Search results for: spatial statistic analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29282

Search results for: spatial statistic analysis

29282 The Use of Geographically Weighted Regression for Deforestation Analysis: Case Study in Brazilian Cerrado

Authors: Ana Paula Camelo, Keila Sanches

Abstract:

The Geographically Weighted Regression (GWR) was proposed in geography literature to allow relationship in a regression model to vary over space. In Brazil, the agricultural exploitation of the Cerrado Biome is the main cause of deforestation. In this study, we propose a methodology using geostatistical methods to characterize the spatial dependence of deforestation in the Cerrado based on agricultural production indicators. Therefore, it was used the set of exploratory spatial data analysis tools (ESDA) and confirmatory analysis using GWR. It was made the calibration a non-spatial model, evaluation the nature of the regression curve, election of the variables by stepwise process and multicollinearity analysis. After the evaluation of the non-spatial model was processed the spatial-regression model, statistic evaluation of the intercept and verification of its effect on calibration. In an analysis of Spearman’s correlation the results between deforestation and livestock was +0.783 and with soybeans +0.405. The model presented R²=0.936 and showed a strong spatial dependence of agricultural activity of soybeans associated to maize and cotton crops. The GWR is a very effective tool presenting results closer to the reality of deforestation in the Cerrado when compared with other analysis.

Keywords: deforestation, geographically weighted regression, land use, spatial analysis

Procedia PDF Downloads 361
29281 A Review of Spatial Analysis as a Geographic Information Management Tool

Authors: Chidiebere C. Agoha, Armstong C. Awuzie, Chukwuebuka N. Onwubuariri, Joy O. Njoku

Abstract:

Spatial analysis is a field of study that utilizes geographic or spatial information to understand and analyze patterns, relationships, and trends in data. It is characterized by the use of geographic or spatial information, which allows for the analysis of data in the context of its location and surroundings. It is different from non-spatial or aspatial techniques, which do not consider the geographic context and may not provide as complete of an understanding of the data. Spatial analysis is applied in a variety of fields, which includes urban planning, environmental science, geosciences, epidemiology, marketing, to gain insights and make decisions about complex spatial problems. This review paper explores definitions of spatial analysis from various sources, including examples of its application and different analysis techniques such as Buffer analysis, interpolation, and Kernel density analysis (multi-distance spatial cluster analysis). It also contrasts spatial analysis with non-spatial analysis.

Keywords: aspatial technique, buffer analysis, epidemiology, interpolation

Procedia PDF Downloads 317
29280 Using Emerging Hot Spot Analysis to Analyze Overall Effectiveness of Policing Policy and Strategy in Chicago

Authors: Tyler Gill, Sophia Daniels

Abstract:

The paper examines how accessing the spatial-temporal constrains of data will help inform policymakers and law enforcement officials. The authors utilize Chicago crime data from 2006-2016 to demonstrate how the Emerging Hot Spot Tool is an ideal hot spot clustering approach to analyze crime data. Traditional approaches include density maps or creating a spatial weights matrix to include the spatial-temporal constrains. This new approach utilizes a space-time implementation of the Getis-Ord Gi* statistic to visualize the data more quickly to make better decisions. The research will help complement socio-cultural research to find key patterns to help frame future policies and evaluate the implementation of prior strategies. Through this analysis, homicide trends and patterns are found more effectively and recommendations for use by non-traditional users of GIS are offered for real life implementation.

Keywords: crime mapping, emerging hot spot analysis, Getis-Ord Gi*, spatial-temporal analysis

Procedia PDF Downloads 244
29279 Detecting Local Clusters of Childhood Malnutrition in the Island Province of Marinduque, Philippines Using Spatial Scan Statistic

Authors: Novee Lor C. Leyso, Maylin C. Palatino

Abstract:

Under-five malnutrition continues to persist in the Philippines, particularly in the island Province of Marinduque, with prevalence of some forms of malnutrition even worsening in recent years. Local spatial cluster detection provides a spatial perspective in understanding this phenomenon as key in analyzing patterns of geographic variation, identification of community-appropriate programs and interventions, and focused targeting on high-risk areas. Using data from a province-wide household-based census conducted in 2014–2016, this study aimed to determine and evaluate spatial clusters of under-five malnutrition, across the province and within each municipality at the individual level using household location. Malnutrition was defined as weight-for-age z-score that fall outside the 2 standard deviations from the median of the WHO reference population. The Kulldorff’s elliptical spatial scan statistic in binomial model was used to locate clusters with high-risk of malnutrition, while adjusting for age and membership to government conditional cash transfer program as proxy for socio-economic status. One large significant cluster of under-five malnutrition was found southwest of the province, in which living in these areas at least doubles the risk of malnutrition. Additionally, at least one significant cluster were identified within each municipality—mostly located along the coastal areas. All these indicate apparent geographical variations across and within municipalities in the province. There were also similarities and disparities in the patterns of risk of malnutrition in each cluster across municipalities, and even within municipality, suggesting underlying causes at work that warrants further investigation. Therefore, community-appropriate programs and interventions should be identified and should be focused on high-risk areas to maximize limited government resources. Further studies are also recommended to determine factors affecting variations in childhood malnutrition considering the evidence of spatial clustering found in this study.

Keywords: Binomial model, Kulldorff’s elliptical spatial scan statistic, Philippines, under-five malnutrition

Procedia PDF Downloads 140
29278 Exploring the Physical Environment and Building Features in Earthquake Disaster Areas

Authors: Chang Hsueh-Sheng, Chen Tzu-Ling

Abstract:

Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience. Conventional ways to mitigate earthquake disaster are to enhance building codes and advance structural engineering measures. However, earthquake-induced ground damage such as liquefaction, land subsidence, landslide happen on places nearby earthquake prone or poor soil condition areas. Therefore, this study uses spatial statistical analysis to explore the spatial pattern of damaged buildings. Afterwards, principle components analysis (PCA) is applied to categorize the similar features in different kinds of clustered patterns. The results show that serious landslide prone area, close to fault, vegetated ground surface and mudslide prone area are common in those highly damaged buildings. In addition, the oldest building might not be directly referred to the most vulnerable one. In fact, it seems that buildings built between 1974 and 1989 become more fragile during the earthquake. The incorporation of both spatial statistical analyses and PCA can provide more accurate information to subsidize retrofit programs to enhance earthquake resistance in particular areas.

Keywords: earthquake disaster, spatial statistic analysis, principle components analysis (pca), clustered patterns

Procedia PDF Downloads 313
29277 Enhanced Analysis of Spatial Morphological Cognitive Traits in Lidukou Village through the Application of Space Syntax

Authors: Man Guo

Abstract:

This paper delves into the intricate interplay between spatial morphology and spatial cognition in Lidukou Village, utilizing a combined approach of spatial syntax and field data. Through a comparative analysis of the gathered data, it emerges that the spatial integration level of Lidukou Village exhibits a direct positive correlation with the spatial cognitive preferences of its inhabitants. Specifically, the areas within the village that exhibit a higher degree of spatial cognition are predominantly distributed along the axis primarily defined by Shuxiang Road. However, the accessibility to historical relics remains limited, lacking a coherent systemic relationship. To address the morphological challenges faced by Lidukou Village, this study proposes optimization strategies that encompass diverse perspectives, including the refinement of spatial mechanisms and the shaping of strategic spatial nodes.

Keywords: traditional villages, spatial syntax, spatial integration degree, morphological problem

Procedia PDF Downloads 40
29276 Spatial Econometric Approaches for Count Data: An Overview and New Directions

Authors: Paula Simões, Isabel Natário

Abstract:

This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.

Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data

Procedia PDF Downloads 592
29275 Estimation of Missing Values in Aggregate Level Spatial Data

Authors: Amitha Puranik, V. S. Binu, Seena Biju

Abstract:

Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.

Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis

Procedia PDF Downloads 380
29274 Geo-spatial Analysis: The Impact of Drought and Productivity to the Poverty in East Java, Indonesia

Authors: Yessi Rahmawati, Andiga Kusuma Nur Ichsan, Fitria Nur Anggraeni

Abstract:

Climate change is one of the focus studies that many researchers focus on in the present world, either in the emerging countries or developed countries which is one of the main pillars on Sustainable Development Goals (SDGs). There is on-going discussion that climate change can affect natural disaster, namely drought, storm, flood, and many others; and also the impact on human life. East Java is the best performances and has economic potential that should be utilized. Despite the economic performance and high agriculture productivity, East Java has the highest number of people under the poverty line. The present study is to measuring the contribution of drought and productivity of agriculture to the poverty in East Java, Indonesia, using spatial econometrics analysis. The authors collect data from 2008 – 2015 from Indonesia’s Ministry of Agriculture, Natural Disaster Management Agency (BNPB), and Official Statistic (BPS). First, the result shows the existence of spatial autocorrelation between drought and poverty. Second, the present research confirms that there is strong relationship between drought and poverty. the majority of farmer in East Java are still relies on the rainfall and traditional irrigation system. When the drought strikes, mostly the farmer will lose their income; make them become more vulnerable household, and trap them into poverty line. The present research will give empirical studies regarding drought and poverty in the academics world.

Keywords: SDGs, drought, poverty, Indonesia, spatial econometrics, spatial autocorrelation

Procedia PDF Downloads 152
29273 Spatial Scale of Clustering of Residential Burglary and Its Dependence on Temporal Scale

Authors: Mohammed A. Alazawi, Shiguo Jiang, Steven F. Messner

Abstract:

Research has long focused on two main spatial aspects of crime: spatial patterns and spatial processes. When analyzing these patterns and processes, a key issue has been to determine the proper spatial scale. In addition, it is important to consider the possibility that these patterns and processes might differ appreciably for different temporal scales and might vary across geographic units of analysis. We examine the spatial-temporal dependence of residential burglary. This dependence is tested at varying geographical scales and temporal aggregations. The analyses are based on recorded incidents of crime in Columbus, Ohio during the 1994-2002 period. We implement point pattern analysis on the crime points using Ripley’s K function. The results indicate that spatial point patterns of residential burglary reveal spatial scales of clustering relatively larger than the average size of census tracts of the study area. Also, spatial scale is independent of temporal scale. The results of our analyses concerning the geographic scale of spatial patterns and processes can inform the development of effective policies for crime control.

Keywords: inhomogeneous K function, residential burglary, spatial point pattern, spatial scale, temporal scale

Procedia PDF Downloads 341
29272 A Study on Spatial Morphological Cognitive Features of Lidukou Village Based on Space Syntax

Authors: Man Guo, Wenyong Tan

Abstract:

By combining spatial syntax with data obtained from field visits, this paper interprets the internal relationship between spatial morphology and spatial cognition in Lidukou Village. By comparing the obtained data, it is recognized that the spatial integration degree of Lidukou Village is positively correlated with the spatial cognitive intention of local villagers. The part with a higher spatial cognitive degree within the village is distributed along the axis mainly composed of Shuxiang Road. And the accessibility of historical relics is weak, and there is no systematic relationship between them. Aiming at the morphological problem of Lidukou Village, optimization strategies have been proposed from multiple perspectives, such as optimizing spatial mechanisms and shaping spatial nodes.

Keywords: traditional villages, spatial syntax, spatial integration degree, morphological problem

Procedia PDF Downloads 50
29271 The Use of Geographic Information System and Spatial Statistic for Analyzing Leukemia in Kuwait for the Period of 2006-2012

Authors: Muhammad G. Almatar, Mohammad A. Alnasrallah

Abstract:

This research focuses on the study of three main issues: 1) The temporal analysis of leukemia for a period of six years (2006-2012), 2) spatial analysis by investigating this phenomenon in the Kuwaiti society spatially in the residential areas within the six governorates, 3) the use of Geographic Information System technology in investigating the hypothesis of the research and its variables using the linear regression, to show the pattern of linear relationship. The study depends on utilizing the map to understand the distribution of blood cancer in Kuwait. Several geodatabases were created for the number of patients and air pollution. Spatial interpolation models were used to generate layers of air pollution in the study area. These geodatabases were tested over the past six years to reach the conclusion: Is there a relationship with significant significance between the two main variables of the study: blood cancer and air pollution? This study is the first to our best knowledge. As far as the researchers know, the distribution of this disease has not been studied geographically at the level of regions in Kuwait within six years and in specific areas as described above. This study investigates the concentration of this type of disease. The study found that there is no relationship of significant value between the two variables studied, and this may be due to the nature of the disease, which are often hereditary. On the other hand, this study has reached a number of suggestions and recommendations that may be useful to decision-makers and interested in the study of leukemia in Kuwait by focusing on the study of genetic diseases, which may be a cause of leukemia rather than air pollution.

Keywords: Kuwait, GIS, cancer, geography

Procedia PDF Downloads 113
29270 Spatial and Temporal Analysis of Violent Crime in Washington, DC

Authors: Pallavi Roe

Abstract:

Violent crime is a significant public safety concern in urban areas across the United States, and Washington, DC, is no exception. This research discusses the prevalence and types of crime, particularly violent crime, in Washington, DC, along with the factors contributing to the high rate of violent crime in the city, including poverty, inequality, access to guns, and racial disparities. The organizations working towards ensuring safety in neighborhoods are also listed. The proposal to perform spatial and temporal analysis on violent crime and the use of guns in crime analysis is presented to identify patterns and trends to inform evidence-based interventions to reduce violent crime and improve public safety in Washington, DC. The stakeholders for crime analysis are also discussed, including law enforcement agencies, prosecutors, judges, policymakers, and the public. The anticipated result of the spatial and temporal analysis is to provide stakeholders with valuable information to make informed decisions about preventing and responding to violent crimes.

Keywords: crime analysis, spatial analysis, temporal analysis, violent crime

Procedia PDF Downloads 319
29269 Multivariate Analysis of Student’s Performance in Statistic Courses in Humanities Sciences

Authors: Carla Silva

Abstract:

The aim of this research is to study the relationship between the performance of humanities students in different statistics classes and their performance in their specific courses. Several factors are been studied, such as gender and final grades in statistics and math. Participants of this study comprised a sample of students at a Lisbon University during their academic year. A significant relationship tends to appear between these factors and the performance of these students. However this relationship tends to be stronger with students who had previous studied calculus and math.

Keywords: education, performance, statistic, humanities

Procedia PDF Downloads 322
29268 Spatio-Temporal Analysis of Rabies Incidence in Herbivores of Economic Interest in Brazil

Authors: Francisco Miroslav Ulloa-Stanojlovic, Gina Polo, Ricardo Augusto Dias

Abstract:

In Brazil, there is a high incidence of rabies in herbivores of economic interest (HEI) transmitted by the common vampire bat Desmodus rotundus, the presence of human rabies cases and the huge economic losses in the world's largest cattle industry, it is important to assist the National Program for Control of Rabies in herbivores in Brazil, that aims to reduce the incidence of rabies in HEI populations, mainly through epidemiological surveillance, vaccination of herbivores and control of vampire-bat roosts. Material and Methods: A spatiotemporal retrospective Kulldorff's spatial scan statistic based on a Poisson model and Monte Carlo simulation and an Anselin's Local Moran's I statistic were used to uncover spatial clustering of HEI rabies from 2000 – 2014. Results: Were identify three important clusters with significant year-to-year variation (Figure 1). In 2000, was identified one area of clustering in the North region, specifically in the State of Tocantins. Between the year 2000 and 2004, a cluster centered in the Midwest and Southeast region including the States of Goiás, Minas Gerais, Rio de Janeiro, Espirito Santo and São Paulo was prominent. And finally between 2000 and 2005 was found an important cluster in the North, Midwest and South region. Conclusions: The HEI rabies is endemic in the country, in addition, appears to be significant differences among the States according to their surveillance services, that may be difficulting the control of the disease, also other factors could be influencing in the maintenance of this problem like the lack of information of vampire-bat roosts identification, and limited human resources for realization of field monitoring. A review of the program control by the authorities it’s necessary.

Keywords: Brazil, Desmodus rotundus, herbivores, rabies

Procedia PDF Downloads 416
29267 Exploring the Spatial Characteristics of Mortality Map: A Statistical Area Perspective

Authors: Jung-Hong Hong, Jing-Cen Yang, Cai-Yu Ou

Abstract:

The analysis of geographic inequality heavily relies on the use of location-enabled statistical data and quantitative measures to present the spatial patterns of the selected phenomena and analyze their differences. To protect the privacy of individual instance and link to administrative units, point-based datasets are spatially aggregated to area-based statistical datasets, where only the overall status for the selected levels of spatial units is used for decision making. The partition of the spatial units thus has dominant influence on the outcomes of the analyzed results, well known as the Modifiable Areal Unit Problem (MAUP). A new spatial reference framework, the Taiwan Geographical Statistical Classification (TGSC), was recently introduced in Taiwan based on the spatial partition principles of homogeneous consideration of the number of population and households. Comparing to the outcomes of the traditional township units, TGSC provides additional levels of spatial units with finer granularity for presenting spatial phenomena and enables domain experts to select appropriate dissemination level for publishing statistical data. This paper compares the results of respectively using TGSC and township unit on the mortality data and examines the spatial characteristics of their outcomes. For the mortality data between the period of January 1st, 2008 and December 31st, 2010 of the Taitung County, the all-cause age-standardized death rate (ASDR) ranges from 571 to 1757 per 100,000 persons, whereas the 2nd dissemination area (TGSC) shows greater variation, ranged from 0 to 2222 per 100,000. The finer granularity of spatial units of TGSC clearly provides better outcomes for identifying and evaluating the geographic inequality and can be further analyzed with the statistical measures from other perspectives (e.g., population, area, environment.). The management and analysis of the statistical data referring to the TGSC in this research is strongly supported by the use of Geographic Information System (GIS) technology. An integrated workflow that consists of the tasks of the processing of death certificates, the geocoding of street address, the quality assurance of geocoded results, the automatic calculation of statistic measures, the standardized encoding of measures and the geo-visualization of statistical outcomes is developed. This paper also introduces a set of auxiliary measures from a geographic distribution perspective to further examine the hidden spatial characteristics of mortality data and justify the analyzed results. With the common statistical area framework like TGSC, the preliminary results demonstrate promising potential for developing a web-based statistical service that can effectively access domain statistical data and present the analyzed outcomes in meaningful ways to avoid wrong decision making.

Keywords: mortality map, spatial patterns, statistical area, variation

Procedia PDF Downloads 258
29266 Crime against Women in India: A Geospatial Analysis

Authors: V. S. Binu, Amitha Puranik, Sintomon Mathew, Sebin Thomas

Abstract:

Globally, women are more vulnerable to various forms of crimes than males. The crimes that are directed specifically towards women are classified as crime against women. Crime against women in India is observed to increase year after year and according to the National Crime Records Bureau (NCRB) report, in 2014 there was an increase of 9.2% cases of crime against women compared to the previous year. The violence in a population depends on socio-demographic factors, unemployment, poverty, number of police officials etc. There are very few studies that explored to identify hotspots of various types of crime against women in India. Hotspots are geographical regions where the number of observed cases is more than the expected number for that region. It is important to identify the hotspots of crime against women in India in order to control and prevent violence against women in that region. The goal of this study is to identify the hotspots of crime against women in India using spatial data analysis techniques. For the present study, we used the district level data of various types of crime against women in India in the year 2011 published by NCRB and the 2011 Census population in each of these districts. The study used spatial scan statistic to identify the hotspots using SaTScan software.

Keywords: crime, hotspots, India, Satscan, Women

Procedia PDF Downloads 413
29265 Population Dynamics in Aquatic Environments: Spatial Heterogeneity and Optimal Harvesting

Authors: Sarita Kumari, Ranjit Kumar Upadhyay

Abstract:

This paper deals with plankton-fish dynamics where the fish population is growing logistically and nonlinearly harvested. The interaction between phytoplankton and zooplankton population is considered to be Crowley-Martin type functional response. It has been assumed that phytoplankton grows logistically and is affected by a space-dependent growth rate. Conditions for the existence of a positive equilibrium point and their stability analysis (both local and global) have been discussed for the non-spatial system. We have discussed maximum sustainable yields as well as optimal harvesting policy for maximizing the economic gain. The stability and existence of Hopf –bifurcation analysis have been discussed for the spatial system. Different conditions for turning pattern formation have been established through diffusion-driven instability analysis. Numerical simulations have been carried out for both non-spatial and spatial models. Phase plane analysis, the largest Lyapunov exponent, and bifurcation theory are used to numerically analyzed the non-spatial system. Our study shows that spatial heterogeneity, the mortality rate of phytoplankton, and constant harvesting of the fish population each play an important role in the dynamical behavior of the marine system.

Keywords: optimal harvesting, pattern formation, spatial heterogeneity, Crowley-Martin functional response

Procedia PDF Downloads 171
29264 Social Studies Teachers Experiences in Teaching Spatial Thinking in Social Studies Classrooms in Kuwait: Exploratory Study

Authors: Huda Alazmi

Abstract:

Social studies educational research has, so far, devoted very little attention towards spatial thinking in classroom teaching. To help address such paucity, this study explores the spatial thinking instructional experiences of middle school social studies teachers in Kuwait. The goal is to learn their teaching practices and assess teacher understanding for the spatial thinking concept to enable future improvements. Using a qualitative study approach, the researcher conducted semi-structured interviews to examine the relevant experiences of 14 social studies teachers. The findings revealed three major themes: (1) concepts of space, (2) tools of representation, and (3) spatial reasoning. These themes illustrated how social studies teachers focus predominantly upon simple concepts of space, using multiple tools of representation, but avoid addressing critical spatial reasoning. The findings help explain the current situation while identifying weaker areas for further analysis and improvement.

Keywords: spatial thinking, concepts of space, spatial representation, spatial reasoning

Procedia PDF Downloads 77
29263 Integrating of Multi-Criteria Decision Making and Spatial Data Warehouse in Geographic Information System

Authors: Zohra Mekranfar, Ahmed Saidi, Abdellah Mebrek

Abstract:

This work aims to develop multi-criteria decision making (MCDM) and spatial data warehouse (SDW) methods, which will be integrated into a GIS according to a ‘GIS dominant’ approach. The GIS operating tools will be operational to operate the SDW. The MCDM methods can provide many solutions to a set of problems with various and multiple criteria. When the problem is so complex, integrating spatial dimension, it makes sense to combine the MCDM process with other approaches like data mining, ascending analyses, we present in this paper an experiment showing a geo-decisional methodology of SWD construction, On-line analytical processing (OLAP) technology which combines both basic multidimensional analysis and the concepts of data mining provides powerful tools to highlight inductions and information not obvious by traditional tools. However, these OLAP tools become more complex in the presence of the spatial dimension. The integration of OLAP with a GIS is the future geographic and spatial information solution. GIS offers advanced functions for the acquisition, storage, analysis, and display of geographic information. However, their effectiveness for complex spatial analysis is questionable due to their determinism and their decisional rigor. A prerequisite for the implementation of any analysis or exploration of spatial data requires the construction and structuring of a spatial data warehouse (SDW). This SDW must be easily usable by the GIS and by the tools offered by an OLAP system.

Keywords: data warehouse, GIS, MCDM, SOLAP

Procedia PDF Downloads 175
29262 Detecting of Crime Hot Spots for Crime Mapping

Authors: Somayeh Nezami

Abstract:

The management of financial and human resources of police in metropolitans requires many information and exact plans to reduce a rate of crime and increase the safety of the society. Geographical Information Systems have an important role in providing crime maps and their analysis. By using them and identification of crime hot spots along with spatial presentation of the results, it is possible to allocate optimum resources while presenting effective methods for decision making and preventive solutions. In this paper, we try to explain and compare between some of the methods of hot spots analysis such as Mode, Fuzzy Mode and Nearest Neighbour Hierarchical spatial clustering (NNH). Then the spots with the highest crime rates of drug smuggling for one province in Iran with borderline with Afghanistan are obtained. We will show that among these three methods NNH leads to the best result.

Keywords: GIS, Hot spots, nearest neighbor hierarchical spatial clustering, NNH, spatial analysis of crime

Procedia PDF Downloads 329
29261 Analyzing the Relationship between the Spatial Characteristics of Cultural Structure, Activities, and the Tourism Demand

Authors: Deniz Karagöz

Abstract:

This study is attempt to comprehend the relationship between the spatial characteristics of cultural structure, activities and the tourism demand in Turkey. The analysis divided into four parts. The first part consisted of a cultural structure and cultural activity (CSCA) index provided by principal component analysis. The analysis determined four distinct dimensions, namely, cultural activity/structure, accessing culture, consumption, and cultural management. The exploratory spatial data analysis employed to determine the spatial models of cultural structure and cultural activities in 81 provinces in Turkey. Global Moran I indices is used to ascertain the cultural activities and the structural clusters. Finally, the relationship between the cultural activities/cultural structure and tourism demand was analyzed. The raw/original data of the study official databases. The data on the cultural structure and activities gathered from the Turkish Statistical Institute and the data related to the tourism demand was provided by the Republic of Turkey Ministry of Culture and Tourism.

Keywords: cultural activities, cultural structure, spatial characteristics, tourism demand, Turkey

Procedia PDF Downloads 559
29260 Spatial Pattern and Predictors of Malaria in Ethiopia: Application of Auto Logistics Spatial Regression

Authors: Melkamu A. Zeru, Yamral M. Warkaw, Aweke A. Mitku, Muluwerk Ayele

Abstract:

Introduction: Malaria is a severe health threat in the World, mainly in Africa. It is the major cause of health problems in which the risk of morbidity and mortality associated with malaria cases are characterized by spatial variations across the county. This study aimed to investigate the spatial patterns and predictors of malaria distribution in Ethiopia. Methods: A weighted sample of 15,239 individuals with rapid diagnosis tests was obtained from the Central Statistical Agency and Ethiopia malaria indicator survey of 2015. Global Moran's I and Moran scatter plots were used in determining the distribution of malaria cases, whereas the local Moran's I statistic was used in identifying exposed areas. In data manipulation, machine learning was used for variable reduction and statistical software R, Stata, and Python were used for data management and analysis. The auto logistics spatial binary regression model was used to investigate the predictors of malaria. Results: The final auto logistics regression model reported that male clients had a positive significant effect on malaria cases as compared to female clients [AOR=2.401, 95 % CI: (2.125 - 2.713)]. The distribution of malaria across the regions was different. The highest incidence of malaria was found in Gambela [AOR=52.55, 95%CI: (40.54-68.12)] followed by Beneshangul [AOR=34.95, 95%CI: (27.159 - 44.963)]. Similarly, individuals in Amhara [AOR=0.243, 95% CI:(0.1950.303],Oromiya[AOR=0.197,95%CI:(0.1580.244)],DireDawa[AOR=0.064,95%CI(0.049-0.082)],AddisAbaba[AOR=0.057,95%CI:(0.044-0.075)], Somali[AOR=0.077,95%CI:(0.059-0.097)], SNNPR[OR=0.329, 95%CI: (0.261- 0.413)] and Harari [AOR=0.256, 95%CI:(0.201 - 0.325)] were less likely to had low incidence of malaria as compared with Tigray. Furthermore, for a one-meter increase in altitude, the odds of a positive rapid diagnostic test (RDT) decrease by 1.6% [AOR = 0.984, 95% CI :( 0.984 - 0.984)]. The use of a shared toilet facility was found as a protective factor for malaria in Ethiopia [AOR=1.671, 95% CI: (1.504 - 1.854)]. The spatial autocorrelation variable changes the constant from AOR = 0.471 for logistic regression to AOR = 0.164 for auto logistics regression. Conclusions: This study found that the incidence of malaria in Ethiopia had a spatial pattern that is associated with socio-economic, demographic, and geographic risk factors. Spatial clustering of malaria cases had occurred in all regions, and the risk of clustering was different across the regions. The risk of malaria was found to be higher for those who live in soil floor-type houses as compared to those who live in cement or ceramics floor type. Similarly, households with thatched, metal and thin, and other roof-type houses have a higher risk of malaria than ceramic tiles roof houses. Moreover, using a protected anti-mosquito net reduced the risk of malaria incidence.

Keywords: malaria, Ethiopia, auto logistics, spatial model, spatial clustering

Procedia PDF Downloads 33
29259 Determining the Causality Variables in Female Genital Mutilation: A Factor Screening Approach

Authors: Ekele Alih, Enejo Jalija

Abstract:

Female Genital Mutilation (FGM) is made up of three types namely: Clitoridectomy, Excision and Infibulation. In this study, we examine the factors responsible for FGM in order to identify the causality variables in a logistic regression approach. From the result of the survey conducted by the Public Health Division, Nigeria Institute of Medical Research, Yaba, Lagos State, the tau statistic, τ was used to screen 9 factors that causes FGM in order to select few of the predictors before multiple regression equation is obtained. The need for this may be that the sample size may not be able to sustain having a regression with all the predictors or to avoid multi-collinearity. A total of 300 respondents, comprising 150 adult males and 150 adult females were selected for the household survey based on the multi-stage sampling procedure. The tau statistic,

Keywords: female genital mutilation, logistic regression, tau statistic, African society

Procedia PDF Downloads 260
29258 Analysis of Spatial and Temporal Data Using Remote Sensing Technology

Authors: Kapil Pandey, Vishnu Goyal

Abstract:

Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.

Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing

Procedia PDF Downloads 432
29257 The Influence of 3D Printing Course on Middle School Students' Spatial Thinking Ability

Authors: Wang Xingjuan, Qian Dongming

Abstract:

As a common thinking ability, spatial thinking ability plays an increasingly important role in the information age. The key to cultivating students' spatial thinking ability is to cultivate students' ability to process and transform graphics. The 3D printing course enables students to constantly touch the rotation and movement of objects during the modeling process and to understand spatial graphics from different views. To this end, this article combines the classic PSVT: R test to explore the impact of 3D printing courses on the spatial thinking ability of middle school students. The results of the study found that: (1) Through the study of the 3D printing course, the students' spatial ability test scores have been significantly improved, which indirectly reflects the improvement of the spatial thinking ability level. (2) The student's spatial thinking ability test results are influenced by the parent's occupation.

Keywords: 3D printing, middle school students, spatial thinking ability, influence

Procedia PDF Downloads 189
29256 Spatial Distribution and Cluster Analysis of Sexual Risk Behaviors and STIs Reported by Chinese Adults in Guangzhou, China: A Representative Population-Based Study

Authors: Fangjing Zhou, Wen Chen, Brian J. Hall, Yu Wang, Carl Latkin, Li Ling, Joseph D. Tucker

Abstract:

Background: Economic and social reforms designed to open China to the world has been successful, but also appear to have rapidly laid the foundation for the reemergence of STIs since 1980s. Changes in sexual behaviors, relationships, and norms among Chinese contributed to the STIs epidemic. As the massive population moved during the last 30 years, early coital debut, multiple sexual partnerships, and unprotected sex have increased within the general population. Our objectives were to assess associations between residences location, sexual risk behaviors and sexually transmitted infections (STIs) among adults living in Guangzhou, China. Methods: Stratified cluster sampling followed a two-step process was used to select populations aged 18-59 years in Guangzhou, China. Spatial methods including Geographic Information Systems (GIS) were utilized to identify 1400 coordinates with latitude and longitude. Face-to-face household interviews were conducted to collect self-report data on sexual risk behaviors and diagnosed STIs. Kulldorff’s spatial scan statistic was implemented to identify and detect spatial distribution and clusters of sexual risk behaviors and STIs. The presence and location of statistically significant clusters were mapped in the study areas using ArcGIS software. Results: In this study, 1215 of 1400 households attempted surveys, with 368 refusals, resulting in a sample of 751 completed surveys. The prevalence of self-reported sexual risk behaviors was between 5.1% and 50.0%. The self-reported lifetime prevalence of diagnosed STIs was 7.06%. Anal intercourse clustered in an area located along the border within the rural-urban continuum (p=0.001). High rate clusters for alcohol or other drugs using before sex (p=0.008) and migrants who lived in Guangzhou less than one year (p=0.007) overlapped this cluster. Excess cases for sex without a condom (p=0.031) overlapped the cluster for college students (p<0.001). Conclusions: Short-term migrants and college students reported greater sexual risk behaviors. Programs to increase safer sex within these communities to reduce the risk of STIs are warranted in Guangzhou. Spatial analysis identified geographical clusters of sexual risk behaviors, which is critical for optimizing surveillance and targeting control measures for these locations in the future.

Keywords: cluster analysis, migrant, sexual risk behaviors, spatial distribution

Procedia PDF Downloads 340
29255 Hydrochemical Contamination Profiling and Spatial-Temporal Mapping with the Support of Multivariate and Cluster Statistical Analysis

Authors: Sofia Barbosa, Mariana Pinto, José António Almeida, Edgar Carvalho, Catarina Diamantino

Abstract:

The aim of this work was to test a methodology able to generate spatial-temporal maps that can synthesize simultaneously the trends of distinct hydrochemical indicators in an old radium-uranium tailings dam deposit. Multidimensionality reduction derived from principal component analysis and subsequent data aggregation derived from clustering analysis allow to identify distinct hydrochemical behavioural profiles and to generate synthetic evolutionary hydrochemical maps.

Keywords: Contamination plume migration, K-means of PCA scores, groundwater and mine water monitoring, spatial-temporal hydrochemical trends

Procedia PDF Downloads 233
29254 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis

Authors: Yakin Hajlaoui, Richard Labib, Jean-François Plante, Michel Gamache

Abstract:

This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification.

Keywords: deep learning, multi-layer neural networks, gradient descent, spatial interpolation, inverse distance weighting

Procedia PDF Downloads 52
29253 Spatial Audio Player Using Musical Genre Classification

Authors: Jun-Yong Lee, Hyoung-Gook Kim

Abstract:

In this paper, we propose a smart music player that combines the musical genre classification and the spatial audio processing. The musical genre is classified based on content analysis of the musical segment detected from the audio stream. In parallel with the classification, the spatial audio quality is achieved by adding an artificial reverberation in a virtual acoustic space to the input mono sound. Thereafter, the spatial sound is boosted with the given frequency gains based on the musical genre when played back. Experiments measured the accuracy of detecting the musical segment from the audio stream and its musical genre classification. A listening test was performed based on the virtual acoustic space based spatial audio processing.

Keywords: automatic equalization, genre classification, music segment detection, spatial audio processing

Procedia PDF Downloads 429