Search results for: spatio-temporal evolution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1913

Search results for: spatio-temporal evolution

1493 In Situ Volume Imaging of Cleared Mice Seminiferous Tubules Opens New Window to Study Spermatogenic Process in 3D

Authors: Lukas Ded

Abstract:

Studying the tissue structure and histogenesis in the natural, 3D context is challenging but highly beneficial process. Contrary to classical approach of the physical tissue sectioning and subsequent imaging, it enables to study the relationships of individual cellular and histological structures in their native context. Recent developments in the tissue clearing approaches and microscopic volume imaging/data processing enable the application of these methods also in the areas of developmental and reproductive biology. Here, using the CLARITY tissue procedure and 3D confocal volume imaging we optimized the protocol for clearing, staining and imaging of the mice seminiferous tubules isolated from the testes without cardiac perfusion procedure. Our approach enables the high magnification and fine resolution axial imaging of the whole diameter of the seminiferous tubules with possible unlimited lateral length imaging. Hence, the large continuous pieces of the seminiferous tubule can be scanned and digitally reconstructed for the study of the single tubule seminiferous stages using nuclear dyes. Furthermore, the application of the antibodies and various molecular dyes can be used for molecular labeling of individual cellular and subcellular structures and resulting 3D images can highly increase our understanding of the spatiotemporal aspects of the seminiferous tubules development and sperm ultrastructure formation. Finally, our newly developed algorithms for 3D data processing enable the massive parallel processing of the large amount of individual cell and tissue fluorescent signatures and building the robust spermatogenic models under physiological and pathological conditions.

Keywords: CLARITY, spermatogenesis, testis, tissue clearing, volume imaging

Procedia PDF Downloads 109
1492 Genome-Wide Assessment of Putative Superoxide Dismutases in Unicellular and Filamentous Cyanobacteria

Authors: Shivam Yadav, Neelam Atri

Abstract:

Cyanobacteria are photoautotrophic prokaryotes able to grow in diverse ecological habitats, originated 2.5 - 3.5 billion years ago and brought oxygenic photosynthesis. Since then superoxide dismutases (SODs) acquired great significance due to their ability to catalyze detoxification of byproducts of oxygenic photosynthesis, i.e. superoxide radicals. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of the superoxide dismutases family. In the present study, we extracted information regarding SODs from species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. 144 putative SOD homologues were identified. SODs are present in all cyanobacterial species reflecting their significant role in survival. However, their distribution varies, fewer in unicellular marine strains whereas abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic SODs were conserved well in these proteins. These SODs were classified into three major families according to their domain structures. Interestingly, they lack additional domains as found in proteins of other family. Phylogenetic relationships correspond well with phylogenies based on 16S rRNA and clustering occurs on the basis of structural characteristics such as domain organization. Similar conserved motifs and amino acids indicate that cyanobacterial SODs make use of a similar catalytic mechanism as eukaryotic SODs. Gene gain-and-loss is insignificant during SOD evolution as evidenced by absence of additional domain. This study has not only examined an overall background of sequence-structure-function interactions for the SOD gene family but also revealed variation among SOD distribution based on ecophysiological and morphological characters.

Keywords: comparative genomics, cyanobacteria, phylogeny, superoxide dismutases

Procedia PDF Downloads 109
1491 Dislocation Density-Based Modeling of the Grain Refinement in Surface Mechanical Attrition Treatment

Authors: Reza Miresmaeili, Asghar Heydari Astaraee, Fereshteh Dolati

Abstract:

In the present study, an analytical model based on dislocation density model was developed to simulate grain refinement in surface mechanical attrition treatment (SMAT). The correlation between SMAT time and development in plastic strain on one hand, and dislocation density evolution, on the other hand, was established to simulate the grain refinement in SMAT. A dislocation density-based constitutive material law was implemented using VUHARD subroutine. A random sequence of shots is taken into consideration for multiple impacts model using Python programming language by utilizing a random function. The simulation technique was to model each impact in a separate run and then transferring the results of each run as initial conditions for the next run (impact). The developed Finite Element (FE) model of multiple impacts describes the coverage evolution in SMAT. Simulations were run to coverage levels as high as 4500%. It is shown that the coverage implemented in the FE model is equal to the experimental coverage. It is depicted that numerical SMAT coverage parameter is adequately conforming to the well-known Avrami model. Comparison between numerical results and experimental measurements for residual stresses and depth of deformation layers confirms the performance of the established FE model for surface engineering evaluations in SMA treatment. X-ray diffraction (XRD) studies of grain refinement, including resultant grain size and dislocation density, were conducted to validate the established model. The full width at half-maximum in XRD profiles can be used to measure the grain size. Numerical results and experimental measurements of grain refinement illustrate good agreement and show the capability of established FE model to predict the gradient microstructure in SMA treatment.

Keywords: dislocation density, grain refinement, severe plastic deformation, simulation, surface mechanical attrition treatment

Procedia PDF Downloads 111
1490 Influence of Kneading Conditions on the Textural Properties of Alumina Catalysts Supports for Hydrotreating

Authors: Lucie Speyer, Vincent Lecocq, Séverine Humbert, Antoine Hugon

Abstract:

Mesoporous alumina is commonly used as a catalyst support for the hydrotreating of heavy petroleum cuts. The process of fabrication usually involves: the synthesis of the boehmite AlOOH precursor, a kneading-extrusion step, and a calcination in order to obtain the final alumina extrudates. Alumina is described as a complex porous medium, generally agglomerates constituted of aggregated nanocrystallites. Its porous texture directly influences the active phase deposition and mass transfer, and the catalytic properties. Then, it is easy to figure out that each step of the fabrication of the supports has a role on the building of their porous network, and has to be well understood to optimize the process. The synthesis of boehmite by precipitation of aluminum salts was extensively studied in the literature and the effect of various parameters, such as temperature or pH, are known to influence the size and shape of the crystallites and the specific surface area of the support. The calcination step, through the topotactic transition from boehmite to alumina, determines the final properties of the support and can tune the surface area, pore volume and pore diameters from those of boehmite. However, the kneading extrusion step has been subject to a very few studies. It generally consists in two steps: an acid, then a basic kneading, where the boehmite powder is introduced in a mixer and successively added with an acid and a base solution to form an extrudable paste. During the acid kneading, the induced positive charges on the hydroxyl surface groups of boehmite create an electrostatic repulsion which tends to separate the aggregates and even, following the conditions, the crystallites. The basic kneading, by reducing the surface charges, leads to a flocculation phenomenon and can control the reforming of the overall structure. The separation and reassembling of the particles constituting the boehmite paste have a quite obvious influence on the textural properties of the material. In this work, we are focused on the influence of the kneading step on the alumina catalysts supports. Starting from an industrial boehmite, extrudates are prepared using various kneading conditions. The samples are studied by nitrogen physisorption in order to analyze the evolution of the textural properties, and by synchrotron small-angle X-ray scattering (SAXS), a more original method which brings information about agglomeration and aggregation of the samples. The coupling of physisorption and SAXS enables a precise description of the samples, as same as an accurate monitoring of their evolution as a function of the kneading conditions. These ones are found to have a strong influence of the pore volume and pore size distribution of the supports. A mechanism of evolution of the texture during the kneading step is proposed and could be attractive in order to optimize the texture of the supports and then, their catalytic performances.

Keywords: alumina catalyst support, kneading, nitrogen physisorption, small-angle X-ray scattering

Procedia PDF Downloads 231
1489 Assessment of Groundwater Chemistry and Quality Characteristics in an Alluvial Aquifer and a Single Plane Fractured-Rock Aquifer in Bloemfontein, South Africa

Authors: Modreck Gomo

Abstract:

The evolution of groundwater chemistry and its quality is largely controlled by hydrogeochemical processes and their understanding is therefore important for groundwater quality assessments and protection of the water resources. A study was conducted in Bloemfontein town of South Africa to assess and compare the groundwater chemistry and quality characteristics in an alluvial aquifer and single-plane fractured-rock aquifers. 9 groundwater samples were collected from monitoring boreholes drilled into the two aquifer systems during a once-off sampling exercise. Samples were collected through low-flow purging technique and analysed for major ions and trace elements. In order to describe the hydrochemical facies and identify dominant hydrogeochemical processes, the groundwater chemistry data are interpreted using stiff diagrams and principal component analysis (PCA), as complimentary tools. The fitness of the groundwater quality for domestic and irrigation uses is also assessed. Results show that the alluvial aquifer is characterised by a Na-HCO3 hydrochemical facie while fractured-rock aquifer has a Ca-HCO3 facie. The groundwater in both aquifers originally evolved from the dissolution of calcite rocks that are common on land surface environments. However the groundwater in the alluvial aquifer further goes through another evolution as driven by cation exchange process in which Na in the sediments exchanges with Ca2+ in the Ca-HCO3 hydrochemical type to result in the Na-HCO3 hydrochemical type. Despite the difference in the hydrogeochemical processes between the alluvial aquifer and single-plane fractured-rock aquifer, this did not influence the groundwater quality. The groundwater in the two aquifers is very hard as influenced by the elevated magnesium and calcium ions that evolve from dissolution of carbonate minerals which typically occurs in surface environments. Based on total dissolved levels (600-900 mg/L), groundwater quality of the two aquifer systems is classified to be of fair quality. The negative potential impacts of the groundwater quality for domestic uses are highlighted.

Keywords: alluvial aquifer, fractured-rock aquifer, groundwater quality, hydrogeochemical processes

Procedia PDF Downloads 171
1488 Black-Hole Dimension: A Distinct Methodology of Understanding Time, Space and Data in Architecture

Authors: Alp Arda

Abstract:

Inspired by Nolan's ‘Interstellar’, this paper delves into speculative architecture, asking, ‘What if an architect could traverse time to study a city?’ It unveils the ‘Black-Hole Dimension,’ a groundbreaking concept that redefines urban identities beyond traditional boundaries. Moving past linear time narratives, this approach draws from the gravitational dynamics of black holes to enrich our understanding of urban and architectural progress. By envisioning cities and structures as influenced by black hole-like forces, it enables an in-depth examination of their evolution through time and space. The Black-Hole Dimension promotes a temporal exploration of architecture, treating spaces as narratives of their current state interwoven with historical layers. It advocates for viewing architectural development as a continuous, interconnected journey molded by cultural, economic, and technological shifts. This approach not only deepens our understanding of urban evolution but also empowers architects and urban planners to create designs that are both adaptable and resilient. Echoing themes from popular culture and science fiction, this methodology integrates the captivating dynamics of time and space into architectural analysis, challenging established design conventions. The Black-Hole Dimension champions a philosophy that welcomes unpredictability and complexity, thereby fostering innovation in design. In essence, the Black-Hole Dimension revolutionizes architectural thought by emphasizing space-time as a fundamental dimension. It reimagines our built environments as vibrant, evolving entities shaped by the relentless forces of time, space, and data. This groundbreaking approach heralds a future in architecture where the complexity of reality is acknowledged and embraced, leading to the creation of spaces that are both responsive to their temporal context and resilient against the unfolding tapestry of time.

Keywords: black-hole, timeline, urbanism, space and time, speculative architecture

Procedia PDF Downloads 25
1487 Time, Uncertainty, and Technological Innovation

Authors: Xavier Everaert

Abstract:

Ever since the publication of “The Problem of Social” cost, Coasean insights on externalities, transaction costs, and the reciprocal nature of harms, have been widely debated. What has been largely neglected however, is the role of technological innovation in the mitigation of negative externalities or transaction costs. Incorporating future uncertainty about negligence standards or expected restitution costs and the profit opportunities these uncertainties reveal to entrepreneurs, allow us to frame problems regarding social costs within the reality of rapid technological evolution.

Keywords: environmental law and economics, entrepreneurship, commons, pollution, wildlife

Procedia PDF Downloads 397
1486 Transverse Momentum Dependent Factorization and Evolution for Spin Physics

Authors: Bipin Popat Sonawane

Abstract:

After 1988 Electron muon Collaboration (EMC) announcement of measurement of spin dependent structure function, it has been found that it has become a need to understand spin structure of a hadron. In the study of three-dimensional spin structure of a proton, we need to understand the foundation of quantum field theory in terms of electro-weak and strong theories using rigorous mathematical theories and models. In the process of understanding the inner dynamical stricture of proton we need understand the mathematical formalism in perturbative quantum chromodynamics (pQCD). In QCD processes like proton-proton collision at high energy we calculate cross section using conventional collinear factorization schemes. In this calculations, parton distribution functions (PDFs) and fragmentation function are used which provide the information about probability density of finding quarks and gluons ( partons) inside the proton and probability density of finding final hadronic state from initial partons. In transverse momentum dependent (TMD) PDFs and FFs, collectively called as TMDs, take an account for intrinsic transverse motion of partons. The TMD factorization in the calculation of cross sections provide a scheme of hadronic and partonic states in the given QCD process. In this study we review Transverse Momentum Dependent (TMD) factorization scheme using Collins-Soper-Sterman (CSS) Formalism. CSS formalism considers the transverse momentum dependence of the partons, in this formalism the cross section is written as a Fourier transform over a transverse position variable which has physical interpretation as impact parameter. Along with this we compare this formalism with improved CSS formalism. In this work we study the TMD evolution schemes and their comparison with other schemes. This would provide description in the process of measurement of transverse single spin asymmetry (TSSA) in hadro-production and electro-production of J/psi meson at RHIC, LHC, ILC energy scales. This would surely help us to understand J/psi production mechanism which is an appropriate test of QCD.

Keywords: QCD, PDF, TMD, CSS

Procedia PDF Downloads 38
1485 Evolution of Floating Photovoltaic System Technology and Future Prospect

Authors: Young-Kwan Choi, Han-Sang Jeong

Abstract:

Floating photovoltaic system is a technology that combines photovoltaic power generation with floating structure. However, since floating technology has not been utilized in photovoltaic generation, there are no standardized criteria. It is separately developed and used by different installation bodies. This paper aims to discuss the change of floating photovoltaic system technology based on examples of floating photovoltaic systems installed in Korea.

Keywords: floating photovoltaic system, floating PV installation, ocean floating photovoltaic system, tracking type floating photovoltaic system

Procedia PDF Downloads 533
1484 Study of the Physicochemical Characteristics of Liquid Effluents from the El Jadida Wastewater Treatment Plant

Authors: Aicha Assal, El Mostapha Lotfi

Abstract:

Rapid industrialization and population growth are currently the main causes of energy and environmental problems associated with wastewater treatment. Wastewater treatment plants (WWTPs) aim to treat wastewater before discharging it into the environment, but they are not yet capable of treating non-biodegradable contaminants such as heavy metals. Toxic heavy metals can disrupt biological processes in WWTPs. Consequently, it is crucial to combine additional physico-chemical treatments with WWTPs to ensure effective wastewater treatment. In this study, the authors examined the pretreatment process for urban wastewater generated by the El Jadida WWTP in order to assess its treatment efficiency. Various physicochemical and spatiotemporal parameters of the WWTP's raw and treated water were studied, including temperature, pH, conductivity, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), total nitrogen, and total phosphorus. The results showed an improvement in treatment yields, with measured performance values of 77% for BOD5, 63% for COD, and 66% for TSS. However, spectroscopic analyses revealed persistent coloration in wastewater samples leaving the WWTP, as well as the presence of heavy metals such as Zn, cadmium, chromium, and cobalt, detected by inductively coupled plasma optical emission spectroscopy (ICP-OES). To remedy these staining problems and reduce the presence of heavy metals, a new low-cost, environmentally-friendly eggshell-based solution was proposed. This method eliminated most heavy metals such as cobalt, beryllium, silver, and copper and significantly reduced the amount of cadmium, lead, chromium, manganese, aluminium, and Zn. In addition, the bioadsorbent was able to decolorize wastewater by up to 84%. This adsorption process is, therefore, of great interest for ensuring the quality of wastewater and promoting its reuse in irrigation.

Keywords: WWTP, wastewater, heavy metals, decoloration, depollution, COD, BOD5

Procedia PDF Downloads 42
1483 Spatio-Temporal Analysis of Rabies Incidence in Herbivores of Economic Interest in Brazil

Authors: Francisco Miroslav Ulloa-Stanojlovic, Gina Polo, Ricardo Augusto Dias

Abstract:

In Brazil, there is a high incidence of rabies in herbivores of economic interest (HEI) transmitted by the common vampire bat Desmodus rotundus, the presence of human rabies cases and the huge economic losses in the world's largest cattle industry, it is important to assist the National Program for Control of Rabies in herbivores in Brazil, that aims to reduce the incidence of rabies in HEI populations, mainly through epidemiological surveillance, vaccination of herbivores and control of vampire-bat roosts. Material and Methods: A spatiotemporal retrospective Kulldorff's spatial scan statistic based on a Poisson model and Monte Carlo simulation and an Anselin's Local Moran's I statistic were used to uncover spatial clustering of HEI rabies from 2000 – 2014. Results: Were identify three important clusters with significant year-to-year variation (Figure 1). In 2000, was identified one area of clustering in the North region, specifically in the State of Tocantins. Between the year 2000 and 2004, a cluster centered in the Midwest and Southeast region including the States of Goiás, Minas Gerais, Rio de Janeiro, Espirito Santo and São Paulo was prominent. And finally between 2000 and 2005 was found an important cluster in the North, Midwest and South region. Conclusions: The HEI rabies is endemic in the country, in addition, appears to be significant differences among the States according to their surveillance services, that may be difficulting the control of the disease, also other factors could be influencing in the maintenance of this problem like the lack of information of vampire-bat roosts identification, and limited human resources for realization of field monitoring. A review of the program control by the authorities it’s necessary.

Keywords: Brazil, Desmodus rotundus, herbivores, rabies

Procedia PDF Downloads 387
1482 Growth of Droplet in Radiation-Induced Plasma of Own Vapour

Authors: P. Selyshchev

Abstract:

The theoretical approach is developed to describe the change of drops in the atmosphere of own steam and buffer gas under irradiation. It is shown that the irradiation influences on size of stable droplet and on the conditions under which the droplet exists. Under irradiation the change of drop becomes more complex: the not monotone and periodical change of size of drop becomes possible. All possible solutions are represented by means of phase portrait. It is found all qualitatively different phase portraits as function of critical parameters: rate generation of clusters and substance density.

Keywords: irradiation, steam, plasma, cluster formation, liquid droplets, evolution

Procedia PDF Downloads 415
1481 Estimating Water Balance at Beterou Watershed, Benin Using Soil and Water Assessment Tool (SWAT) Model

Authors: Ella Sèdé Maforikan

Abstract:

Sustained water management requires quantitative information and the knowledge of spatiotemporal dynamics of hydrological system within the basin. This can be achieved through the research. Several studies have investigated both surface water and groundwater in Beterou catchment. However, there are few published papers on the application of the SWAT modeling in Beterou catchment. The objective of this study was to evaluate the performance of SWAT to simulate the water balance within the watershed. The inputs data consist of digital elevation model, land use maps, soil map, climatic data and discharge records. The model was calibrated and validated using the Sequential Uncertainty Fitting (SUFI2) approach. The calibrated started from 1989 to 2006 with four years warming up period (1985-1988); and validation was from 2007 to 2020. The goodness of the model was assessed using five indices, i.e., Nash–Sutcliffe efficiency (NSE), the ratio of the root means square error to the standard deviation of measured data (RSR), percent bias (PBIAS), the coefficient of determination (R²), and Kling Gupta efficiency (KGE). Results showed that SWAT model successfully simulated river flow in Beterou catchment with NSE = 0.79, R2 = 0.80 and KGE= 0.83 for the calibration process against validation process that provides NSE = 0.78, R2 = 0.78 and KGE= 0.85 using site-based streamflow data. The relative error (PBIAS) ranges from -12.2% to 3.1%. The parameters runoff curve number (CN2), Moist Bulk Density (SOL_BD), Base Flow Alpha Factor (ALPHA_BF), and the available water capacity of the soil layer (SOL_AWC) were the most sensitive parameter. The study provides further research with uncertainty analysis and recommendations for model improvement and provision of an efficient means to improve rainfall and discharges measurement data.

Keywords: watershed, water balance, SWAT modeling, Beterou

Procedia PDF Downloads 33
1480 Chemotrophic Signal Exchange between the Host Plant Helianthemum sessiliflorum and Terfezia boudieri

Authors: S. Ben-Shabat, T. Turgeman, O. Leubinski, N. Roth-Bejerano, V. Kagan-Zur, Y. Sitrit

Abstract:

The ectomycorrhizal (ECM) desert truffle Terfezia boudieri produces edible fruit bodies and forms symbiosis with its host plant Helianthemum sessiliflorum (Cistaceae) in the Negev desert of Israel. The symbiosis is vital for both partners' survival under desert conditions. Under desert habitat conditions, ECMs must form symbiosis before entering the dry season. To secure a successful encounter, in the course of evolution, both partners have responded by evolving special signals exchange that facilitates recognition. Members of the Cistaceae family serve as host plants for many important truffles. Conceivably, during evolution a common molecule present in Cistaceae plants was recruited to facilitate successful encounter with ectomycorrhizas. Arbuscular vesicular fungi (AM) are promiscuous in host preferences, in contrast, ECM fungi show specificity to host plants. Accordingly, we hypothesize that H. sessiliflorum secretes a chemotrophic-signaling, which is common to plants hosting ECM fungi belonging to the Pezizales. However, thus far no signaling molecules have been identified in ECM fungi. We developed a bioassay for chemotrophic activity. Fractionation of root exudates revealed a substance with chemotrophic activity and molecular mass of 534. Following the above concept, screening the transcriptome of Terfezia, grown under chemoattraction, discovered genes showing high homology to G proteins-coupled receptors of plant pathogens involved in positive chemotaxis and chemotaxis suppression. This study aimed to identify the active molecule using analytical methods (LC-MS, NMR etc.). This should contribute to our understanding of how ECM fungi communicate with their hosts in the rhizosphere. In line with the ability of Terfezia to form also endomycorrhizal symbiosis like AM fungi, analysis of the mechanisms may likewise be applicable to AM fungi. Developing methods to manipulate fungal growth by the chemoattractant can open new ways to improve inoculation of plants.

Keywords: chemotrophic signal, Helianthemum sessiliflorum, Terfezia boudieri, ECM

Procedia PDF Downloads 381
1479 Amplification of electromagnetic pulse by conducting cone

Authors: E. S. Manuylovich, V. A. Astapenko, P. A. Golovinsky

Abstract:

The dispersion relation binding the constant of propagation and frequency is calculated for silver cone. The evolution of the electric field of ultrashort pulse during its propagation in conical structure is considered. Increasing of electric field during pulse propagation to the top of the cone is observed. Reduction of the pulse duration at a certain distance is observed. The dependence of minimum pulse duration on initial chirp and cone angle is investigated.

Keywords: ultrashort pulses, surface plasmon polariton, dispersion, silver cone

Procedia PDF Downloads 408
1478 Aspirin Loaded Poly-L-Lactic Acid Nanofibers and Their Potentials as Small Diameter Vascular Grafts

Authors: Mahboubeh Kabiri, Saba Aslani

Abstract:

Among various approaches used for the treatment of cardiovascular diseases, the occlusion of the small-diameter vascular graft (SDVG) is still an unresolved problem which seeks further research to address them. Though autografts are now the gold standards to be replaced for blocked coronary arteries, they suffer from inadequate quality and quantity. On the other hand, the major problems of the tissue engineered grafts are thrombosis and intimal hyperplasia. Provision of a suitable spatiotemporal release pattern of anticoagulant agents such as heparin and aspirin can be a step forward to overcome such issues . Herein, we fabricated electrospun scaffolds from FDA (Food and Drug Administration) approved poly-L-lactic acid (PLLA) with aspirin loaded into the nanofibers. Also, we surface coated the scaffolds with Amniotic Membrane lysate as a source for natural elastic polymers and a mimic of endothelial basement membrane. The scaffolds were characterized thoroughly structurally and mechanically for their morphology, fiber orientation, tensile strength, hydrophilicity, cytotoxicity, aspirin release and cell attachment support. According to the scanning electron microscopy (SEM) images, the size of fibers ranged from 250 to 500 nm. The scaffolds showed appropriate tensile strength expected for vascular grafts. Cellular attachment, growth, and infiltration were proved using SEM and MTT (3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide) assay. Drug-loaded scaffolds showed a sustained release profile of aspirin in 7 days. An enhanced cytocompatibility was observed in AM-coated electrospun PLLA fibers compared to uncoated scaffolds. Our results together indicated that AM lysate coated ASA releasing scaffolds have promising potentials for development of a biocompatible SDVG.

Keywords: vascular tissue engineering, vascular grafts, anticoagulant agent, aspirin, amniotic membrane

Procedia PDF Downloads 139
1477 The Origins of Representations: Cognitive and Brain Development

Authors: Athanasios Raftopoulos

Abstract:

In this paper, an attempt is made to explain the evolution or development of human’s representational arsenal from its humble beginnings to its modern abstract symbols. Representations are physical entities that represent something else. To represent a thing (in a general sense of “thing”) means to use in the mind or in an external medium a sign that stands for it. The sign can be used as a proxy of the represented thing when the thing is absent. Representations come in many varieties, from signs that perceptually resemble their representative to abstract symbols that are related to their representata through conventions. Relying the distinction among indices, icons, and symbols, it is explained how symbolic representations gradually emerged from indices and icons. To understand the development or evolution of our representational arsenal, the development of the cognitive capacities that enabled the gradual emergence of representations of increasing complexity and expressive capability should be examined. The examination of these factors should rely on a careful assessment of the available empirical neuroscientific and paleo-anthropological evidence. These pieces of evidence should be synthesized to produce arguments whose conclusions provide clues concerning the developmental process of our representational capabilities. The analysis of the empirical findings in this paper shows that Homo Erectus was able to use both icons and symbols. Icons were used as external representations, while symbols were used in language. The first step in the emergence of representations is that a sensory-motor purely causal schema involved in indices is decoupled from its normal causal sensory-motor functions and serves as a representation of the object that initially called it into play. Sensory-motor schemes are tied to specific contexts of the organism-environment interactions and are activated only within these contexts. For a representation of an object to be possible, this scheme must be de-contextualized so that the same object can be represented in different contexts; a decoupled schema loses its direct ties to reality and becomes mental content. The analysis suggests that symbols emerged due to selection pressures of the social environment. The need to establish and maintain social relationships in ever-enlarging groups that would benefit the group was a sufficient environmental pressure to lead to the appearance of the symbolic capacity. Symbols could serve this need because they can express abstract relationships, such as marriage or monogamy. Icons, by being firmly attached to what can be observed, could not go beyond surface properties to express abstract relations. The cognitive capacities that are required for having iconic and then symbolic representations were present in Homo Erectus, which had a language that started without syntactic rules but was structured so as to mirror the structure of the world. This language became increasingly complex, and grammatical rules started to appear to allow for the construction of more complex expressions required to keep up with the increasing complexity of social niches. This created evolutionary pressures that eventually led to increasing cranial size and restructuring of the brain that allowed more complex representational systems to emerge.

Keywords: mental representations, iconic representations, symbols, human evolution

Procedia PDF Downloads 24
1476 The State of Urban Neighbourhood Research

Authors: Gideon Baffoe

Abstract:

The concept of neighbourhood remains highly relevant in urban studies. However, until now, no attempt has been made to statistically chart the field. This study aims to provide a macroscopic overview using bibliometric analysis of the main characteristics of neighbourhood research in order to understand the academic landscape. The study analyses the emergence and evolution of the concept of neighbourhood in published research, conceptual and intellectual structures as well as scholarship collaboration. It is found that topics related to the local economy of neighbourhoods are sparse, suggesting a major gap in the literature.

Keywords: neighbourhood, global south, bibliometric analysis, scholarship

Procedia PDF Downloads 108
1475 Opportunities and Challenges: Tracing the Evolution of India's First State-led Curriculum-based Media Literacy Intervention

Authors: Ayush Aditya

Abstract:

In today's digitised world, the extent of an individual’s social involvement is largely determined by their interaction over the internet. The Internet has emerged as a primary source of information consumption and a reliable medium for receiving updates on everyday activities. Owing to this change in the information consumption pattern, the internet has also emerged as a hotbed of misinformation. Experts are of the view that media literacy has emerged as one of the most effective strategies for addressing the issue of misinformation. This paper aims to study the evolution of the Kerala government's media literacy policy, its implementation strategy, challenges and opportunities. The objective of this paper is to create a conceptual framework containing details of the implementation strategy based on the Kerala model. Extensive secondary research of literature, newspaper articles, and other online sources was carried out to locate the timeline of this policy. This was followed by semi-structured interview discussions with government officials from Kerala to trace the origin and evolution of this policy. Preliminary findings based on the collected data suggest that this policy is a case of policy by chance, as the officer who headed this policy during the state level implementation was the one who has already piloted a media literacy program in a district called Kannur as the district collector. Through this paper, an attempt is made to trace the history of the media literacy policy starting from the Kannur intervention in 2018, which was started to address the issue of vaccine hesitancy around measles rubella(MR) vaccination. If not for the vaccine hesitancy, this program would not have been rolled out in Kannur. Interviews with government officials suggest that when authorities decided to take up this initiative in 2020, a huge amount of misinformation emerging during the COVID-19 pandemic was the trigger. There was misinformation regarding government orders, healthcare facilities, vaccination, and lockdown regulations, which affected everyone, unlike the case of Kannur, where it was only a certain age group of kids. As a solution to this problem, the state government decided to create a media literacy curriculum to be taught in all government schools of the state starting from standard 8 till graduation. This was a tricky task, as a new course had to be immediately introduced in the school curriculum amid all the disruptions in the education system caused by the pandemic. It was revealed during the interview that in the case of the state-wide implementation, every step involved multiple checks and balances, unlike the earlier program where stakeholders were roped-in as and when the need emerged. On the pedagogy, while the training during the pilot could be managed through PowerPoint presentation, designing a state-wide curriculum involved multiple iterations and expert approvals. The reason for this is COVID-19 related misinformation has lost its significance. In the next phase of the research, an attempt will be made to compare other aspects of the pilot implementation with the state-wide implementation.

Keywords: media literacy, digital media literacy, curriculum based media literacy intervention, misinformation

Procedia PDF Downloads 65
1474 Water Ingress into Underground Mine Voids in the Central Rand Goldfields Area, South Africa-Fluid Induced Seismicity

Authors: Artur Cichowicz

Abstract:

The last active mine in the Central Rand Goldfields area (50 km x 15 km) ceased operations in 2008. This resulted in the closure of the pumping stations, which previously maintained the underground water level in the mining voids. As a direct consequence of the water being allowed to flood the mine voids, seismic activity has increased directly beneath the populated area of Johannesburg. Monitoring of seismicity in the area has been on-going for over five years using the network of 17 strong ground motion sensors. The objective of the project is to improve strategies for mine closure. The evolution of the seismicity pattern was investigated in detail. Special attention was given to seismic source parameters such as magnitude, scalar seismic moment and static stress drop. Most events are located within historical mine boundaries. The seismicity pattern shows a strong relationship between the presence of the mining void and high levels of seismicity; no seismicity migration patterns were observed outside the areas of old mining. Seven years after the pumping stopped, the evolution of the seismicity has indicated that the area is not yet in equilibrium. The level of seismicity in the area appears to not be decreasing over time since the number of strong events, with Mw magnitudes above 2, is still as high as it was when monitoring began over five years ago. The average rate of seismic deformation is 1.6x1013 Nm/year. Constant seismic deformation was not observed over the last 5 years. The deviation from the average is in the order of 6x10^13 Nm/year, which is a significant deviation. The variation of cumulative seismic moment indicates that a constant deformation rate model is not suitable. Over the most recent five year period, the total cumulative seismic moment released in the Central Rand Basin was 9.0x10^14 Nm. This is equivalent to one earthquake of magnitude 3.9. This is significantly less than what was experienced during the mining operation. Characterization of seismicity triggered by a rising water level in the area can be achieved through the estimation of source parameters. Static stress drop heavily influences ground motion amplitude, which plays an important role in risk assessments of potential seismic hazards in inhabited areas. The observed static stress drop in this study varied from 0.05 MPa to 10 MPa. It was found that large static stress drops could be associated with both small and large events. The temporal evolution of the inter-event time provides an understanding of the physical mechanisms of earthquake interaction. Changes in the characteristics of the inter-event time are produced when a stress change is applied to a group of faults in the region. Results from this study indicate that the fluid-induced source has a shorter inter-event time in comparison to a random distribution. This behaviour corresponds to a clustering of events, in which short recurrence times tend to be close to each other, forming clusters of events.

Keywords: inter-event time, fluid induced seismicity, mine closure, spectral parameters of seismic source

Procedia PDF Downloads 260
1473 Fear-of-Failure and Woman Entrepreneurship: Comparative Analysis Austria Versus USA

Authors: Magdalena Meusburger, Caroline Hofer

Abstract:

The advancement of woman entrepreneurship in the last decade has been a vital driver for social and economic development. Despite the positive evolution, women entrepreneurs are still underrepresented in entrepreneurial ecosystems. Fear-of-failure is a major factor affecting their entrepreneurial activity. This survey-based research focuses on aspiring and established entrepreneurial women in Austria and in the USA. It explores and compares the extent to which fear-of-failure influences their self-employment and their aspirations to become self-employed.

Keywords: entrepreneurial ecosystems, fear-of-failure, female entrepreneurship, woman entrepreneurship

Procedia PDF Downloads 341
1472 Mathematical Modeling of Avascular Tumor Growth and Invasion

Authors: Meitham Amereh, Mohsen Akbari, Ben Nadler

Abstract:

Cancer has been recognized as one of the most challenging problems in biology and medicine. Aggressive tumors are a lethal type of cancers characterized by high genomic instability, rapid progression, invasiveness, and therapeutic resistance. Their behavior involves complicated molecular biology and consequential dynamics. Although tremendous effort has been devoted to developing therapeutic approaches, there is still a huge need for new insights into the dark aspects of tumors. As one of the key requirements in better understanding the complex behavior of tumors, mathematical modeling and continuum physics, in particular, play a pivotal role. Mathematical modeling can provide a quantitative prediction on biological processes and help interpret complicated physiological interactions in tumors microenvironment. The pathophysiology of aggressive tumors is strongly affected by the extracellular cues such as stresses produced by mechanical forces between the tumor and the host tissue. During the tumor progression, the growing mass displaces the surrounding extracellular matrix (ECM), and due to the level of tissue stiffness, stress accumulates inside the tumor. The produced stress can influence the tumor by breaking adherent junctions. During this process, the tumor stops the rapid proliferation and begins to remodel its shape to preserve the homeostatic equilibrium state. To reach this, the tumor, in turn, upregulates epithelial to mesenchymal transit-inducing transcription factors (EMT-TFs). These EMT-TFs are involved in various signaling cascades, which are often associated with tumor invasiveness and malignancy. In this work, we modeled the tumor as a growing hyperplastic mass and investigated the effects of mechanical stress from surrounding ECM on tumor invasion. The invasion is modeled as volume-preserving inelastic evolution. In this framework, principal balance laws are considered for tumor mass, linear momentum, and diffusion of nutrients. Also, mechanical interactions between the tumor and ECM is modeled using Ciarlet constitutive strain energy function, and dissipation inequality is utilized to model the volumetric growth rate. System parameters, such as rate of nutrient uptake and cell proliferation, are obtained experimentally. To validate the model, human Glioblastoma multiforme (hGBM) tumor spheroids were incorporated inside Matrigel/Alginate composite hydrogel and was injected into a microfluidic chip to mimic the tumor’s natural microenvironment. The invasion structure was analyzed by imaging the spheroid over time. Also, the expression of transcriptional factors involved in invasion was measured by immune-staining the tumor. The volumetric growth, stress distribution, and inelastic evolution of tumors were predicted by the model. Results showed that the level of invasion is in direct correlation with the level of predicted stress within the tumor. Moreover, the invasion length measured by fluorescent imaging was shown to be related to the inelastic evolution of tumors obtained by the model.

Keywords: cancer, invasion, mathematical modeling, microfluidic chip, tumor spheroids

Procedia PDF Downloads 90
1471 The Effect of War on Spatial Differentiation of Real Estate Values and Urban Disorder in Damascus Metropolitan Area

Authors: Mounir Azzam, Valerie Graw, Andreas Rienow

Abstract:

The Syrian war, which commenced in 2011, has resulted in significant changes in the real estate market in the Damascus metropolitan area, with rising levels of insecurity and disputes over tenure rights. The quest for spatial justice is, therefore, imperative, and this study performs a spatiotemporal analysis to investigate the impact of the war on real estate differentiation. Using the hedonic price models including 2,411 housing transactions over the period 2010-2022, this study aims to understand the spatial dynamics of the real estate market in wartime. Our findings indicate that war variables have had a significant impact on the differentiation and depreciation of property prices. Notably, property attributes have a more substantial impact on real estate values than district location, with severely damaged buildings in Damascus city resulting in an 89% decline in prices, while prices in Rural Damascus districts have decreased by 50%. Additionally, this study examines the urban texture of Damascus using correlation and homogeneity statistics derived from the gray-level co-occurrence matrix obtained from Google Earth Engine. We monitored 250 samples from hedonic datasets within three different years of the Syrian war (2015, 2019, and 2022). Our findings show that correlation values were highly differentiated, particularly among Rural Damascus districts, with a total decline of 87.2%. While homogeneity values decreased overall between 2015 and 2019, they improved slightly after 2019. The findings have valuable implications, not only for investment prospects in setting up a successful reconstruction strategy but also for spatial justice of property rights in strongly encouraging sustainable real estate development.

Keywords: hedonic price, real estate differentiation, reconstruction strategy, spatial justice, urban texture analysis

Procedia PDF Downloads 52
1470 Index of Suitability for Culex pipiens sl. Mosquitoes in Portugal Mainland

Authors: Maria C. Proença, Maria T. Rebelo, Marília Antunes, Maria J. Alves, Hugo Osório, Sofia Cunha, REVIVE team

Abstract:

The environment of the mosquitoes complex Culex pipiens sl. in Portugal mainland is evaluated based in its abundance, using a data set georeferenced, collected during seven years (2006-2012) from May to October. The suitability of the different regions can be delineated using the relative abundance areas; the suitablility index is directly proportional to disease transmission risk and allows focusing mitigation measures in order to avoid outbreaks of vector-borne diseases. The interest in the Culex pipiens complex is justified by its medical importance: the females bite all warm-blooded vertebrates and are involved in the circulation of several arbovirus of concern to human health, like West Nile virus, iridoviruses, rheoviruses and parvoviruses. The abundance of Culex pipiens mosquitoes were documented systematically all over the territory by the local health services, in a long duration program running since 2006. The environmental factors used to characterize the vector habitat are land use/land cover, distance to cartographed water bodies, altitude and latitude. Focus will be on the mosquito females, which gonotrophic cycle mate-bloodmeal-oviposition is responsible for the virus transmission; its abundance is the key for the planning of non-aggressive prophylactic countermeasures that may eradicate the transmission risk and simultaneously avoid chemical ambient degradation. Meteorological parameters such as: air relative humidity, air temperature (minima, maxima and mean daily temperatures) and daily total rainfall were gathered from the weather stations network for the same dates and crossed with the standardized females’ abundance in a geographic information system (GIS). Mean capture and percentage of above average captures related to each variable are used as criteria to compute a threshold for each meteorological parameter; the difference of the mean capture above/below the threshold was statistically assessed. The meteorological parameters measured at the net of weather stations all over the country are averaged by month and interpolated to produce raster maps that can be segmented according to the meaningful thresholds for each parameter. The intersection of the maps of all the parameters obtained for each month show the evolution of the suitable meteorological conditions through the mosquito season, considered as May to October, although the first and last month are less relevant. In parallel, mean and above average captures were related to the physiographic parameters – the land use/land cover classes most relevant in each month, the altitudes preferred and the most frequent distance to water bodies, a factor closely related with the mosquito biology. The maps produced with these results were crossed with the meteorological maps previously segmented, in order to get an index of suitability for the complex Culex pipiens evaluated all over the country, and its evolution from the beginning to the end of the mosquitoes season.

Keywords: suitability index, Culex pipiens, habitat evolution, GIS model

Procedia PDF Downloads 553
1469 South-Mediterranean Oaks Forests Management in Changing Climate Case of the National Park of Tlemcen-Algeria

Authors: K. Bencherif, M. Bellifa

Abstract:

The expected climatic changes in North Africa are the increase of both intensity and frequencies of the summer droughts and a reduction in water availability during growing season. The exiting coppices and forest formations in the national park of Tlemcen are dominated by holm oak, zen oak and cork oak. These opened-fragmented structures don’t seem enough strong so to hope durable protection against climate change. According to the observed climatic tendency, the objective is to analyze the climatic context and its evolution taking into account the eventual behaving of the oak species during the next 20-30 years on one side and the landscaped context in relation with the most adequate sylvicultural models to choose and especially in relation with human activities on another side. The study methodology is based on Climatic synthesis and Floristic and spatial analysis. Meteorological data of the decade 1989-2009 are used to characterize the current climate. An another approach, based on dendrochronological analysis of a 120 years sample Aleppo pine stem growing in the park, is used so to analyze the climate evolution during one century. Results on the climate evolution during the 50 years obtained through climatic predictive models are exploited so to predict the climate tendency in the park. Spatially, in each forest unit of the Park, stratified sampling is achieved so to reduce the degree of heterogeneity and to easily delineate different stands using the GPS. Results from precedent study are used to analyze the anthropogenic factor considering the forecasts for the period 2025-2100, the number of warm days with a temperature over 25°C would increase from 30 to 70. The monthly mean temperatures of the maxima’s (M) and the minima’s (m) would pass respectively from 30.5°C to 33°C and from 2.3°C to 4.8°C. With an average drop of 25%, precipitations will be reduced to 411.37 mm. These new data highlight the importance of the risk fire and the water stress witch would affect the vegetation and the regeneration process. Spatial analysis highlights the forest and the agricultural dimensions of the park compared to the urban habitat and bare soils. Maps show both fragmentation state and forest surface regression (50% of total surface). At the level of the park, fires affected already all types of covers creating low structures with various densities. On the silvi cultural plan, Zen oak form in some places pure stands and this invasion must be considered as a natural tendency where Zen oak becomes the structuring specie. Climate-related changes have nothing to do with the real impact that South-Mediterranean forests are undergoing because human constraints they support. Nevertheless, hardwoods stand of oak in the national park of Tlemcen will face up to unexpected climate changes such as changing rainfall regime associated with a lengthening of the period of water stress, to heavy rainfall and/or to sudden cold snaps. Faced with these new conditions, management based on mixed uneven aged high forest method promoting the more dynamic specie could be an appropriate measure.

Keywords: global warming, mediterranean forest, oak shrub-lands, Tlemcen

Procedia PDF Downloads 369
1468 Kalman Filter for Bilinear Systems with Application

Authors: Abdullah E. Al-Mazrooei

Abstract:

In this paper, we present a new kind of the bilinear systems in the form of state space model. The evolution of this system depends on the product of state vector by its self. The well known Lotak Volterra and Lorenz models are special cases of this new model. We also present here a generalization of Kalman filter which is suitable to work with the new bilinear model. An application to real measurements is introduced to illustrate the efficiency of the proposed algorithm.

Keywords: bilinear systems, state space model, Kalman filter, application, models

Procedia PDF Downloads 405
1467 Downscaling Grace Gravity Models Using Spectral Combination Techniques for Terrestrial Water Storage and Groundwater Storage Estimation

Authors: Farzam Fatolazadeh, Kalifa Goita, Mehdi Eshagh, Shusen Wang

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) is a satellite mission with twin satellites for the precise determination of spatial and temporal variations in the Earth’s gravity field. The products of this mission are monthly global gravity models containing the spherical harmonic coefficients and their errors. These GRACE models can be used for estimating terrestrial water storage (TWS) variations across the globe at large scales, thereby offering an opportunity for surface and groundwater storage (GWS) assessments. Yet, the ability of GRACE to monitor changes at smaller scales is too limited for local water management authorities. This is largely due to the low spatial and temporal resolutions of its models (~200,000 km2 and one month, respectively). High-resolution GRACE data products would substantially enrich the information that is needed by local-scale decision-makers while offering the data for the regions that lack adequate in situ monitoring networks, including northern parts of Canada. Such products could eventually be obtained through downscaling. In this study, we extended the spectral combination theory to simultaneously downscale spatiotemporally the 3o spatial coarse resolution of GRACE to 0.25o degrees resolution and monthly coarse resolution to daily resolution. This method combines the monthly gravity field solution of GRACE and daily hydrological model products in the form of both low and high-frequency signals to produce high spatiotemporal resolution TWSA and GWSA products. The main contribution and originality of this study are to comprehensively and simultaneously consider GRACE and hydrological variables and their uncertainties to form the estimator in the spectral domain. Therefore, it is predicted that we reach downscale products with an acceptable accuracy.

Keywords: GRACE satellite, groundwater storage, spectral combination, terrestrial water storage

Procedia PDF Downloads 55
1466 An Algorithm to Compute the State Estimation of a Bilinear Dynamical Systems

Authors: Abdullah Eqal Al Mazrooei

Abstract:

In this paper, we introduce a mathematical algorithm which is used for estimating the states in the bilinear systems. This algorithm uses a special linearization of the second-order term by using the best available information about the state of the system. This technique makes our algorithm generalizes the well-known Kalman estimators. The system which is used here is of the bilinear class, the evolution of this model is linear-bilinear in the state of the system. Our algorithm can be used with linear and bilinear systems. We also here introduced a real application for the new algorithm to prove the feasibility and the efficiency for it.

Keywords: estimation algorithm, bilinear systems, Kakman filter, second order linearization

Procedia PDF Downloads 454
1465 The Pigeon Circovirus Evolution and Epidemiology under Conditions of One Loft Race Rearing System: The Preliminary Results

Authors: Tomasz Stenzel, Daria Dziewulska, Ewa Łukaszuk, Joy Custer, Simona Kraberger, Arvind Varsani

Abstract:

Viral diseases, especially those leading to impairment of the immune system, are among the most important problems in avian pathology. However, there is not much data available on this subject other than commercial poultry bird species. Recently, increasing attention has been paid to racing pigeons, which have been refined for many years in terms of their ability to return to their place of origin. Currently, these birds are used for races at distances from 100 to 1000 km, and winning pigeons are highly valuable. The rearing system of racing pigeons contradicts the principles of biosecurity, as birds originating from various breeding facilities are commonly transported and reared in “One Loft Race” (OLR) facilities. This favors the spread of multiple infections and provides conditions for the development of novel variants of various pathogens through recombination. One of the most significant viruses occurring in this avian species is the pigeon circovirus (PiCV), which is detected in ca. 70% of pigeons. Circoviruses are characterized by vast genetic diversity which is due to, among other things, the recombination phenomenon. It consists of an exchange of fragments of genetic material among various strains of the virus during the infection of one organism. The rate and intensity of the development of PiCV recombinants have not been determined so far. For this reason, an experiment was performed to investigate the frequency of development of novel PiCV recombinants in racing pigeons kept in OLR-type conditions. 15 racing pigeons originating from 5 different breeding facilities, subclinically infected with various PiCV strains, were housed in one room for eight weeks, which was supposed to mimic the conditions of OLR rearing. Blood and swab samples were collected from birds every seven days to recover complete PiCV genomes that were amplified through Rolling Circle Amplification (RCA), cloned, sequenced, and subjected to bioinformatic analyses aimed at determining the genetic diversity and the dynamics of recombination phenomenon among the viruses. In addition, virus shedding rate/level of viremia, expression of the IFN-γ and interferon-related genes, and anti-PiCV antibodies were determined to enable the complete analysis of the course of infection in the flock. Initial results have shown that 336 full PiCV genomes were obtained, exhibiting nucleotide similarity ranging from 86.6 to 100%, and 8 of those were recombinants originating from viruses of different lofts of origin. The first recombinant appeared after seven days of experiment, but most of the recombinants appeared after 14 and 21 days of joint housing. The level of viremia and virus shedding was the highest in the 2nd week of the experiment and gradually decreased to the end of the experiment, which partially corresponded with Mx 1 gene expression and antibody dynamics. The results have shown that the OLR pigeon-rearing system could play a significant role in spreading infectious agents such as circoviruses and contributing to PiCV evolution through recombination. Therefore, it is worth considering whether a popular gambling game such as pigeon racing is sensible from both animal welfare and epidemiological point of view.

Keywords: pigeon circovirus, recombination, evolution, one loft race

Procedia PDF Downloads 50
1464 Speech Emotion Recognition: A DNN and LSTM Comparison in Single and Multiple Feature Application

Authors: Thiago Spilborghs Bueno Meyer, Plinio Thomaz Aquino Junior

Abstract:

Through speech, which privileges the functional and interactive nature of the text, it is possible to ascertain the spatiotemporal circumstances, the conditions of production and reception of the discourse, the explicit purposes such as informing, explaining, convincing, etc. These conditions allow bringing the interaction between humans closer to the human-robot interaction, making it natural and sensitive to information. However, it is not enough to understand what is said; it is necessary to recognize emotions for the desired interaction. The validity of the use of neural networks for feature selection and emotion recognition was verified. For this purpose, it is proposed the use of neural networks and comparison of models, such as recurrent neural networks and deep neural networks, in order to carry out the classification of emotions through speech signals to verify the quality of recognition. It is expected to enable the implementation of robots in a domestic environment, such as the HERA robot from the RoboFEI@Home team, which focuses on autonomous service robots for the domestic environment. Tests were performed using only the Mel-Frequency Cepstral Coefficients, as well as tests with several characteristics of Delta-MFCC, spectral contrast, and the Mel spectrogram. To carry out the training, validation and testing of the neural networks, the eNTERFACE’05 database was used, which has 42 speakers from 14 different nationalities speaking the English language. The data from the chosen database are videos that, for use in neural networks, were converted into audios. It was found as a result, a classification of 51,969% of correct answers when using the deep neural network, when the use of the recurrent neural network was verified, with the classification with accuracy equal to 44.09%. The results are more accurate when only the Mel-Frequency Cepstral Coefficients are used for the classification, using the classifier with the deep neural network, and in only one case, it is possible to observe a greater accuracy by the recurrent neural network, which occurs in the use of various features and setting 73 for batch size and 100 training epochs.

Keywords: emotion recognition, speech, deep learning, human-robot interaction, neural networks

Procedia PDF Downloads 135