Search results for: solar energy radiation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9436

Search results for: solar energy radiation

9406 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential

Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag

Abstract:

Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.

Keywords: climate, reanalysis, renewable energy, solar radiation

Procedia PDF Downloads 187
9405 Empirical Model for the Estimation of Global Solar Radiation on Horizontal Surface in Algeria

Authors: Malika Fekih, Abdenour Bourabaa, Rafika Hariti, Mohamed Saighi

Abstract:

In Algeria the global solar radiation and its components is not available for all locations due to which there is a requirement of using different models for the estimation of global solar radiation that use climatological parameters of the locations. Empirical constants for these models have been estimated and the results obtained have been tested statistically. The results show encouraging agreement between estimated and measured values.

Keywords: global solar radiation, empirical model, semi arid areas, climatological parameters

Procedia PDF Downloads 467
9404 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting

Procedia PDF Downloads 349
9403 Optimal Design and Simulation of a Grid-Connected Photovoltaic (PV) Power System for an Electrical Department in University of Tripoli, Libya

Authors: Mustafa Al-Refai

Abstract:

This paper presents the optimal design and simulation of a grid-connected Photovoltaic (PV) system to supply electric power to meet the energy demand by Electrical Department in University of Tripoli Libya. Solar radiation is the key factor determining electricity produced by photovoltaic (PV) systems. This paper is designed to develop a novel method to calculate the solar photovoltaic generation capacity on the basis of Mean Global Solar Radiation data available for Tripoli Libya and finally develop a system design of possible plant capacity for the available roof area. MatLab/Simulink Programming tools and monthly average solar radiation data are used for this design and simulation. The specifications of equipments are provided based on the availability of the components in the market. Simulation results and analyses are presented to validate the proposed system configuration.

Keywords: photovoltaic (PV), grid, Simulink, solar energy, power plant, solar irradiation

Procedia PDF Downloads 272
9402 Renewable Energy in Morocco: Photovoltaic Water Pumping System

Authors: Sarah Abdourraziq, R. El Bachtiri

Abstract:

Renewable energies have a major importance of Morocco's new energy strategy. The geographical location of the Kingdom promotes the development of the use of solar energy. The use of this energy reduces the dependence on imports of primary energy, meets the growing demand for water and electricity in remote areas encourages the deployment of a local industry in the renewable energy sector and Minimize carbon emissions. Indeed, given the importance of the radiation intensity received and the duration of the sunshine, the country can cover some of its solar energy needs. The use of solar energy to pump water is one of the most promising application, this technique represents a solution wherever the grid does not exist. In this paper, we will present a presentation of photovoltaic pumping system components, and the important solar pumping projects installed in Morocco to supply water from remote area.

Keywords: PV pumping system, Morocco, PV panel, renewable energy

Procedia PDF Downloads 467
9401 Simulation Modelling of the Transmission of Concentrated Solar Radiation through Optical Fibres to Thermal Application

Authors: M. Rahou, A. J. Andrews, G. Rosengarten

Abstract:

One of the main challenges in high-temperature solar thermal applications transfer concentrated solar radiation to the load with minimum energy loss and maximum overall efficiency. The use of a solar concentrator in conjunction with bundled optical fibres has potential advantages in terms of transmission energy efficiency, technical feasibility and cost-effectiveness compared to a conventional heat transfer system employing heat exchangers and a heat transfer fluid. In this paper, a theoretical and computer simulation method is described to estimate the net solar radiation transmission from a solar concentrator into and through optical fibres to a thermal application at the end of the fibres over distances of up to 100 m. A key input to the simulation is the angular distribution of radiation intensity at each point across the aperture plane of the optical fibre. This distribution depends on the optical properties of the solar concentrator, in this case, a parabolic mirror with a small secondary mirror with a common focal point and a point-focus Fresnel lens to give a collimated beam that pass into the optical fibre bundle. Since solar radiation comprises a broad band of wavelengths with very limited spatial coherence over the full range of spectrum only ray tracing models absorption within the fibre and reflections at the interface between core and cladding is employed, assuming no interference between rays. The intensity of the radiation across the exit plane of the fibre is found by integrating across all directions and wavelengths. Results of applying the simulation model to a parabolic concentrator and point-focus Fresnel lens with typical optical fibre bundle will be reported, to show how the energy transmission varies with the length of fibre.

Keywords: concentrated radiation, fibre bundle, parabolic dish, fresnel lens, transmission

Procedia PDF Downloads 537
9400 Solar Energy Applications in Seawater Distillation

Authors: Yousef Abdulaziz Almolhem

Abstract:

Geographically, the most Arabic countries locate in areas confined to arid or semiarid regions. For this reason, most of our countries have adopted the seawater desalination as a strategy to overcome this problem. For example, the water supply of AUE, Kuwait, and Saudi Arabia is almost 100% from the seawater desalination plants. Many areas in Saudia Arabia and other countries in the world suffer from lack of fresh water which hinders the development of these areas, despite the availability of saline water and high solar radiation intensity. Furthermore, most developing countries do not have sufficient meteorological data to evaluate if the solar radiation is enough to meet the solar desalination. A mathematical model was developed to simulate and predict the thermal behavior of the solar still which used direct solar energy for distillation of seawater. Measurement data were measured in the Environment and Natural Resources Department, Faculty of Agricultural and Food sciences, King Faisal University, Saudi Arabia, in order to evaluate the present model. The simulation results obtained from this model were compared with the measured data. The main results of this research showed that there are slight differences between the measured and predicted values of the elements studied, which is resultant from the change of some factors considered constants in the model such as the sky clearance, wind velocity and the salt concentration in the water in the basin of the solar still. It can be concluded that the present model can be used to estimate the average total solar radiation and the thermal behavior of the solar still in any area with consideration to the geographical location.

Keywords: mathematical model, sea water, distillation, solar radiation

Procedia PDF Downloads 258
9399 Development of All-in-One Solar Kit

Authors: Azhan Azhar, Mohammed Sakib, Zaurez Ahmad

Abstract:

The energy we receive from the sun is known as solar energy, and it is a reliable, long-lasting, eco-friendly and the most widely used energy source in the 21st century. It is. There are several techniques for harnessing solar energy, and we are all seeing large utility-scale projects to collect maximum amperes from the sun using current technologies. Solar PV is now on the rise as a means of harvesting energy from the sun. Moving a step further, our project is focused on designing an All-in-one portable Solar Energy based solution. We considered the minimum load conditions and evaluated the requirements of various devices utilized in this study to resolve the power requirements of small stores, hawkers, or travelers.

Keywords: DOD-depth of discharge, pulse width modulation charge controller, renewable energy, solar PV- solar photovoltaic

Procedia PDF Downloads 332
9398 Modelling the Photovoltaic Pump Output Using Empirical Data from Local Conditions in the Vhembe District

Authors: C. Matasane, C. Dwarika, R. Naidoo

Abstract:

The mathematical analysis on radiation obtained and the development of the solar photovoltaic (PV) array groundwater pumping is needed in the rural areas of Thohoyandou, Limpopo Province for sizing and power performance subject to the climate conditions within the area. A simple methodology approach is developed for the directed coupled solar, controller and submersible ground water pump system. The system consists of a PV array, pump controller and submerged pump, battery backup and charger controller. For this reason, the theoretical solar radiation obtained for optimal predictions and system performance in order to achieve different design and operating parameters. Here the examination of the PV schematic module in a Direct Current (DC) application is used for obtainable maximum solar power energy for water pumping. In this paper, a simple efficient photovoltaic water pumping system is presented with its theoretical studies and mathematical modeling of photovoltaics (PV) system.

Keywords: renewable energy sources, solar groundwater pumping, theoretical and mathematical analysis of photovoltaic (PV) system, theoretical solar radiation

Procedia PDF Downloads 345
9397 Assessing Available Power from a Renewable Energy Source in the Southern Hemisphere using Anisotropic Model

Authors: Asowata Osamede, Trudy Sutherland

Abstract:

The purpose of this paper is to assess the available power from a Renewable Energy Source (off-grid photovoltaic (PV) panel) in the Southern Hemisphere using anisotropic model. Direct solar radiation is the driving force in photovoltaics. In a basic PV panels in the Southern Hemisphere, Power conversion is eminent, and this is achieved by the PV cells converting solar energy into electrical energy. In this research, the results was determined for a 6 month period from September 2022 through February 2023. Preliminary results, which include Normal Probability plot, data analysis - R2 value, effective conversion-time per week and work-time per day, indicate a favorably comparison between the empirical results and the simulation results.

Keywords: power-conversion, mathematical model, PV panels, DC-DC converters, direct solar radiation

Procedia PDF Downloads 55
9396 Efficiency Enhancement in Solar Panel

Authors: R. S. Arun Raj

Abstract:

In today's climate of growing energy needs and increasing environmental issues, alternatives to the use of non-renewable and polluting fossil fuels have to be investigated. One such alternative is the solar energy. The SUN provides every hour as much energy as mankind consumes in one year. This paper clearly explains about the solar panel design and new models and methodologies that can be implemented for better utilization of solar energy. Minimisation of losses in solar panel as heat is my innovative idea revolves around. The pay back calculations by implementation of solar panels is also quoted.

Keywords: on-grid and off-grid systems, pyro-electric effect, pay-back calculations, solar panel

Procedia PDF Downloads 549
9395 A Survey on the Sun Tracking Systems and Its Principle for Getting Maximum Sun Radiation

Authors: Talha Ali Khan

Abstract:

Discovering different energy resources to fulfill the world's growing demand is now one of the society’s bigger challenges for the next half-century. The main task is to convert the sun radiation into electricity via photovoltaic solar cells which is suddenly decreasing $/watt of delivered solar electricity. Therefore, in this context the sun trackers are those devices that can be used to ameliorate efficiency. In this paper, a variety of the sun tracking systems are evaluated and their merits and demerits are highlighted. The most adept and proficient sun-tracking devices are polar axis and azimuth-elevation types.

Keywords: dual axis, fixed axis, sun tracker, sun radiation

Procedia PDF Downloads 425
9394 Heating System for Water Pool by Solar Energy

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

A swimming pool heating system is presented, composed of two alternative collectors with serial PVC absorber tubes that work in regimen of forced stream that is gotten through a bomb. A 500 liters reservoir was used, simulating the swimming pool, being raised some data that show the viability of the considered system. The chosen outflow was corresponding to 100 l/h. In function of the low outflow it was necessary the use of a not popular bomb, choosing the use of a low outflow alternative pumping system, using an air conditioner engine with three different rotations for the desired end. The thermal data related to each collector and their developed system will be presented. The UV and thermal degradations of the PVC exposed to solar radiation will be also boarded, demonstrating the viability of using tubes of this material as absorber elements of radiation in water heating solar collectors.

Keywords: solar energy, solar swimming pool, water heating, PVC tubes, alternative system

Procedia PDF Downloads 435
9393 Renewable Energy System Eolic-Photovoltaic for the Touristic Center La Tranca-Chordeleg in Ecuador

Authors: Christian Castro Samaniego, Daniel Icaza Alvarez, Juan Portoviejo Brito

Abstract:

For this research work, hybrid wind-photovoltaic (SHEF) systems were considered as renewable energy sources that take advantage of wind energy and solar radiation to transform into electrical energy. In the present research work, the feasibility of a wind-photovoltaic hybrid generation system was analyzed for the La Tranca tourist viewpoint of the Chordeleg canton in Ecuador. The research process consisted of the collection of data on solar radiation, temperature, wind speed among others by means of a meteorological station. Simulations were carried out in MATLAB/Simulink based on a mathematical model. In the end, we compared the theoretical radiation-power curves and the measurements made at the site.

Keywords: hybrid system, wind turbine, modeling, simulation, validation, experimental data, panel, Ecuador

Procedia PDF Downloads 212
9392 Analysis of the Effect of GSR on the Performance of Double Flow Corrugated Absorber Solar Air Heater

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This study investigates the effect of Global Solar Radiation (GSR) on the performance of double flow corrugated absorber solar air heater. A mathematical model of a double flow solar air heater, in which air is flowing simultaneously over and under the absorbing plate is presented and solved by developing a computer program in C++ language. The performance evaluation is studied in terms of air temperature rise, energy, effective and exergy efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that double flow effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results show that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies.

Keywords: corrugated absorber, double flow, flat plate, solar air heater

Procedia PDF Downloads 315
9391 Investigating the Impact of Solar Radiation on Electricity Meters’ Accuracy Using A Modified Climatic Chamber

Authors: Hala M. Abdel Mageed, Eman M. Hosny, Adel S. Nada

Abstract:

Solar radiation test is one of the essential tests performed on electricity meters that is carried out using solar simulators. In this work, the (MKF-240) climatic chamber has been modified to act as a solar simulator at the Egyptian national institute of standard, NIS. Quartz Tungsten Halogen (QTH) lamps and an Aluminum plate are added to the climatic chamber to realize the solar test conditions. Many experimental trials have been performed to reach the optimum number of lamps needed to fulfil the test requirements and to adjust the best uniform test area. The proposed solar simulator design is capable to produce irradiance up to 1066 W/m2. Its output radiation is controlled by changing the number of illuminated lamps as well as changing the distance between lamps and tested electricity meter. The uniformity of radiation within the simulator has been recognized to be 91.5 % at maximum irradiance. Three samples of electricity meters have been tested under different irradiances, temperatures, and electric loads. The electricity meters’ accuracies have been recorded and analyzedfor eachsample. Moreover, measurement uncertainty contribution has been considered in all tests to get precision value. There were noticeable changes in the accuracies of the electricity meters while exposed to solar radiation, although there were no noticeable distortions of their insulationsand outer surfaces.

Keywords: solar radiation, solar simulator, climatic chamber, halogen lamp, electricity meter

Procedia PDF Downloads 81
9390 A Study on The Relationship between Building Façade and Solar Energy Utilization Potential in Urban Residential Area in West China

Authors: T. Wen, Y. Liu, J. Wang, W. Zheng, T. Shao

Abstract:

Along with the increasing density of urban population, solar energy potential of building facade in high-density residential areas become a question that needs to be addressed. This paper studies how the solar energy utilization potential of building facades in different locations of a residential areas changes with different building layouts and orientations in Xining, a typical city in west China which possesses large solar radiation resource. Solar energy potential of three typical building layouts of residential areas, which are parallel determinant, gable misalignment, transverse misalignment, are discussed in detail. First of all, through the data collection and statistics of Xining new residential area, the most representative building parameters are extracted, including building layout, building height, building layers, and building shape. Secondly, according to the results of building parameters extraction, a general model is established and analyzed with rhinoceros 6.0 and its own plug-in grasshopper. Finally, results of the various simulations and data analyses are presented in a visualized way. The results show that there are great differences in the solar energy potential of building facades in different locations of residential areas under three typical building layouts. Generally speaking, the solar energy potential of the west peripheral location is the largest, followed by the East peripheral location, and the middle location is the smallest. When the deflection angle is the same, the solar energy potential shows the result that the West deflection is greater than the East deflection. In addition, the optimal building azimuth range under these three typical building layouts is obtained. Within this range, the solar energy potential of the residential area can always maintain a high level. Beyond this range, the solar energy potential drops sharply. Finally, it is found that when the solar energy potential is maximum, the deflection angle is not positive south, but 5 °or 15°south by west. The results of this study can provide decision analysis basis for residential design of Xining city to improve solar energy utilization potential and provide a reference for solar energy utilization design of urban residential buildings in other similar areas.

Keywords: building facade, solar energy potential, solar radiation, urban residential area, visualization, Xining city

Procedia PDF Downloads 148
9389 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome

Authors: Agada N. Ihuoma, Nagata Yasunori

Abstract:

Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.

Keywords: artificial Intelligence, backward elimination, linear regression, solar energy

Procedia PDF Downloads 136
9388 Optimization of Heterojunction Solar Cell Using AMPS-1D

Authors: Benmoussa Dennai, H. Benslimane, A. Helmaoui

Abstract:

Photo voltaic conversion is the direct conversion of electromagnetic energy into electrical energy continuously. This electromagnetic energy is the most solar radiation. In this work we performed a computer modelling using AMPS 1D optimization of hetero-junction solar cells GaInP/GaAs configuration for p/ n. We studied the influence of the thickness the base layer in the cell offers on the open circuit voltage, the short circuit current and efficiency.

Keywords: optimization, photovoltaic cell, GaInP / GaAs AMPS-1D, hetetro-junction

Procedia PDF Downloads 378
9387 Optimization of Heterojunction Solar Cell Using AMPS-1D

Authors: Benmoussa Dennai, H. Benslimane, A. Helmaoui

Abstract:

Photovoltaic conversion is the direct conversion of electromagnetic energy into electrical energy continuously. This electromagnetic energy is the most solar radiation. In this work we performed a computer modelling using AMPS 1D optimization of hetero-junction solar cells GaInP / GaAs configuration for p / n. We studied the influence of the thickness the base layer in the cell offers on the open circuit voltage, the short circuit current and efficiency.

Keywords: optimization, photovoltaic cell, GaInP / GaAs AMPS-1D, hetetro-junction

Procedia PDF Downloads 491
9386 Uncertainty of the Brazilian Earth System Model for Solar Radiation

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

This study evaluated the uncertainties involved in the solar radiation projections generated by the Brazilian Earth System Model (BESM) of the Weather and Climate Prediction Center (CPTEC) belonging to Coupled Model Intercomparison Phase 5 (CMIP5), with the aim of identifying efficiency in the projections for solar radiation of said model and in this way establish the viability of its use. Two different scenarios elaborated by Intergovernmental Panel on Climate Change (IPCC) were evaluated: RCP 4.5 (with more optimistic contour conditions) and 8.5 (with more pessimistic initial conditions). The method used to verify the accuracy of the present model was the Nash coefficient and the Statistical bias, as it better represents these atmospheric patterns. The BESM showed a tendency to overestimate the data ​​of solar radiation projections in most regions of the state of Rio Grande do Sul and through the validation methods adopted by this study, BESM did not present a satisfactory accuracy.

Keywords: climate changes, projections, solar radiation, uncertainty

Procedia PDF Downloads 220
9385 Control Strategy of Solar Thermal Cooling System under the Indonesia Climate

Authors: Budihardjo Sarwo Sastrosudiro, Arnas Lubis, Muhammad Idrus Alhamid, Nasruddin Jusuf

Abstract:

Solar thermal cooling system was installed on Mechanical Research Center (MRC) Building that is located in Universitas Indonesia, Depok, Indonesia. It is the first cooling system in Indonesia that utilizes solar energy as energy input combined with natural gas; therefore, the control system must be appropriated with the climates. In order to stabilize the cooling capacity and also to maximize the use of solar energy, the system applies some controllers. Constant flow rate and on/off controller are applied for the hot water, chilled water and cooling water pumps. The hot water circulated by pump when the solar radiation is over than 400W/m2, and the chilled water is continually circulated by pump and its temperature is kept constant 7 °C by absorption chiller. The cooling water is also continually circulated until the outlet temperature of cooling tower below than 27 oC. Furthermore, the three-way valve is used to control the hot water for generate vapor on absorption chiller. The system performance using that control system is shown in this study results.

Keywords: absorption chiller, control system, solar cooling, solar energy

Procedia PDF Downloads 241
9384 Thermal and Solar Performances of Adsorption Solar Refrigerating Machine

Authors: Nadia Allouache

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.

Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 40
9383 Solar Building Design Using GaAs PV Cells for Optimum Energy Consumption

Authors: Hadis Pouyafar, D. Matin Alaghmandan

Abstract:

Gallium arsenide (GaAs) solar cells are widely used in applications like spacecraft and satellites because they have a high absorption coefficient and efficiency and can withstand high-energy particles such as electrons and protons. With the energy crisis, there's a growing need for efficiency and cost-effective solar cells. GaAs cells, with their 46% efficiency compared to silicon cells 23% can be utilized in buildings to achieve nearly zero emissions. This way, we can use irradiation and convert more solar energy into electricity. III V semiconductors used in these cells offer performance compared to other technologies available. However, despite these advantages, Si cells dominate the market due to their prices. In our study, we took an approach by using software from the start to gather all information. By doing so, we aimed to design the optimal building that harnesses the full potential of solar energy. Our modeling results reveal a future; for GaAs cells, we utilized the Grasshopper plugin for modeling and optimization purposes. To assess radiation, weather data, solar energy levels and other factors, we relied on the Ladybug and Honeybee plugins. We have shown that silicon solar cells may not always be the choice for meeting electricity demands, particularly when higher power output is required. Therefore, when it comes to power consumption and the available surface area for photovoltaic (PV) installation, it may be necessary to consider efficient solar cell options, like GaAs solar cells. By considering the building requirements and utilizing GaAs technology, we were able to optimize the PV surface area.

Keywords: gallium arsenide (GaAs), optimization, sustainable building, GaAs solar cells

Procedia PDF Downloads 52
9382 The Effect of Global Solar Radiation on the Thermal and Thermohydraulic Performance of Double Flow Corrugated Absorber Solar Air Heater

Authors: Suresh Prasad Sharma, Som Nath Saha

Abstract:

This paper deals with the effect of Global Solar Radiation (GSR) on the performance of double flow solar air heater having corrugated plate as an absorber. An analytical model of a double flow solar air heater has been presented, and a computer program in C++ language has been developed to calculate the outlet air temperature, heat gain, pressure drop for estimating the thermal and thermohydraulic efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that the double flow arrangement effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results indicate that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies.

Keywords: corrugated absorber, double flow, flat plate, solar air heater

Procedia PDF Downloads 250
9381 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study

Authors: Laidi Maamar, Hanini Salah

Abstract:

The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.

Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria

Procedia PDF Downloads 472
9380 Solar Calculations of Modified Arch (Semi-Spherical) Type Greenhouse System for Bayburt City

Authors: Uğur Çakir, Erol Şahin, Kemal Çomakli, Ayşegül Çokgez Kuş

Abstract:

Solar energy is thought as main source of all energy sources on the world and it can be used in many applications like agricultural areas, heating cooling or direct electricity production directly or indirectly. Greenhousing is the first one of the agricultural activities that solar energy can be used directly in. Greenhouses offer us suitable conditions which can be controlled easily for the growth of the plant and they are made by using a covering material that allows the sun light entering into the system. Covering material can be glass, fiber glass, plastic or another transparent element. This study investigates the solar energy usability rates and solar energy benefiting rates of a semi-spherical (modified arch) type greenhouse system according to different orientations and positions which exists under climatic conditions of Bayburt. In the concept of this study it is tried to determine the best direction and best sizes of a semi-spherical greenhouse to get best solar benefit from the sun. To achieve this aim a modeling study is made by using MATLAB. However this modeling study is running for some determined shapes and greenhouses it can be used for different shaped greenhouses or buildings. The basic parameters are determined as greenhouse azimuth angle, the rate of size of long edge to short and seasonal solar energy gaining of greenhouse.

Keywords: greenhousing, solar energy, direct radiation, renewable energy

Procedia PDF Downloads 455
9379 Comparison of Solar Radiation Models

Authors: O. Behar, A. Khellaf, K. Mohammedi, S. Ait Kaci

Abstract:

Up to now, most validation studies have been based on the MBE and RMSE, and therefore, focused only on long and short terms performance to test and classify solar radiation models. This traditional analysis does not take into account the quality of modeling and linearity. In our analysis we have tested 22 solar radiation models that are capable to provide instantaneous direct and global radiation at any given location Worldwide. We introduce a new indicator, which we named Global Accuracy Indicator (GAI) to examine the linear relationship between the measured and predicted values and the quality of modeling in addition to long and short terms performance. Note that the quality of model has been represented by the T-Statistical test, the model linearity has been given by the correlation coefficient and the long and short term performance have been respectively known by the MBE and RMSE. An important founding of this research is that the use GAI allows avoiding default validation when using traditional methodology that might results in erroneous prediction of solar power conversion systems performances.

Keywords: solar radiation model, parametric model, performance analysis, Global Accuracy Indicator (GAI)

Procedia PDF Downloads 324
9378 Modeling of a Concentrating Photovoltaic Module with and without Cooling System

Authors: Intissar Benrhouma, Marta Victoria, Ignacio Anton, Bechir Chaouachi

Abstract:

Concentrating photovoltaic systems CPV use optical elements, such as Fresnel lenses, to concentrate solar intensity. The concentrated solar energy is delivered to the solar cell from 20 to 100 W/cm². Some of this energy is converted to electricity, while the rest must be disposed of as a residual heat. Solar cells cooling should be a necessary part of CPV modeling because these systems allowed increasing the power received by the cell. This high power can rise the electrons’ potential causing the heating of the cell, which reduces the global module’s efficiency. This work consists of modeling a concentrating photovoltaic module with and without a cooling system. We have established a theoretical model based on energy balances carried out on a photovoltaic module using solar radiation concentration cells. Subsequently, we developed a calculation program on Matlab which allowed us to simulate the functioning of this module. The obtained results show that the addition of a cooling system to the module improves greatly the performance of our CPV system.

Keywords: solar energy, photovoltaic, concentration, cooling, performance improvement

Procedia PDF Downloads 373
9377 Projection of Solar Radiation for the Extreme South of Brazil

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Rafael Haag, Elton Rossini

Abstract:

This work aims to validate and make the projections of solar energy for the Brazilian period from 2025 to 2100. As the plants designed by the HadGEM2-AO (Global Hadley Model 2 - Atmosphere) General Circulation Model UK Met Office Hadley Center, belonging to Phase 5 of the Intercomparison of Coupled Models (CMIP5). The simulation results of the model are compared with monthly data from 2006 to 2013, measured by a network of meteorological sections of the National Institute of Meteorology (INMET). The performance of HadGEM2-AO is evaluated by the efficiency coefficient (CEF) and bias. The results are shown in the table of maps and maps. HadGEM2-AO, in the most pessimistic scenario, RCP 8.5 had a very good accuracy, presenting efficiency coefficients between 0.94 and 0.98, the perfect setting being Solar radiation, which indicates a horizontal trend, is a climatic alternative for some regions of the Brazilian scenario, especially in spring.

Keywords: climate change, projections, solar radiation, scenarios climate change

Procedia PDF Downloads 128