is caused by multiple factors such as multiple closed loops, elastic deformation, motion friction, and gap collision. Firstly, the multi-flexible system dynamics model of large-scale parabolic cylindrical antenna is established to study the influence of friction and elastic deformation on the stability of large multi-closed loop antenna. Secondly, the evaluation method of antenna expansion stability is studied, and the quantitative index of antenna configuration design is proposed to provide a theoretical basis for improving the overall performance of the antenna. Finally, through simulation analysis and experiment, the development dynamics and stability of large-scale parabolic cylindrical antennas are verified by in-depth analysis, and the principles for improving the stability of antenna deployment are summarized.

Keywords: multibody dynamics, expandable parabolic cylindrical antenna, stability, flexible deformation

Procedia PDF Downloads 114
14838 Relation between Initial Stability of the Dental Implant and Bone-Implant Contact Level

Authors: Jui-Ting Hsu, Heng-Li Huang, Ming-Tzu Tsai, Kuo-Chih Su, Lih-Jyh Fuh

Abstract:

The objectives of this study were to measure the initial stability of the dental implant (ISQ and PTV) in the artificial foam bone block with three different quality levels. In addition, the 3D bone to implant contact percentage (BIC%) was measured based on the micro-computed tomography images. Furthermore, the relation between the initial stability of dental implant (ISQ and PTV) and BIC% were calculated. The experimental results indicated that enhanced the material property of the artificial foam bone increased the initial stability of the dental implant. The Pearson’s correlation coefficient between the BIC% and the two approaches (ISQ and PTV) were 0.652 and 0.745.

Keywords: dental implant, implant stability quotient, peak insertion torque, bone-implant contact, micro-computed tomography

Procedia PDF Downloads 551
14837 Effect of Change in Angle of Slope and Height of an Embankment on Safety Factor during Rapid Drawdown

Authors: Seyed Abolhassan Naeini, Azam Kouhpeyma

Abstract:

Reduction of water level at which a slope is submerged with it is called drawdown. Draw down can took place rapidly or slowly and in both situations, it can affect slope stability. Using coupled analysis (seepage and stability analysis) causes more accurate results. In this study, the stability of homogeneous embankment is investigated numerically. Slope safety factor changes due to changes in three factors of height, slope and drawdown rate have been investigated and compared. It was found that with increasing height and slope, the safety factor decreases, and with increasing the discharge rate, the safety factor increases.

Keywords: drawdown, slope stability, coupled seepage and stability analysis

Procedia PDF Downloads 90
14836 Formulation of Extended-Release Ranolazine Tablet and Investigation Its Stability in the Accelerated Stability Condition at 40⁰C and 75% Humidity

Authors: Farzad Khajavi, Farzaneh Jalilfar, Faranak Jafari, Leila Shokrani

Abstract:

Formulation of Ranolazine in the form of extended-release tablet in 500 mg dosage form was performed using Eudragit L100-55 as a retarding agent. Drug-release profiles were investigated in comparison with the reference Ranexa extended-release 500 mg tablet. F₂ and f₁ were calculated as 64.16 and 8.53, respectively. According to Peppas equation, the release of drug is controlled by diffusion (n=0.5). The tablets were put into accelerated stability conditions (40 °C, 75% humidity) for 3 and 6 months. The dissolution release profiles and other physical and chemical characteristics of the tablets confirmed the robustness and stability of formulation in this condition.

Keywords: drug release, extended-release tablet, ranolazine, stability

Procedia PDF Downloads 124
14835 Effects of Bacterial Inoculants and Enzymes Inoculation on the Fermentation and Aerobic Stability of Potato Hash Silage

Authors: B. D. Nkosi, T. F. Mutavhatsindi, J. J. Baloyi, R. Meeske, T. M. Langa, I. M. M. Malebana, M. D. Motiang

Abstract:

Potato hash (PH), a by-product from food production industry, contains 188.4 g dry matter (DM)/kg and 3.4 g water soluble carbohydrate (WSC)/kg DM, and was mixed with wheat bran (70:30 as is basis) to provide 352 g DM/kg and 315 g WSC/kg DM. The materials were ensiled with or without silage additives in 1.5L anaerobic jars (3 jars/treatment) that were kept at 25-280 C for 3 months. Four types of silages were produced which were: control (no additive, denoted as T1), celluclast enzyme (denoted as T2), emsilage bacterial inoculant (denoted as T3) and silosolve bacterial inoculant (denoted as T4). Three jars per treatment were opened after 3 months of ensiling for the determination of nutritive values, fermentation characteristics and aerobic stability. Aerobic stability was done by exposing silage samples to air for 5 days. The addition of enzyme (T2) was reduced (P<0.05) silage pH, fiber fractions (NDF and ADF) while increasing (P < 0.05) residual WSC and lactic acid (LA) production, compared to other treatments. Silage produced had pH of < 4.0, indications of well-preserved silage. Bacterial inoculation (T3 and T4) improved (P < 0.05) aerobic stability of the silage, as indicated by increased number of hours and lower CO2 production, compared to other treatments. However, the aerobic stability of silage was worsen (P < 0.05) with the addition of an enzyme (T2). Further work to elucidate these effects on nutrient digestion and growth performance on ruminants fed the silage is needed.

Keywords: by-products, digestibility, feeds, inoculation, ruminants, silage

Procedia PDF Downloads 411
14834 Stability and Boundedness Theorems of Solutions of Certain Systems of Differential Equations

Authors: Adetunji A. Adeyanju., Mathew O. Omeike, Johnson O. Adeniran, Biodun S. Badmus

Abstract:

In this paper, we discuss certain conditions for uniform asymptotic stability and uniform ultimate boundedness of solutions to some systems of Aizermann-type of differential equations by means of second method of Lyapunov. In achieving our goal, some Lyapunov functions are constructed to serve as basic tools. The stability results in this paper, extend some stability results for some Aizermann-type of differential equations found in literature. Also, we prove some results on uniform boundedness and uniform ultimate boundedness of solutions of systems of equations study.

Keywords: Aizermann, boundedness, first order, Lyapunov function, stability

Procedia PDF Downloads 55
14833 Comparative Study Performance of the Induction Motor between SMC and NLC Modes Control

Authors: A. Oukaci, R. Toufouti, D. Dib, l. Atarsia

Abstract:

This article presents a multitude of alternative techniques to control the vector control, namely the nonlinear control and sliding mode control. Moreover, the implementation of their control law applied to the high-performance to the induction motor with the objective to improve the tracking control, ensure stability robustness to parameter variations and disturbance rejection. Tests are performed numerical simulations in the Matlab/Simulink interface, the results demonstrate the efficiency and dynamic performance of the proposed strategy.

Keywords: Induction Motor (IM), Non-linear Control (NLC), Sliding Mode Control (SMC), nonlinear sliding surface

Procedia PDF Downloads 541