Search results for: shear testing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4131

Search results for: shear testing

4041 Effective Width of Reinforced Concrete U-Shaped Walls Due to Shear Lag Effects

Authors: Ryan D. Hoult

Abstract:

The inherent assumption in the elementary theory of bending that plane sections remain plane is commonly used in the design of reinforced concrete members. However, in reality, a shear flow would develop in non-rectangular sections, where the longitudinal strains in between the web and flanges of the element would lag behind those at the boundary ends. This phenomenon, known as shear lag, can significantly reduce the expected moment capacity of non-rectangular reinforced concrete walls. This study focuses on shear lag effects in reinforced concrete U-shaped walls, which are commonly used as lateral load resisting elements in reinforced concrete buildings. An extensive number of finite element modelling analyses are conducted to estimate the vertical strain distributions across the web and flanges of a U-shaped wall with different axial load ratios and longitudinal reinforcement detailing. The results show that shear lag effects are prominent and sometimes significant in U-shaped walls, particularly for the wall sections perpendicular to the direction of loading.

Keywords: shear lag, walls, U-shaped, moment-curvature

Procedia PDF Downloads 180
4040 Shear Behaviour of RC Deep Beams with Openings Strengthened with Carbon Fiber Reinforced Polymer

Authors: Mannal Tariq

Abstract:

Construction industry is making progress at a high pace. The trend of the world is getting more biased towards the high rise buildings. Deep beams are one of the most common elements in modern construction having small span to depth ratio. Deep beams are mostly used as transfer girders. This experimental study consists of 16 reinforced concrete (RC) deep beams. These beams were divided into two groups; A and B. Groups A and B consist of eight beams each, having 381 mm (15 in) and 457 mm (18 in) depth respectively. Each group was further subdivided into four sub groups each consisting of two identical beams. Each subgroup was comprised of solid/control beam (without opening), opening above neutral axis (NA), at NA and below NA. Except for control beams, all beams with openings were strengthened with carbon fibre reinforced polymer (CFRP) vertical strips. These eight groups differ from each other based on depth and location of openings. For testing sake, all beams have been loaded with two symmetrical point loads. All beams have been designed based on strut and tie model concept. The outcome of experimental investigation elaborates the difference in the shear behaviour of deep beams based on depth and location of circular openings variation. 457 mm (18 in) deep beam with openings above NA show the highest strength and 381 mm (15 in) deep beam with openings below NA show the least strength. CFRP sheets played a vital role in increasing the shear capacity of beams.

Keywords: CFRP, deep beams, openings in deep beams, strut and tie modal, shear behaviour

Procedia PDF Downloads 275
4039 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sand-Silt

Authors: Youssouf Benmeriem

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behavior of granular classes of sands mixed with silt in loose and dense states (Dr = 15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200 and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.

Keywords: grading characteristics, granular classes of sands, mechanical behavior, sand-silt, shear strength

Procedia PDF Downloads 359
4038 FEM and Experimental Studies on the Filled Steel I-Girder Bridge

Authors: Waheed Ahmad Safi, Shunichi Nakamura

Abstract:

Steel/concrete composite bridge with the concrete filled steel I-girder (CFIG) was proposed, and the bending and shear strength was studied by experiments and FEM analysis. The area surrounded by the upper and lower flanges and the web is filled with concrete in CFIG, which is used at the intermediate support of a continuous girder. The bending and shear tests of the CFIG were carried out, showing that the bending strength of CFIG was 2.8 times of the conventional steel I-girder and the shear strength was 3.0 times of the steel I-girder. Finite element models were established to clarify bending and shear behaviors and the load transfer mechanism of CFIG. FEM result agreed very well with the test results. The FEM model was also applied to simulate the shear tests of the CFIG specimens. A trail design was carried out for a four-span continuous highway bridge and the design method was established.

Keywords: bending strength, concrete filled steel I-girder, steel I-girder, FEM, limit states design and shear strength

Procedia PDF Downloads 239
4037 Influence of Shear Deformation on Carbon Onions Stability under High Pressure

Authors: D. P. Evdokimov, A. N. Kirichenko, V. D. Blank, V. N. Denisov, B. A. Kulnitskiy

Abstract:

In this study we investigated the stability of polyhedral carbon onions under influence of shear deformation and high pressures above 43 GPa by means of by transmission electron microscopy (TEM) and Raman spectroscopy (RS). It was found that at pressures up to 29 GPa and shear deformations of 40 degrees the onions are stable. At shear deformation applying at pressures above 30 GPa carbon onions collapsed with formation of amorphous carbon. At pressures above 43 GPa diamond-like carbon (DLC) was obtained.

Keywords: carbon onions, Raman spectroscopy, transmission electron spectroscopy

Procedia PDF Downloads 416
4036 Experimental and Simulation Analysis of an Innovative Steel Shear Wall with Semi-Rigid Beam-to-Column Connections

Authors: E. Faizan, Wahab Abdul Ghafar, Tao Zhong

Abstract:

Steel plate shear walls (SPSWs) are a robust lateral load resistance structure because of their high flexibility and efficient energy dissipation when subjected to seismic loads. This research investigates the seismic performance of an innovative infill web strip (IWS-SPSW) and a typical unstiffened steel plate shear wall (USPSW). As a result, two 1:3 scale specimens of an IWS-SPSW and USPSW with a single story and a single bay were built and subjected to a cyclic lateral loading methodology. In the prototype, the beam-to-column connections were accomplished with the assistance of semi-rigid end-plate connectors. IWS-SPSW demonstrated exceptional ductility and shear load-bearing capacity during the testing process, with no cracks or other damage occurring. In addition, the IWS-SPSW could effectively dissipate energy without causing a significant amount of beam-column connection distortion. The shear load-bearing capacity of the USPSW was exceptional. However, it exhibited low ductility, severe infill plate corner ripping, and huge infill web plate cracks. The FE models were created and then confirmed using the experimental data. It has been demonstrated that the infill web strips of an SPSW system can affect the system's high performance and total energy dissipation. In addition, a parametric analysis was carried out to evaluate the material qualities of the IWS, which can considerably improve the system's seismic performances. These properties include the steel's strength as well as its thickness.

Keywords: steel shear walls, seismic performance, failure mode, hysteresis response, nonlinear finite element analysis, parametric study

Procedia PDF Downloads 52
4035 Mode II Fracture Toughness of Hybrid Fiber Reinforced Concrete

Authors: H. S. S Abou El-Mal, A. S. Sherbini, H. E. M. Sallam

Abstract:

Mode II fracture toughness (KIIc) of fiber reinforced concrete has been widely investigated under various patterns of testing geometries. The effect of fiber type, concrete matrix properties, and testing mechanisms were extensively studied. The area of hybrid fiber addition shows a lake of reported research data. In this paper an experimental investigation of hybrid fiber embedded in high strength concrete matrix is reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns, (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction (Vf) of 1.5%. The concrete matrix properties were kept the same for all hybrid fiber reinforced concrete patterns. In an attempt to estimate a fairly accepted value of fracture toughness KIIc, four testing geometries and loading types are employed in this investigation. Four point shear, Brazilian notched disc, double notched cube, and double edge notched specimens are investigated in a trial to avoid the limitations and sensitivity of each test regarding geometry, size effect, constraint condition, and the crack length to specimen width ratio a/w. The addition of all hybridization patterns of fiber reduced the compressive strength and increased mode II fracture toughness in pure mode II tests. Mode II fracture toughness of concrete KIIc decreased with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness KIIc is found to be sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness (KIIc). Four point shear (4PS) test set up reflects the most reliable values of mode II fracture toughness KIIc of concrete. Mode II fracture toughness KIIc of concrete couldn’t be assumed as a real material property.

Keywords: fiber reinforced concrete, Hybrid fiber, Mode II fracture toughness, testing geometry

Procedia PDF Downloads 306
4034 Assessment of the Interface Strength between High-Density Polyethylene Geomembrane and Expanded Polystyrene by the Direct Shear Test

Authors: Sergio Luiz da Costa Junior, Carolina Fofonka Palomino, Paulo Cesar Lodi

Abstract:

The use of light landfills is an effective solution for road works in soft ground sites, such as Rio de Janeiro (RJ) and Santos (SP) - the Southeastern Brazilian coast. The technique consists in replacing the topsoil by expandable polystyrene (EPS) geofoam, lined with geomembrane to prevent the attack of chemical products.Thus, knowing the interface shear strength of those materials is important in projects to avoid rupturing the system. The purpose of this paper is to compare the shear strength in the geomembrane-EPS interfaces by the direct shear test. The tests were performed under the dry and saturated condition, and four kind of high-density polyethylene (HDPE) 2,00mm geomembranes were used, smooth and texturized - manufactured in the flat die and blown film process. It was found that the shear strength is directly influenced by the roughness of the geomembrane, showed higher friction angle in the textured geomembrane. The direct shear test, in the saturated condition, also showed smaller friction angle than the now-wetted test.

Keywords: geofoam, geomembrane, soft ground, strength shear

Procedia PDF Downloads 287
4033 Microfluidic Fluid Shear Mechanotransduction Device Using Linear Optimization of Hydraulic Channels

Authors: Sanat K. Dash, Rama S. Verma, Sarit K. Das

Abstract:

A logarithmic microfluidic shear device was designed and fabricated for cellular mechanotransduction studies. The device contains four cell culture chambers in which flow was modulated to achieve a logarithmic increment. Resistance values were optimized to make the device compact. The network of resistances was developed according to a unique combination of series and parallel resistances as found via optimization. Simulation results done in Ansys 16.1 matched the analytical calculations and showed the shear stress distribution at different inlet flow rates. Fabrication of the device was carried out using conventional photolithography and PDMS soft lithography. Flow profile was validated taking DI water as working fluid and measuring the volume collected at all four outlets. Volumes collected at the outlets were in accordance with the simulation results at inlet flow rates ranging from 1 ml/min to 0.1 ml/min. The device can exert fluid shear stresses ranging four orders of magnitude on the culture chamber walls which will cover shear stress values from interstitial flow to blood flow. This will allow studying cell behavior in the long physiological range of shear stress in a single run reducing number of experiments.

Keywords: microfluidics, mechanotransduction, fluid shear stress, physiological shear

Procedia PDF Downloads 111
4032 The Effect of Soil Binder and Gypsum to the Changes of the Expansive Soil Shear Strength Parameters

Authors: Yulia Hastuti, Ratna Dewi, Muhammad Sandi

Abstract:

Many methods of soil stabilization that can be done such as by mixing chemicals. In this research, stabilization by mixing the soil using two types of chemical admixture, those are gypsum with a variation of 5%, 10%, and 15% and Soil binder with a concentration of 20 gr / lot of water, 25 gr / lot of water, and 30 gr / lot of water aimed to determine the effect on the soil plasticity index values and comparing the value of shear strength parameters of the mixture with the original soil conditions using a Triaxial UU test. Based on research done shows that with increasing variations in the mix, then the value of plasticity index decreased, which was originally 42% (very high degree of swelling) becomes worth 11.24% (lower Swelling degree) when a mixture of gypsum 15% and 30 gr / Lt water soil binder. As for the value shear, strength parameters increased in all variations of mixture. Admixture with the highest shear strength parameter's value is at 15% the mixture of gypsum and 20 gr / litre of water of soil binder with the 14 day treatment period, which has enhanced the cohesion value of 559.01%, the friction angle by 1157.14%. And a shear strength value of 568.49%. It can be concluded that the admixture of gypsum and soil binder correctly, can increase the value of shear strength parameters significantly and decrease the value of plasticity index of the soil.

Keywords: expansive soil, gypsum, soil binder, shear strength

Procedia PDF Downloads 444
4031 Investigate the Mechanical Effect of Different Root Analogue Models to Soil Strength

Authors: Asmaa Al Shafiee, Erdin Ibraim

Abstract:

Stabilizing slopes by using vegetation is considered as a cost-effective and eco-friendly alternative to the conventional methods. The main aim of this study is to investigate the mechanical effect of analogue root systems on the shear strength of different soil types. Three objectives were defined to achieve the main aim of this paper. Firstly, explore the effect of root architectural design to shear strength parameters. Secondly, study the effect of root area ratio (RAR) on the shear strength of two different soil types. Finally, to investigate how different kinds of soil can affect the behavior of the roots during shear failure. 3D printing tool was used to develop different analogue tap root models with different architectural designs. Direct shear tests were performed on Leighton Buzzard (LB) fraction B sand, which represents a coarse sand and Huston sand, which represent medium-coarse sand. All tests were done with the same relative density for both kinds of sand. The results of the direct shear test indicated that using plant roots will increase both friction angle and cohesion of soil. Additionally, different root designs affected differently the shear strength of the soil. Furthermore, the directly proportional relationship was found between root area ratio for the same root design and shear strength parameters of soil. Finally, the root area ratio effect should be combined with branches penetrating the shear plane to get the highest results.

Keywords: leighton buzzard sand, root area ratio, rooted soil, shear strength, slope stabilization

Procedia PDF Downloads 122
4030 Mechanical Properties of a Soil Stabilized With a Portland Cement

Authors: Ahmed Emad Ahmed, Mostafa El Abd, Ahmed Wakeb, Moahmmed Eissa

Abstract:

Soil modification and reinforcing aims to increase soil shear strength and stiffness. In this report, different amounts of cement were added to the soil to explore its effect on shear strength and penetration using 3 tests. The first test is proctor compaction test which was conducted to determine the optimal moisture content and maximum dry density. The second test was direct shear test which was conducted to measure shear strength of soil. The third experiment was California bearing ratio test which was done to measure the penetration in soil. Each test was done different amount of times using different amounts of cement. The results from every test show that cement improve soil shear strength properties and stiffness.

Keywords: soil stabilized, soil, mechanical properties of soil, soil stabilized with a portland cement

Procedia PDF Downloads 98
4029 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel

Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali

Abstract:

The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.

Keywords: cold formed steel 'CFS', shear wall panel, strip method, finite elements

Procedia PDF Downloads 284
4028 The Influence of Shear Wall Position on Seismic Performance in Buildings

Authors: Akram Khelaifia, Nesreddine Djafar Henni

Abstract:

Reinforced concrete shear walls are essential components in protecting buildings from seismic forces by providing both strength and stiffness. This study focuses on optimizing the placement of shear walls in a high seismic zone. Through nonlinear analyses conducted on an eight-story building, various scenarios of shear wall positions are investigated to evaluate their impact on seismic performance. Employing a performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria related to inter-story drift ratio and damage levels. The findings emphasize the importance of concentrating shear walls in the central area of the building during the design phase. This strategic placement proves more effective compared to peripheral distributions, resulting in reduced inter-story drift and mitigated potential damage during seismic events. Additionally, the research explores the use of shear walls that completely infill the frame, forming compound shapes like Box configurations. It is discovered that incorporating such complete shear walls significantly enhances the structure's reliability concerning inter-story drift. Conversely, the absence of complete shear walls within the frame leads to reduced stiffness and the potential deterioration of short beams.

Keywords: performance level, pushover analysis, shear wall, plastic hinge, nonlinear analyses

Procedia PDF Downloads 19
4027 The Application of Distributed Optical Strain Sensing to Measure Rock Bolt Deformation Subject to Bedding Shear

Authors: Thomas P. Roper, Brad Forbes, Jurij Karlovšek

Abstract:

Shear displacement along bedding defects is a well-recognised behaviour when tunnelling and mining in stratified rock. This deformation can affect the durability and integrity of installed rock bolts. In-situ monitoring of rock bolt deformation under bedding shear cannot be accurately derived from traditional strain gauge bolts as sensors are too large and spaced too far apart to accurately assess concentrated displacement along discrete defects. A possible solution to this is the use of fiber optic technologies developed for precision monitoring. Distributed Optic Sensor (DOS) embedded rock bolts were installed in a tunnel project with the aim of measuring the bolt deformation profile under significant shear displacements. This technology successfully measured the 3D strain distribution along the bolts when subjected to bedding shear and resolved the axial and lateral strain constituents in order to determine the deformational geometry of the bolts. The results are compared well with the current visual method for monitoring shear displacement using borescope holes, considering this method as suitable.

Keywords: distributed optical strain sensing, rock bolt, bedding shear, sandstone tunnel

Procedia PDF Downloads 137
4026 Shear Strengthening of Reinforced Concrete Deep Beams Using Carbon Fiber Reinforced Polymers

Authors: Hana' Al-Ghanim, Mu'tasim Abdel-Jaber, Maha Alqam

Abstract:

This experimental investigation deals with shear strengthening of reinforced concrete (RC) deep beams using the externally bonded carbon fiber-reinforced polymer (CFRP) composites. The current study, therefore, evaluates the effectiveness of four various configurations for shear strengthening of deep beams with two different types of CFRP materials including sheets and laminates. For this purpose, a total of 10 specimens of deep beams were cast and tested. The shear performance of the strengthened beams is assessed with respect to the cracks’ formation, modes of failure, ultimate strength and the overall stiffness. The obtained results demonstrate the effectiveness of using the CFRP technique on enhancing the shear capacity of deep beams; however, the efficiency varies depending on the material used and the strengthening scheme adopted. Among the four investigated schemes, the highest increase in the ultimate strength is recorded by using the continuous wrap of two layers of CFRP sheets, exceeding a value of 86%, whereas an enhancement of about 36% is achieved by the inclined CFRP laminates.

Keywords: deep beams, laminates, shear strengthening, sheets

Procedia PDF Downloads 335
4025 Load Bearing Capacity and Operational Effectiveness of Single Shear Joints of CFRP Composite Laminate with Spread Tow Thin Plies

Authors: Tabrej Khan, Tamer A. Sebaey, Balbir Singh, M. A. Umarfarooq

Abstract:

Spread-tow thin-ply-based technology has resulted in the progress of optimized reinforced composite plies with ultra-low thicknesses. There is wide use of composite bolted joints in the aircraft industry for load-bearing structures, and they are regarded as the primary source of stress concentration. The purpose of this study is to look into the bearing strength and structural performance of single shear bolt joint configurations in composite laminates, which are basically a combination of conventional thin-plies and thick-plies in some specific stacking sequence. The placement effect of thin-ply within the configured stack on bearing strength, as well as the potential damages, were investigated. Mechanical tests were used to understand the disfigurement mechanisms of the plies and their reciprocity, as well as to reflect on the single shear bolt joint properties and its load-bearing capacity. The results showed that changing the configuration of laminates by inserting the thin plies inside improved the bearing strength by up to 19%.

Keywords: hybrid composites, delamination, stress concentrations, mechanical testing, single bolt joint, thin-plies

Procedia PDF Downloads 37
4024 Evaluation for Punching Shear Strength of Slab-Column Connections with Ultra High Performance Fiber-Reinforced Concrete Overlay

Authors: H. S. Youm, S. G. Hong

Abstract:

This paper presents the test results on 5 slab-column connection specimens with Ultra High Performance Fiber-Reinforced Concrete (UHPFRC) overlay including 1 control specimen to investigate retrofitting effect of UHPFRC overlay on the punching shear capacity. The test parameters were the thickness of the UHPFRC overlay and the amount of steel re-bars in it. All specimens failed in punching shear mode with abrupt failure aspect. The test results showed that by adding a thin layer of UHPFRC over the Reinforced Concrete (RC) substrates, considerable increases in global punching shear resistance up to 82% and structural rigidity were achieved. Furthermore, based on the cracking patterns the composite systems appeared to be governed by two failure modes: 1) diagonal shear failure in RC section and 2) debonding failure at the interface.

Keywords: punching shear strength, retrofit, slab-column connection, UHPFRC, UHPFRC overlay

Procedia PDF Downloads 230
4023 An Atomic Finite Element Model for Mechanical Properties of Graphene Sheets

Authors: Win-Jin Chang, Haw-Long Lee, Yu-Ching Yang

Abstract:

In this study, we use the atomic-scale finite element method to investigate the mechanical behavior of the armchair- and zigzag-structured nanoporous graphene sheets with the clamped-free-free-free boundary condition under tension and shear loadings. The effect of porosity on Young’s modulus and shear modulus of nanoporous graphene sheets is obvious. For the armchair- and zigzag-structured nanoporous graphene sheets, Young’s modulus and shear modulus decreases with increasing porosity. Young’s modulus and shear modulus of zigzag graphene are larger than that of armchair one for the same porosity. The results are useful for application in the design of nanoporous graphene sheets.

Keywords: graphene, nanoporous, Young's modulus, shear modulus

Procedia PDF Downloads 371
4022 Evaluation of Prestressed Reinforced Concrete Slab Punching Shear Using Finite Element Method

Authors: Zhi Zhang, Liling Cao, Seyedbabak Momenzadeh, Lisa Davey

Abstract:

Reinforced concrete (RC) flat slab-column systems are commonly used in residential or office buildings, as the flat slab provides efficient clearance resulting in more stories at a given height than regular reinforced concrete beam-slab system. Punching shear of slab-column joints is a critical component of two-way reinforced concrete flat slab design. The unbalanced moment at the joint is transferred via slab moment and shear forces. ACI 318 provides an equation to evaluate the punching shear under the design load. It is important to note that the design code considers gravity and environmental load when considering the design load combinations, while it does not consider the effect from differential foundation settlement, which may be a governing load condition for the slab design. This paper describes how prestressed reinforced concrete slab punching shear is evaluated based on ACI 318 provisions and finite element analysis. A prestressed reinforced concrete slab under differential settlements is studied using the finite element modeling methodology. The punching shear check equation is explained. The methodology to extract data for punching shear check from the finite element model is described and correlated with the corresponding code provisions. The study indicates that the finite element analysis results should be carefully reviewed and processed in order to perform accurate punching shear evaluation. Conclusions are made based on the case studies to help engineers understand the punching shear behavior in prestressed and non-prestressed reinforced concrete slabs.

Keywords: differential settlement, finite element model, prestressed reinforced concrete slab, punching shear

Procedia PDF Downloads 106
4021 Comparative Safety Performance Evaluation of Profiled Deck Composite Slab from the Use of Slope-Intercept and Partial Shear Methods

Authors: Izian Abd. Karim, Kachalla Mohammed, Nora Farah Abd Aznieta Aziz, Law Teik Hua

Abstract:

The economic use and ease of construction of profiled deck composite slab is marred with the complex and un-economic strength verification required for the serviceability and general safety considerations. Beside these, albeit factors such as shear span length, deck geometries and mechanical frictions greatly influence the longitudinal shear strength, that determines the ultimate strength of profiled deck composite slab, and number of methods available for its determination; partial shear and slope-intercept are the two methods according to Euro-code 4 provision. However, the complexity associated with shear behavior of profiled deck composite slab, the use of these methods in determining the load carrying capacities of such slab yields different and conflicting values. This couple with the time and cost constraint associated with the strength verification is a source of concern that draws more attentions nowadays, the issue is critical. Treating some of these known shear strength influencing factors as random variables, the load carrying capacity violation of profiled deck composite slab from the use of the two-methods defined according to Euro-code 4 are determined using reliability approach, and comparatively studied. The study reveals safety values from the use of m-k method shows good standing compared with that from the partial shear method.

Keywords: composite slab, first order reliability method, longitudinal shear, partial shear connection, slope-intercept

Procedia PDF Downloads 332
4020 Immediate and Long-Term Effect of the Sawdust Usage on Shear Strength of the Clayey Silt Soil

Authors: Dogan Cetin, Omar Hamdi Jasim

Abstract:

Using some additives is very common method to improve the soil properties such as shear strength, bearing capacity; and to reduce the settlement and lateral deformation. Soil reinforcement with natural materials is an attractive method to improve the soil properties because of their low cost. However, the studies conducted by using natural additive are very limited. This paper presents the results of an investigation on the immediate and long-term effects of the sawdust on the shear strength behavior of a clayey silt soil obtained in Arnavutkoy in Istanbul with sawdust. Firstly, compaction tests were conducted to be able to optimum moisture content for every percentage of sawdust. The samples were obtained from compacted soil at optimum moisture content. UU Triaxial Tests were conducted to evaluate the response of randomly distributed sawdust on the strength of low plasticity clayey silt soil. The specimens were tested with 1%, 2% and 3% content of sawdust. It was found that the undrained shear strength of clay soil with 1%, 2% and 3% sawdust were increased respectively 4.65%, 27.9% and 39.5% higher than the soil without additive. At 5%, shear strength of clay soil decreased by 3.8%. After 90 days cure period, the shear strength of the soil with 1%, 2%, 3% and %5 increased respectively 251%, 302%, 260% and 153%. It can be said that the effect of the sawdust usage has a remarkable effect on the undrained shear strength of the soil. Besides the increasing undrained shear strength, it was also found that the sawdust decreases the liquid limit, plastic limit and plasticity index by 5.5%, 2.9 and 10.9% respectively.

Keywords: compaction test, sawdust, shear strength, UU Triaxial Test

Procedia PDF Downloads 329
4019 Geotechnical Characterization of an Industrial Waste Landfill: Stability and Environmental Study

Authors: Maria Santana, Jose Estaire

Abstract:

Even though recycling strategies are becoming more important in recent years, there is still a huge amount of industrial by-products that are the disposal of at landfills. Due to the size, possible dangerous composition, and heterogeneity, most of the wastes are located at landfills without a basic geotechnical characterization. This lack of information may have an important influence on the correct stability calculations. This paper presents the results of geotechnical characterization of some industrial wastes disposed at one landfill. The shear strength parameters were calculated based on direct shear test results carried out in a large shear box owned by CEDEX, which has a shear plane of 1 x 1 m. These parameters were also compared with the results obtained in a 30 x 30 cm shear box. The paper includes a sensitive analysis of the global safety factor of the landfill's overall stability as a function of shear strength variation. The stability calculations were assessed for various hydrological scenarios to simulate the design and performance of the leachate drainage system. The characterization was completed with leachate tests to study the potential impact on the environment.

Keywords: industrial wastes, landfill, leachate tests, stability

Procedia PDF Downloads 173
4018 The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning

Authors: Kyle Saltmarsh

Abstract:

Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage.

Keywords: plates, deformation, acoustic features, machine learning

Procedia PDF Downloads 317
4017 Correlation between the Undrained Shear Strength of Clay of the Champlain Sea as Determined by the Vane Test and the Swedish Cone

Authors: Tahar Ayadat

Abstract:

The undrained shear strength is an essential parameter for determining the consistency and the ultimate bearing capacity of a clay layer. The undrained shear strength can be determined by field tests such as the in situ vane test or in laboratory, including hand vane test, triaxial, simple compression test, and the consistency penetrometer (i.e. Swedish cone). However, the field vane test and the Swedish cone are the most commonly used tests by geotechnical experts. In this technical note, a comparison between the shear strength results obtained by the in situ vane test and the cone penetration test (Swedish cone) was conducted. A correlation between the results of these two tests, concerning the undrained shear strength of the Champlain sea clay, has been developed. Moreover, some applications of the proposed correlation on some geotechnical problems have been included, such as the determination of the consistency and the bearing capacity of a clay layer.

Keywords: correlation, shear strength, clay, vane test, Swedish cone

Procedia PDF Downloads 374
4016 Determination of Small Shear Modulus of Clayey Sand Using Bender Element Test

Authors: R. Sadeghzadegan, S. A. Naeini, A. Mirzaii

Abstract:

In this article, the results of a series of carefully conducted laboratory test program were represented to determine the small strain shear modulus of sand mixed with a range of kaolinite including zero to 30%. This was experimentally achieved using a triaxial cell equipped with bender element. Results indicate that small shear modulus tends to increase, while clay content decreases and effective confining pressure increases. The exponent of stress in the power model regression analysis was not sensitive to the amount of clay content for all sand clay mixtures, while coefficient A was directly affected by change in clay content.

Keywords: small shear modulus, bender element test, plastic fines, sand

Procedia PDF Downloads 445
4015 Mechanical Model of Gypsum Board Anchors Subjected Cyclic Shear Loading

Authors: Yoshinori Kitsutaka, Fumiya Ikedo

Abstract:

In this study, the mechanical model of various anchors embedded in gypsum board subjected cyclic shear loading were investigated. Shear tests for anchors embedded in 200 mm square size gypsum board were conducted to measure the load - load displacement curves. The strength of the gypsum board was changed for three conditions and 12 kinds of anchors were selected which were ordinary used for gypsum board anchoring. The loading conditions were a monotonous loading and a cyclic loading controlled by a servo-controlled hydraulic loading system to achieve accurate measurement. The fracture energy for each of the anchors was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the strength of gypsum board and the types of anchors on the shear properties of gypsum board anchors was cleared. A numerical model to predict the load-unload curve of shear deformation of gypsum board anchors caused by such as the earthquake load was proposed and the validity on the model was proved.

Keywords: gypsum board, anchor, shear test, cyclic loading, load-unload curve

Procedia PDF Downloads 366
4014 Mobile Application Testing Matrix and Challenges

Authors: Bakhtiar Amen, Sardasht Mahmood, Joan Lu

Abstract:

The adoption of smartphones and the usages of mobile applications are increasing rapidly. Consequently, within limited time-range, mobile Internet usages have managed to take over the desktop usages particularly since the first smartphone-touched application released by iPhone in 2007. This paper is proposed to provide solution and answer the most demandable questions related to mobile application automated and manual testing limitations. Moreover, Mobile application testing requires agility and physically testing. Agile testing is to detect bugs through automated tools, whereas the compatibility testing is more to ensure that the apps operates on mobile OS (Operation Systems) as well as on the different real devices. Moreover, we have managed to answer automated or manual questions through two mobile application case studies MES (Mobile Exam System) and MLM (Mobile Lab Mate) by creating test scripts for both case studies and our experiment results have been discussed and evaluated on whether to adopt test on real devices or on emulators? In addition to this, we have introduced new mobile application testing matrix for the testers and some enterprises to obtain knowledge from.

Keywords: mobile app testing, testing matrix, automated, manual testing

Procedia PDF Downloads 449
4013 Determination of Elastic Constants for Scots Pine Grown in Turkey Using Ultrasound

Authors: Ergun Guntekin

Abstract:

This study investigated elastic constants of scots pine (Pinus sylvestris L.) grown in Turkey by means of ultrasonic waves. Three Young’s modulus, three shear modulus and six Poisson ratios were determined at constant moisture content (12 %). Three longitudinal and six shear wave velocities propagating along the principal axes of anisotropy, and additionally, three quasi-shear wave velocities at 45° with respect to the principal axes of anisotropy were measured using EPOCH 650 ultrasonic flaw detector. The measured average longitudinal wave velocities for the sapwood in L, R, T directions were 4795, 1713 and 1117 m/s, respectively. The measured average shear wave velocities ranged from 682 to 1382 m/s. The measured quasi-shear wave velocities varied between 642 and 1280 m/s. The calculated average modulus of elasticity values for the sapwood in L, R, T directions were 11913, 1565 and 663 N/mm2, respectively. The calculated shear modulus in LR, LT and RT planes were 1031, 541, 415 N/mm2. Comparing with available literature, the predicted elastic constants are acceptable.

Keywords: elastic constants, prediction, Scots pine, ultrasound

Procedia PDF Downloads 253
4012 A New Approach for Assertions Processing during Assertion-Based Software Testing

Authors: Ali M. Alakeel

Abstract:

Assertion-based software testing has been shown to be a promising tool for generating test cases that reveal program faults. Because the number of assertions may be very large for industry-size programs, one of the main concerns to the applicability of assertion-based testing is the amount of search time required to explore a large number of assertions. This paper presents a new approach for assertions exploration during the process of Assertion-Based software testing. Our initial exterminations with the proposed approach show that the performance of Assertion-Based testing may be improved, therefore, making this approach more efficient when applied on programs with large number of assertions.

Keywords: software testing, assertion-based testing, program assertions, generating test

Procedia PDF Downloads 429