Search results for: six-port based receiver; calibration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27750

Search results for: six-port based receiver; calibration

27720 Performance Demonstration of Extendable NSPO Space-Borne GPS Receiver

Authors: Hung-Yuan Chang, Wen-Lung Chiang, Kuo-Liang Wu, Chen-Tsung Lin

Abstract:

National Space Organization (NSPO) has completed in 2014 the development of a space-borne GPS receiver, including design, manufacture, comprehensive functional test, environmental qualification test and so on. The main performance of this receiver include 8-meter positioning accuracy, 0.05 m/sec speed-accuracy, the longest 90 seconds of cold start time, and up to 15g high dynamic scenario. The receiver will be integrated in the autonomous FORMOSAT-7 NSPO-Built satellite scheduled to be launched in 2019 to execute pre-defined scientific missions. The flight model of this receiver manufactured in early 2015 will pass comprehensive functional tests and environmental acceptance tests, etc., which are expected to be completed by the end of 2015. The space-borne GPS receiver is a pure software design in which all GPS baseband signal processing are executed by a digital signal processor (DSP), currently only 50% of its throughput being used. In response to the booming global navigation satellite systems, NSPO will gradually expand this receiver to become a multi-mode, multi-band, high-precision navigation receiver, and even a science payload, such as the reflectometry receiver of a global navigation satellite system. The fundamental purpose of this extension study is to port some software algorithms such as signal acquisition and correlation, reused code and large amount of computation load to the FPGA whose processor is responsible for operational control, navigation solution, and orbit propagation and so on. Due to the development and evolution of the FPGA is pretty fast, the new system architecture upgraded via an FPGA should be able to achieve the goal of being a multi-mode, multi-band high-precision navigation receiver, or scientific receiver. Finally, the results of tests show that the new system architecture not only retains the original overall performance, but also sets aside more resources available for future expansion possibility. This paper will explain the detailed DSP/FPGA architecture, development, test results, and the goals of next development stage of this receiver.

Keywords: space-borne, GPS receiver, DSP, FPGA, multi-mode multi-band

Procedia PDF Downloads 342
27719 Enhanced Calibration Map for a Four-Hole Probe for Measuring High Flow Angles

Authors: Jafar Mortadha, Imran Qureshi

Abstract:

This research explains and compares the modern techniques used for measuring the flow angles of a flowing fluid with the traditional technique of using multi-hole pressure probes. In particular, the focus of the study is on four-hole probes, which offer great reliability and benefits in several applications where the use of modern measurement techniques is either inconvenient or impractical. Due to modern advancements in manufacturing, small multi-hole pressure probes can be made with high precision, which eliminates the need for calibrating every manufactured probe. This study aims to improve the range of calibration maps for a four-hole probe to allow high flow angles to be measured accurately. The research methodology comprises a literature review of the successful calibration definitions that have been implemented on five-hole probes. These definitions are then adapted and applied on a four-hole probe using a set of raw pressures data. A comparison of the different definitions will be carried out in Matlab and the results will be analyzed to determine the best calibration definition. Taking simplicity of implementation into account as well as the reliability of flow angles estimation, an adapted technique from a research paper written in 2002 offered the most promising outcome. Consequently, the method is seen as a good enhancement for four-hole probes and it can substitute for the existing calibration definitions that offer less accuracy.

Keywords: calibration definitions, calibration maps, flow measurement techniques, four-hole probes, multi-hole pressure probes

Procedia PDF Downloads 267
27718 A Statistical-Algorithmic Approach for the Design and Evaluation of a Fresnel Solar Concentrator-Receiver System

Authors: Hassan Qandil

Abstract:

Using a statistical algorithm incorporated in MATLAB, four types of non-imaging Fresnel lenses are designed; spot-flat, linear-flat, dome-shaped and semi-cylindrical-shaped. The optimization employs a statistical ray-tracing methodology of the incident light, mainly considering effects of chromatic aberration, varying focal lengths, solar inclination and azimuth angles, lens and receiver apertures, and the optimum number of prism grooves. While adopting an equal-groove-width assumption of the Poly-methyl-methacrylate (PMMA) prisms, the main target is to maximize the ray intensity on the receiver’s aperture and therefore achieving higher values of heat flux. The algorithm outputs prism angles and 2D sketches. 3D drawings are then generated via AutoCAD and linked to COMSOL Multiphysics software to simulate the lenses under solar ray conditions, which provides optical and thermal analysis at both the lens’ and the receiver’s apertures while setting conditions as per the Dallas-TX weather data. Once the lenses’ characterization is finalized, receivers are designed based on its optimized aperture size. Several cavity shapes; including triangular, arc-shaped and trapezoidal, are tested while coupled with a variety of receiver materials, working fluids, heat transfer mechanisms, and enclosure designs. A vacuum-reflective enclosure is also simulated for an enhanced thermal absorption efficiency. Each receiver type is simulated via COMSOL while coupled with the optimized lens. A lab-scale prototype for the optimum lens-receiver configuration is then fabricated for experimental evaluation. Application-based testing is also performed for the selected configuration, including that of a photovoltaic-thermal cogeneration system and solar furnace system. Finally, some future research work is pointed out, including the coupling of the collector-receiver system with an end-user power generator, and the use of a multi-layered genetic algorithm for comparative studies.

Keywords: COMSOL, concentrator, energy, fresnel, optics, renewable, solar

Procedia PDF Downloads 123
27717 Bi-Lateral Comparison between NIS-Egypt and NMISA-South Africa for the Calibration of an Optical Time Domain Reflectometer

Authors: Osama Terra, Mariesa Nel, Hatem Hussein

Abstract:

Calibration of Optical Time Domain Reflectometer (OTDR) has a crucial role for the accurate determination of fault locations and the accurate calculation of loss budget of long-haul optical fibre links during installation and repair. A comparison has been made between the Egyptian National Institute for Standards (NIS-Egypt) and the National Metrology institute of South Africa (NMISA-South Africa) for the calibration of an OTDR. The distance and the attenuation scales of a transfer OTDR have been calibrated by both institutes using their standards according to the standard IEC 61746-1 (2009). The results of this comparison have been compiled in this report.

Keywords: OTDR calibration, recirculating loop, concatenated method, standard fiber

Procedia PDF Downloads 417
27716 Indoor Visible Light Communication Channel Characterization for User Mobility: A Use-Case Study

Authors: Pooja Sanathkumar, Srinidhi Murali, Sethuraman TV, Saravanan M, Paventhan Arumugam, Ashwin Ashok

Abstract:

The last decade has witnessed a significant interest in visible light communication (VLC) technology, as VLC can potentially achieve high data rate links and secure communication channels. However, the use of VLC under mobile settings is fundamentally limited as its a line-of-sight (LOS) technology and there has been limited breakthroughs in realizing VLC for mobile settings. In this regard, this work targets to study the VLC channel under mobility. Through a use-case study analysis with experiment data traces this paper presents an empirical VLC channel study considering the application of VLC for smart lighting in an indoor room environment. This paper contributes a calibration study of a prototype VLC smart lighting system in an indoor environment and through the inferences gained from the calibration, and considering a user is carrying a mobile device fit with a VLC receiver, this work presents recommendations for user's position adjustments, with the goal to ensure maximum connectivity across the room.

Keywords: visible light communication, mobility, empirical study, channel characterization

Procedia PDF Downloads 102
27715 Bi-Lateral Comparison between NIS-Egypt and NMISA-South Africa for the Calibration of an Optical Spectrum Analyzer

Authors: Osama Terra, Hatem Hussein, Adriaan Van Brakel

Abstract:

Dense wavelength division multiplexing (DWDM) technology requires tight specification and therefore measurement of wavelength accuracy and stability of the telecommunication lasers. Thus, calibration of the used Optical Spectrum Analyzers (OSAs) that are used to measure wavelength is of a great importance. Proficiency testing must be performed on such measuring activity to insure the accuracy of the measurement results. In this paper, a new comparison scheme is introduced to test the performance of such calibrations. This comparison scheme is implemented between NIS-Egypt and NMISA-South Africa for the calibration of the wavelength scale of an OSA. Both institutes employ reference gas cell to calibrate OSA according to the standard IEC/ BS EN 62129 (2006). The result of this comparison is compiled in this paper.

Keywords: OSA calibration, HCN gas cell, DWDM technology, wavelength measurement

Procedia PDF Downloads 275
27714 A Calibration Method for Temperature Distribution Measurement of Thermochromic Liquid Crystal Based on Mathematical Morphology of Hue Image

Authors: Risti Suryantari, Flaviana

Abstract:

The aim of this research is to design calibration method of Thermochromic Liquid Crystal for temperature distribution measurement based on mathematical morphology of hue image A glass of water is placed on the surface of sample TLC R25C5W at certain temperature. We use scanner for image acquisition. The true images in RGB format is converted to HSV (hue, saturation, value) by taking of hue without saturation and value. Then the hue images is processed based on mathematical morphology using Matlab2013a software to get better images. There are differences on the final images after processing at each temperature variation based on visualization observation and the statistic value. The value of maximum and mean increase with rising temperature. It could be parameter to identify the temperature of the human body surface like hand or foot surface.

Keywords: thermochromic liquid crystal, TLC, mathematical morphology, hue image

Procedia PDF Downloads 450
27713 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System

Authors: O. Afshar

Abstract:

A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.

Keywords: receiver tube, heat convection, heat conduction, Nusselt number

Procedia PDF Downloads 324
27712 Monitoring the Drying and Grinding Process during Production of Celitement through a NIR-Spectroscopy Based Approach

Authors: Carolin Lutz, Jörg Matthes, Patrick Waibel, Ulrich Precht, Krassimir Garbev, Günter Beuchle, Uwe Schweike, Peter Stemmermann, Hubert B. Keller

Abstract:

Online measurement of the product quality is a challenging task in cement production, especially in the production of Celitement, a novel environmentally friendly hydraulic binder. The mineralogy and chemical composition of clinker in ordinary Portland cement production is measured by X-ray diffraction (XRD) and X ray fluorescence (XRF), where only crystalline constituents can be detected. But only a small part of the Celitement components can be measured via XRD, because most constituents have an amorphous structure. This paper describes the development of algorithms suitable for an on-line monitoring of the final processing step of Celitement based on NIR-data. For calibration intermediate products were dried at different temperatures and ground for variable durations. The products were analyzed using XRD and thermogravimetric analyses together with NIR-spectroscopy to investigate the dependency between the drying and the milling processes on one and the NIR-signal on the other side. As a result, different characteristic parameters have been defined. A short overview of the Celitement process and the challenging tasks of the online measurement and evaluation of the product quality will be presented. Subsequently, methods for systematic development of near-infrared calibration models and the determination of the final calibration model will be introduced. The application of the model on experimental data illustrates that NIR-spectroscopy allows for a quick and sufficiently exact determination of crucial process parameters.

Keywords: calibration model, celitement, cementitious material, NIR spectroscopy

Procedia PDF Downloads 467
27711 Bank ATM Monitoring System Using IR Sensor

Authors: P. Saravanakumar, N. Raja, M. Rameshkumar, D. Mohankumar, R. Sateeshkumar, B. Maheshwari

Abstract:

This research work is designed using Microsoft VB. Net as front end and MySQL as back end. The project deals with secure the user transaction in the ATM system. This application contains the option for sending the failed transaction details to the particular customer by using the SMS. When the customer withdraws the amount from the Bank ATM system, sometimes the amount will not be dispatched but the amount will be debited to the particular account. This application is used to avoid this type of problems in the ATM system. In this proposed system using IR technique to detect the dispatched amount. IR Transmitter and IR Receiver are placed in the path of cash dispatch. It is connected each other through the IR signal. When the customers withdraw the amount in the ATM system then the amount will be dispatched or not is monitored by IR Receiver. If the amount will be dispatched then the signal will be interrupted between the IR Receiver and the IR Transmitter. At that time, the monitoring system will be reduced their particular withdraw amount on their account. If the cash will not be dispatched, the signal will not be interrupted, at that time the particular withdraw amount will not be reduced their account. If the transaction completed successfully, the transaction details such as withdraw amount and current balance can be sent to the customer via the SMS. If the transaction fails, the transaction failed message can be send to the customer.

Keywords: ATM system, monitoring system, IR Transmitter, IR Receiver

Procedia PDF Downloads 269
27710 A Secure Proxy Signature Scheme with Fault Tolerance Based on RSA System

Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi

Abstract:

Due to the rapid growth in modern communication systems, fault tolerance and data security are two important issues in a secure transaction. During the transmission of data between the sender and receiver, errors may occur frequently. Therefore, the sender must re-transmit the data to the receiver in order to correct these errors, which makes the system very feeble. To improve the scalability of the scheme, we present a secure proxy signature scheme with fault tolerance over an efficient and secure authenticated key agreement protocol based on RSA system. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties.

Keywords: proxy signature, fault tolerance, rsa, key agreement protocol

Procedia PDF Downloads 256
27709 A SiGe Low Power RF Front-End Receiver for 5.8GHz Wireless Biomedical Application

Authors: Hyunwon Moon

Abstract:

It is necessary to realize new biomedical wireless communication systems which send the signals collected from various bio sensors located at human body in order to monitor our health. Also, it should seamlessly connect to the existing wireless communication systems. A 5.8 GHz ISM band low power RF front-end receiver for a biomedical wireless communication system is implemented using a 0.5 µm SiGe BiCMOS process. To achieve low power RF front-end, the current optimization technique for selecting device size is utilized. The implemented low noise amplifier (LNA) shows a power gain of 9.8 dB, a noise figure (NF) of below 1.75 dB, and an IIP3 of higher than 7.5 dBm while current consumption is only 6 mA at supply voltage of 2.5 V. Also, the performance of a down-conversion mixer is measured as a conversion gain of 11 dB and SSB NF of 10 dB.

Keywords: biomedical, LNA, mixer, receiver, RF front-end, SiGe

Procedia PDF Downloads 286
27708 Performance Analysis of New Types of Reference Targets Based on Spaceborne and Airborne SAR Data

Authors: Y. S. Zhou, C. R. Li, L. L. Tang, C. X. Gao, D. J. Wang, Y. Y. Guo

Abstract:

Triangular trihedral corner reflector (CR) has been widely used as point target for synthetic aperture radar (SAR) calibration and image quality assessment. The additional “tip” of the triangular plate does not contribute to the reflector’s theoretical RCS and if it interacts with a perfectly reflecting ground plane, it will yield an increase of RCS at the radar bore-sight and decrease the accuracy of SAR calibration and image quality assessment. Regarding this problem, two types of CRs were manufactured. One was the hexagonal trihedral CR. It is a self-illuminating CR with relatively small plate edge length, while large edge length usually introduces unexpected edge diffraction error. The other was the triangular trihedral CR with extended bottom plate which considers the effect of ‘tip’ into the total RCS. In order to assess the performance of the two types of new CRs, flight campaign over the National Calibration and Validation Site for High Resolution Remote Sensors was carried out. Six hexagonal trihedral CRs and two bottom-extended trihedral CRs, as well as several traditional triangular trihedral CRs, were deployed. KOMPSAT-5 X-band SAR image was acquired for the performance analysis of the hexagonal trihedral CRs. C-band airborne SAR images were acquired for the performance analysis of the bottom-extended trihedral CRs. The analysis results showed that the impulse response function of both the hexagonal trihedral CRs and bottom-extended trihedral CRs were much closer to the ideal sinc-function than the traditional triangular trihedral CRs. The flight campaign results validated the advantages of new types of CRs and they might be useful in the future SAR calibration mission.

Keywords: synthetic aperture radar, calibration, corner reflector, KOMPSAT-5

Procedia PDF Downloads 251
27707 Comparing Two Unmanned Aerial Systems in Determining Elevation at the Field Scale

Authors: Brock Buckingham, Zhe Lin, Wenxuan Guo

Abstract:

Accurate elevation data is critical in deriving topographic attributes for the precision management of crop inputs, especially water and nutrients. Traditional ground-based elevation data acquisition is time consuming, labor intensive, and often inconvenient at the field scale. Various unmanned aerial systems (UAS) provide the capability of generating digital elevation data from high-resolution images. The objective of this study was to compare the performance of two UAS with different global positioning system (GPS) receivers in determining elevation at the field scale. A DJI Phantom 4 Pro and a DJI Phantom 4 RTK(real-time kinematic) were applied to acquire images at three heights, including 40m, 80m, and 120m above ground. Forty ground control panels were placed in the field, and their geographic coordinates were determined using an RTK GPS survey unit. For each image acquisition using a UAS at a particular height, two elevation datasets were generated using the Pix4D stitching software: a calibrated dataset using the surveyed coordinates of the ground control panels and an uncalibrated dataset without using the surveyed coordinates of the ground control panels. Elevation values for each panel derived from the elevation model of each dataset were compared to the corresponding coordinates of the ground control panels. The coefficient of the determination (R²) and the root mean squared error (RMSE) were used as evaluation metrics to assess the performance of each image acquisition scenario. RMSE values for the uncalibrated elevation dataset were 26.613 m, 31.141 m, and 25.135 m for images acquired at 120 m, 80 m, and 40 m, respectively, using the Phantom 4 Pro UAS. With calibration for the same UAS, the accuracies were significantly improved with RMSE values of 0.161 m, 0.165, and 0.030 m, respectively. The best results showed an RMSE of 0.032 m and an R² of 0.998 for calibrated dataset generated using the Phantom 4 RTK UAS at 40m height. The accuracy of elevation determination decreased as the flight height increased for both UAS, with RMSE values greater than 0.160 m for the datasets acquired at 80 m and 160 m. The results of this study show that calibration with ground control panels improves the accuracy of elevation determination, especially for the UAS with a regular GPS receiver. The Phantom 4 Pro provides accurate elevation data with substantial surveyed ground control panels for the 40 m dataset. The Phantom 4 Pro RTK UAS provides accurate elevation at 40 m without calibration for practical precision agriculture applications. This study provides valuable information on selecting appropriate UAS and flight heights in determining elevation for precision agriculture applications.

Keywords: unmanned aerial system, elevation, precision agriculture, real-time kinematic (RTK)

Procedia PDF Downloads 136
27706 Calibration of Syringe Pumps Using Interferometry and Optical Methods

Authors: E. Batista, R. Mendes, A. Furtado, M. C. Ferreira, I. Godinho, J. A. Sousa, M. Alvares, R. Martins

Abstract:

Syringe pumps are commonly used for drug delivery in hospitals and clinical environments. These instruments are critical in neonatology and oncology, where any variation in the flow rate and drug dosing quantity can lead to severe incidents and even death of the patient. Therefore it is very important to determine the accuracy and precision of these devices using the suitable calibration methods. The Volume Laboratory of the Portuguese Institute for Quality (LVC/IPQ) uses two different methods to calibrate syringe pumps from 16 nL/min up to 20 mL/min. The Interferometric method uses an interferometer to monitor the distance travelled by a pusher block of the syringe pump in order to determine the flow rate. Therefore, knowing the internal diameter of the syringe with very high precision, the travelled distance, and the time needed for that travelled distance, it was possible to calculate the flow rate of the fluid inside the syringe and its uncertainty. As an alternative to the gravimetric and the interferometric method, a methodology based on the application of optical technology was also developed to measure flow rates. Mainly this method relies on measuring the increase of volume of a drop over time. The objective of this work is to compare the results of the calibration of two syringe pumps using the different methodologies described above. The obtained results were consistent for the three methods used. The uncertainties values were very similar for all the three methods, being higher for the optical drop method due to setup limitations.

Keywords: calibration, flow, interferometry, syringe pump, uncertainty

Procedia PDF Downloads 82
27705 Determination of Crustal Structure and Moho Depth within the Jammu and Kashmir Region, Northwest Himalaya through Receiver Function

Authors: Shiv Jyoti Pandey, Shveta Puri, G. M. Bhat, Neha Raina

Abstract:

The Jammu and Kashmir (J&K) region of Northwest Himalaya has a long history of earthquake activity which falls within Seismic Zones IV and V. To know the crustal structure beneath this region, we utilized teleseismic receiver function method. This paper presents the results of the analyses of the teleseismic earthquake waves recorded by 10 seismic observatories installed in the vicinity of major thrusts and faults. The teleseismic waves at epicentral distance between 30o and 90o with moment magnitudes greater than or equal to 5.5 that contains large amount of information about the crust and upper mantle structure directly beneath a receiver has been used. The receiver function (RF) technique has been widely applied to investigate crustal structures using P-to-S converted (Ps) phases from velocity discontinuities. The arrival time of the Ps, PpPs and PpSs+ PsPs converted and reverberated phases from the Moho can be combined to constrain the mean crustal thickness and Vp/Vs ratio. Over 500 receiver functions from 10 broadband stations located in the Jammu & Kashmir region of Northwest Himalaya were analyzed. With the help of H-K stacking method, we determined the crustal thickness (H) and average crustal Vp/Vs ratio (K) in this region. We also used Neighbourhood algorithm technique to verify our results. The receiver function results for these stations show that the crustal thickness under Jammu & Kashmir ranges from 45.0 to 53.6 km with an average value of 50.01 km. The Vp/Vs ratio varies from 1.63 to 1.99 with an average value of 1.784 which corresponds to an average Poisson’s ratio of 0.266 with a range from 0.198 to 0.331. High Poisson’s ratios under some stations may be related to partial melting in the crust near the uppermost mantle. The crustal structure model developed from this study can be used to refine the velocity model used in the precise epicenter location in the region, thereby increasing the knowledge to understand current seismicity in the region.

Keywords: H-K stacking, Poisson’s ratios, receiver function, teleseismic

Procedia PDF Downloads 214
27704 FT-NIR Method to Determine Moisture in Gluten Free Rice-Based Pasta during Drying

Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000 cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.

Keywords: FT-NIR, pasta, moisture determination, food engineering

Procedia PDF Downloads 233
27703 Step Height Calibration Using Hamming Window: Band-Pass Filter

Authors: Dahi Ghareab Abdelsalam Ibrahim

Abstract:

Calibration of step heights with high accuracy is needed for many applications in the industry. In general, step height consists of three bands: pass band, transition band (roll-off), and stop band. Abdelsalam used a convolution of the transfer functions of both Chebyshev type 2 and elliptic filters with WFF of the Fresnel transform in the frequency domain for producing a steeper roll-off with the removal of ripples in the pass band- and stop-bands. In this paper, we used a new method based on the Hamming window: band-pass filter for calibration of step heights in terms of perfect adjustment of pass-band, roll-off, and stop-band. The method is applied to calibrate a nominal step height of 40 cm. The step height is measured first by asynchronous dual-wavelength phase-shift interferometry. The measured step height is then calibrated by the simulation of the Hamming window: band-pass filter. The spectrum of the simulated band-pass filter is simulated at N = 881 and f0 = 0.24. We can conclude that the proposed method can calibrate any step height by adjusting only two factors which are N and f0.

Keywords: optical metrology, step heights, hamming window, band-pass filter

Procedia PDF Downloads 55
27702 Implementing Fault Tolerance with Proxy Signature on the Improvement of RSA System

Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi

Abstract:

Fault tolerance and data security are two important issues in modern communication systems. During the transmission of data between the sender and receiver, errors may occur frequently. Therefore, the sender must re-transmit the data to the receiver in order to correct these errors, which makes the system very feeble. To improve the scalability of the scheme, we present a proxy signature scheme with fault tolerance over an efficient and secure authenticated key agreement protocol based on the improved RSA system. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties.

Keywords: fault tolerance, improved RSA, key agreement, proxy signature

Procedia PDF Downloads 388
27701 Compensation of Cable Attenuation in Step Current Generators to Enable the Convolution Method for Calibration of Current Transducers

Authors: P. Treyer, M. Kujda, H. Urs

Abstract:

The purpose of this paper is to digitally compensate for the apparent discharge time constant of the coaxial cable so that the current step response is flat and can be used to calibrate current transducers using the convolution method. For proper use of convolution, the step response record length is required to be at least the same as the waveform duration to be evaluated. The current step generator based on the cable discharge is compared to the Blumlein generator. Moreover, the influence of each component of the system on the performance of the step is described, which allows building the appropriate measurement set-up. In the end, the calibration of current viewing resistors dedicated to high current impulse is computed.

Keywords: Blumlein generator, cable attenuation, convolution, current step generator

Procedia PDF Downloads 121
27700 Performance Evaluation of GPS/INS Main Integration Approach

Authors: Othman Maklouf, Ahmed Adwaib

Abstract:

This paper introduces a comparative study between the main GPS/INS coupling schemes, this will include the loosely coupled and tightly coupled configurations, several types of situations and operational conditions, in which the data fusion process is done using Kalman filtering. This will include the importance of sensors calibration as well as the alignment of the strap down inertial navigation system. The limitations of the inertial navigation systems are investigated.

Keywords: GPS, INS, Kalman filter, sensor calibration, navigation system

Procedia PDF Downloads 557
27699 Efficiency Improvement of REV-Method for Calibration of Phased Array Antennas

Authors: Daniel Hristov

Abstract:

The paper describes the principle of operation, simulation and physical validation of method for simultaneous acquisition of gain and phase states of multiple antenna elements and the corresponding feed lines across a Phased Array Antenna (PAA). The derived values for gain and phase are used for PAA-calibration. The method utilizes the Rotating-Element Electric- Field Vector (REV) principle currently used for gain and phase state estimation of single antenna element across an active antenna aperture. A significant reduction of procedure execution time is achieved with simultaneous setting of different phase delays to multiple phase shifters, followed by a single power measurement. The initial gain and phase states are calculated using spectral and correlation analysis of the measured power series.

Keywords: antenna, antenna arrays, calibration, phase measurement, power measurement

Procedia PDF Downloads 110
27698 Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia

Authors: Abdulraaof H. Alqaili, Hamad A. Alsoliman

Abstract:

Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper.

Keywords: mechanistic-empirical pavement design guide (MEPDG), traffic characteristics, materials properties, climate, Riyadh

Procedia PDF Downloads 201
27697 Item Response Calibration/Estimation: An Approach to Adaptive E-Learning System Development

Authors: Adeniran Adetunji, Babalola M. Florence, Akande Ademola

Abstract:

In this paper, we made an overview on the concept of adaptive e-Learning system, enumerates the elements of adaptive learning concepts e.g. A pedagogical framework, multiple learning strategies and pathways, continuous monitoring and feedback on student performance, statistical inference to reach final learning strategy that works for an individual learner by “mass-customization”. Briefly highlights the motivation of this new system proposed for effective learning teaching. E-Review literature on the concept of adaptive e-learning system and emphasises on the Item Response Calibration, which is an important approach to developing an adaptive e-Learning system. This paper write-up is concluded on the justification of item response calibration/estimation towards designing a successful and effective adaptive e-Learning system.

Keywords: adaptive e-learning system, pedagogical framework, item response, computer applications

Procedia PDF Downloads 563
27696 Design of a Telemetry, Tracking, and Command Radio-Frequency Receiver for Small Satellites Based on Commercial Off-The-Shelf Components

Authors: A. Lovascio, A. D’Orazio, V. Centonze

Abstract:

From several years till now the aerospace industry is developing more and more small satellites for Low-Earth Orbit (LEO) missions. Such satellites have a low cost of making and launching since they have a size and weight smaller than other types of satellites. However, because of size limitations, small satellites need integrated electronic equipment based on digital logic. Moreover, the LEOs require telecommunication modules with high throughput to transmit to earth a big amount of data in a short time. In order to meet such requirements, in this paper we propose a Telemetry, Tracking & Command module optimized through the use of the Commercial Off-The-Shelf components. The proposed approach exploits the major flexibility offered by these components in reducing costs and optimizing the performance. The method has been applied in detail for the design of the front-end receiver, which has a low noise figure (1.5 dB) and DC power consumption (smaller than 2 W). Such a performance is particularly attractive since it allows fulfilling the energy budget stringent constraints that are typical for LEO small platforms.

Keywords: COTS, LEO, small-satellite, TT&C

Procedia PDF Downloads 104
27695 Calibration of Hybrid Model and Arbitrage-Free Implied Volatility Surface

Authors: Kun Huang

Abstract:

This paper investigates whether the combination of local and stochastic volatility models can be calibrated exactly to any arbitrage-free implied volatility surface of European option. The risk neutral Brownian Bridge density is applied for calibration of the leverage function of our Hybrid model. Furthermore, the tails of marginal risk neutral density are generated by Generalized Extreme Value distribution in order to capture the properties of asset returns. The local volatility is generated from the arbitrage-free implied volatility surface using stochastic volatility inspired parameterization.

Keywords: arbitrage free implied volatility, calibration, extreme value distribution, hybrid model, local volatility, risk-neutral density, stochastic volatility

Procedia PDF Downloads 242
27694 Auto Calibration and Optimization of Large-Scale Water Resources Systems

Authors: Arash Parehkar, S. Jamshid Mousavi, Shoubo Bayazidi, Vahid Karami, Laleh Shahidi, Arash Azaranfar, Ali Moridi, M. Shabakhti, Tayebeh Ariyan, Mitra Tofigh, Kaveh Masoumi, Alireza Motahari

Abstract:

Water resource systems modelling have constantly been a challenge through history for human being. As the innovative methodological development is evolving alongside computer sciences on one hand, researches are likely to confront more complex and larger water resources systems due to new challenges regarding increased water demands, climate change and human interventions, socio-economic concerns, and environment protection and sustainability. In this research, an automatic calibration scheme has been applied on the Gilan’s large-scale water resource model using mathematical programming. The water resource model’s calibration is developed in order to attune unknown water return flows from demand sites in the complex Sefidroud irrigation network and other related areas. The calibration procedure is validated by comparing several gauged river outflows from the system in the past with model results. The calibration results are pleasantly reasonable presenting a rational insight of the system. Subsequently, the unknown optimized parameters were used in a basin-scale linear optimization model with the ability to evaluate the system’s performance against a reduced inflow scenario in future. Results showed an acceptable match between predicted and observed outflows from the system at selected hydrometric stations. Moreover, an efficient operating policy was determined for Sefidroud dam leading to a minimum water shortage in the reduced inflow scenario.

Keywords: auto-calibration, Gilan, large-scale water resources, simulation

Procedia PDF Downloads 309
27693 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes

Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales

Abstract:

In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.

Keywords: calibration, data modeling, industrial processes, machine learning

Procedia PDF Downloads 253
27692 Developing and Evaluating Clinical Risk Prediction Models for Coronary Artery Bypass Graft Surgery

Authors: Mohammadreza Mohebbi, Masoumeh Sanagou

Abstract:

The ability to predict clinical outcomes is of great importance to physicians and clinicians. A number of different methods have been used in an effort to accurately predict these outcomes. These methods include the development of scoring systems based on multivariate statistical modelling, and models involving the use of classification and regression trees. The process usually consists of two consecutive phases, namely model development and external validation. The model development phase consists of building a multivariate model and evaluating its predictive performance by examining calibration and discrimination, and internal validation. External validation tests the predictive performance of a model by assessing its calibration and discrimination in different but plausibly related patients. A motivate example focuses on prediction modeling using a sample of patients undergone coronary artery bypass graft (CABG) has been used for illustrative purpose and a set of primary considerations for evaluating prediction model studies using specific quality indicators as criteria to help stakeholders evaluate the quality of a prediction model study has been proposed.

Keywords: clinical prediction models, clinical decision rule, prognosis, external validation, model calibration, biostatistics

Procedia PDF Downloads 270
27691 Extended Kalman Filter and Markov Chain Monte Carlo Method for Uncertainty Estimation: Application to X-Ray Fluorescence Machine Calibration and Metal Testing

Authors: S. Bouhouche, R. Drai, J. Bast

Abstract:

This paper is concerned with a method for uncertainty evaluation of steel sample content using X-Ray Fluorescence method. The considered method of analysis is a comparative technique based on the X-Ray Fluorescence; the calibration step assumes the adequate chemical composition of metallic analyzed sample. It is proposed in this work a new combined approach using the Kalman Filter and Markov Chain Monte Carlo (MCMC) for uncertainty estimation of steel content analysis. The Kalman filter algorithm is extended to the model identification of the chemical analysis process using the main factors affecting the analysis results; in this case, the estimated states are reduced to the model parameters. The MCMC is a stochastic method that computes the statistical properties of the considered states such as the probability distribution function (PDF) according to the initial state and the target distribution using Monte Carlo simulation algorithm. Conventional approach is based on the linear correlation, the uncertainty budget is established for steel Mn(wt%), Cr(wt%), Ni(wt%) and Mo(wt%) content respectively. A comparative study between the conventional procedure and the proposed method is given. This kind of approaches is applied for constructing an accurate computing procedure of uncertainty measurement.

Keywords: Kalman filter, Markov chain Monte Carlo, x-ray fluorescence calibration and testing, steel content measurement, uncertainty measurement

Procedia PDF Downloads 259