Search results for: share of renewable energy in total energy consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18525

Search results for: share of renewable energy in total energy consumption

18345 Magnetotelluric Method Approach for the 3-D Inversion of Geothermal System’s Dissemination in Indonesia

Authors: Pelangi Wiyantika

Abstract:

Sustainable energy is the main concern in According to solve any problems on energy sectors. One of the sustainable energy that has lack of presentation is Geothermal energy which has developed lately as the new promising sustainable energy. Indonesia as country that has been passed by the ring of fire zone has many geothermal sources. This is the good opportunity to elaborate and learn more about geothermal as sustainable and renewable energy. Geothermal systems have special characteristic whom the zone of sources can be detected by measuring the resistivity of the subsurface. There are many methods to measuring the anomaly of the systems. One of the best method is Magnetotelluric approchment. Magnetotelluric is the passive method which the resistivity is obtained by injecting the eddy current of rocks in the subsurface with the sources. The sources of Magnetotelluric method can be obtained from lightning or solar wind which has the frequencies each below 1 Hz and above 1 Hz.

Keywords: geothermal, magnetotelluric, renewable energy, resistivity, sustainable energy

Procedia PDF Downloads 274
18344 Energy Trading for Cooperative Microgrids with Renewable Energy Resources

Authors: Ziaullah, Shah Wahab Ali

Abstract:

Micro-grid equipped with heterogeneous energy resources present the idea of small scale distributed energy management (DEM). DEM helps in minimizing the transmission and operation costs, power management and peak load demands. Micro-grids are collections of small, independent controllable power-generating units and renewable energy resources. Micro-grids also motivate to enable active customer participation by giving accessibility of real-time information and control to the customer. The capability of fast restoration against faulty situation, integration of renewable energy resources and Information and Communication Technologies (ICT) make micro-grid as an ideal system for distributed power systems. Micro-grids can have a bank of energy storage devices. The energy management system of micro-grid can perform real-time energy forecasting of renewable resources, energy storage elements and controllable loads in making proper short-term scheduling to minimize total operating costs. We present a review of existing micro-grids optimization objectives/goals, constraints, solution approaches and tools used in micro-grids for energy management. Cost-benefit analysis of micro-grid reveals that cooperation among different micro-grids can play a vital role in the reduction of import energy cost and system stability. Cooperative micro-grids energy trading is an approach to electrical distribution energy resources that allows local energy demands more control over the optimization of power resources and uses. Cooperation among different micro-grids brings the interconnectivity and power trading issues. According to the literature, it shows that open area of research is available for cooperative micro-grids energy trading. In this paper, we proposed and formulated the efficient energy management/trading module for interconnected micro-grids. It is believed that this research will open new directions in future for energy trading in cooperative micro-grids/interconnected micro-grids.

Keywords: distributed energy management, information and communication technologies, microgrid, energy management

Procedia PDF Downloads 345
18343 Contribution to the Success of the Energy Audit in the Industrial Environment: A Case Study about Audit of Interior Lighting for an Industrial Site in Morocco

Authors: Abdelkarim Ait Brik, Abdelaziz Khoukh, Mustapha Jammali, Hamid Chaikhy

Abstract:

The energy audit is the essential initial step to ensure a good definition of energy control actions. The in-depth study of the various energy-consuming equipments makes it possible to determine the actions and investments with best cost for the company. The analysis focuses on the energy consumption of production equipment and utilities (lighting, heating, air conditioning, ventilation, transport). Successful implementation of this approach requires, however, to take into account a number of prerequisites. This paper proposes a number of useful recommendations concerning the energy audit in order to achieve better results, and a case study concerning the lighting audit of a Moroccan company by showing the gains that can be made through this audit.

Keywords: energy audit, energy diagnosis, consumption, electricity, energy efficiency, lighting audit

Procedia PDF Downloads 669
18342 Nearly Zero Energy Building: Analysis on How End-Users Affect Energy Savings Targets

Authors: Margarida Plana

Abstract:

One of the most important energy challenge of the European policies is the transition to a Net Zero Energy Building (NZEB) model. A NZEB is a new concept of building that has the aim of reducing both the energy consumption and the carbon emissions to nearly zero of the course of a year. To achieve this nearly zero consumption, apart from being buildings with high efficiency levels, the energy consumed by the building has to be produced on-site. This paper is focused on presenting the results of the analysis developed on basis of real projects’ data in order to quantify the impact of end-users behavior. The analysis is focused on how the behavior of building’s occupants can vary the achievement of the energy savings targets and how they can be limited. The results obtained show that on this kind of project, with very high energy performance, is required to limit the end-users interaction with the system operation to be able to reach the targets fixed.

Keywords: end-users impacts, energy efficiency, energy savings, NZEB model

Procedia PDF Downloads 349
18341 Governance of Clean Energy in Rural Northwest Pakistan

Authors: Inayatullah Jan, Sidra Pervez

Abstract:

Effective institutional arrangements at local and national levels are quintessential for promotion of renewable energy in a country. This study attempts to examine the institutional arrangements for development of domestic renewable energy in rural northwest Pakistan. The study describes that very limited number of public and private organizations were working on clean development in the area. Surprisingly, no institutional arrangements exclusively meant for domestic clean energy promotion were observed in the area. The study concludes that the objectives of Kyoto Protocol in Pakistan can be achieved only if the government and non-governmental organizations work together to launch cost-effective renewable energy interventions, particularly in rural areas. The need is to have a coordinated, consistent, and focused cooperation of all stakeholders involved in promotion of domestic renewable energy at all levels. This will not only improve the socioeconomic and environmental conditions in the local context, but will play a key role in achieving the United Nations Millennium Development Goals(MDGs).

Keywords: governance, clean energy, greenhouse gases, CDM, Northwest Pakistan

Procedia PDF Downloads 362
18340 Modelling Residential Space Heating Energy for Romania

Authors: Ion Smeureanu, Adriana Reveiu, Marian Dardala, Titus Felix Furtuna, Roman Kanala

Abstract:

This paper proposes a linear model for optimizing domestic energy consumption, in Romania. Both techno-economic and consumer behavior approaches have been considered, in order to develop the model. The proposed model aims to reduce the energy consumption, in households, by assembling in a unitary model, aspects concerning: residential lighting, space heating, hot water, and combined space heating – hot water, space cooling, and passenger transport. This paper focuses on space heating domestic energy consumption model, and quantify not only technical-economic issues, but also consumer behavior impact, related to people decision to envelope and insulate buildings, in order to minimize energy consumption.

Keywords: consumer behavior, open source energy modeling system (OSeMOSYS), MARKAL/TIMES Romanian energy model, virtual technologies

Procedia PDF Downloads 519
18339 Efficient Solid Oxide Electrolysers for Syn-Gas Generation Using Renewable Energy

Authors: G. Kaur, A. P. Kulkarni, S. Giddey

Abstract:

Production of fuels and chemicals using renewable energy is a promising way for large-scale energy storage and export. Solid oxide electrolysers (SOEs) integrated with renewable source of energy can produce 'Syngas' H₂/CO from H₂O/CO₂ in the desired ratio for further conversion to liquid fuels. As only a waste CO₂ from industrial and power generation processes is utilized in these processes, this approach is CO₂ neutral compared to using fossil fuel feedstock. In addition, the waste heat from industrial processes or heat from solar thermal concentrators can be effectively utilised in SOEs to further reduce the electrical requirements by up to 30% which boosts overall energy efficiency of the process. In this paper, the electrochemical performance of various novel steam/CO₂ reduction electrodes (cathode) would be presented. The efficiency and lifetime degradation data for single cells and a stack would be presented along with the response of cells to variable electrical load input mimicking the intermittent nature of the renewable energy sources. With such optimisation, newly developed electrodes have been tested for 500+ hrs with Faraday efficiency (electricity to fuel conversion efficiency) up to 95%, and thermal efficiency in excess of 70% based upon energy content of the syngas produced.

Keywords: carbon dioxide, steam conversion, electrochemical system, energy storage, fuel production, renewable energy

Procedia PDF Downloads 209
18338 Energy Efficient Building Design in Nigeria: An Assessment of the Effect of the Sun on Energy Consumption in Residential Buildings

Authors: Ekele T. Ochedi, Ahmad H. Taki, Birgit Painter

Abstract:

The effect of the sun and its path on thermal comfort and energy consumption in residential buildings in tropical climates constitute a serious concern for designers, building owners, and users. Passive design approaches based on the sun and its path have been identified as a means of reducing energy consumption as well as enhancing thermal comfort in buildings worldwide. Hence, a thorough understanding regarding the sun path is key to achieving this. This is necessary due to energy need, poor energy supply, and distribution, energy poverty, and over-dependence on electric generators for power supply in Nigeria. These challenges call for a change in the approach to energy-related issues, especially in terms of buildings. The aim of this study is to explore the influence of building orientation, glazing and the use of shading devices on residential buildings in Nigeria. This is intended to provide data that will guide designers in the design of energy-efficient residential buildings. The paper used EnergyPlus to analyze a typical semi-detached residential building in Lokoja, Nigeria using hourly weather data for a period of 10 years. Building performance was studied as well as possible improvement regarding different orientations, glazing types and shading devices. The simulation results show some reductions in energy consumption in response to changes in building orientation, types of glazing and the use of shading devices. The results indicate 29.45% reduction in solar gains and 1.90% in annual operative temperature using natural ventilation only. This shows a huge potential to reduce energy consumption and improve people’s well-being through the use of proper building orientation, glazing and appropriate shading devices on building envelope. The study concludes that for a significant reduction in total energy consumption by residential buildings, the design should focus on multiple design options rather than concentrating on one or few building elements. Moreover, the investigation confirms that energy performance modeling can be used by building designers to take advantage of the sun and to evaluate various design options.

Keywords: energy consumption, energy-efficient buildings, glazing, thermal comfort, shading devices, solar gains

Procedia PDF Downloads 179
18337 Energy Consumption and GHG Production in Railway and Road Passenger Regional Transport

Authors: Martin Kendra, Tomas Skrucany, Jozef Gnap, Jan Ponicky

Abstract:

Paper deals with the modeling and simulation of energy consumption and GHG production of two different modes of regional passenger transport – road and railway. These two transport modes use the same type of fuel – diesel. Modeling and simulation of the energy consumption in transport is often used due to calculation satisfactory accuracy and cost efficiency. Paper deals with the calculation based on EN standards and information collected from technical information from vehicle producers and characteristics of tracks. Calculation included maximal theoretical capacity of bus and train and real passenger’s measurement from operation. Final energy consumption and GHG production is calculated by using software simulation. In evaluation of the simulation is used system ‘well to wheel’.

Keywords: bus, consumption energy, GHG, production, simulation, train

Procedia PDF Downloads 417
18336 Solar Photovoltaic System (PV) Usages on Residential Houses in the Absheron Peninsula Region of the Republic of Azerbaijan: Obstacles and Opportunities

Authors: Elnur Abbasov

Abstract:

Energy security and climate change comprise some of the most important concerns facing humankind today and probably in the future if they are not addressed appropriately. In order to stabilize the global climate, there is the need for the world to lessen its use of fossil energy, which requires enhancement of current energy efficiency as well as the development of novel energy sources, such as energy obtained from renewable sources. There is no doubt that the steady transition towards a solar-based economy is likely to result in the development of completely new sectors, behaviours, and jobs that are pro-environmental. Azerbaijan Republic as the largest nation state in the South Caucasus Region has the potential for using and developing the renewable sources of energy in order to support the environmental challenge resolution associated with the climate change, improving the environmental situation in the country. Solar PV comprises one of the direct usages of solar energy. In this paper, sustainable PV usage scenario in residential houses was introduced to reduce negative environmental effects of land use, water consumption, air pollution etc. It was recommended by an author that, PV systems can be part of function and design of residential building components: such as roofs, walls, windows.

Keywords: energy efficiency, environmentally friendly, photovoltaic engineering, sustainable energy usage scenario

Procedia PDF Downloads 222
18335 Adopting Cloud-Based Techniques to Reduce Energy Consumption: Toward a Greener Cloud

Authors: Sandesh Achar

Abstract:

The cloud computing industry has set new goals for better service delivery and deployment, so anyone can access services such as computation, application, and storage anytime. Cloud computing promises new possibilities for approaching sustainable solutions to deploy and advance their services in this distributed environment. This work explores energy-efficient approaches and how cloud-based architecture can reduce energy consumption levels amongst enterprises leveraging cloud computing services. Adopting cloud-based networking, database, and server machines provide a comprehensive means of achieving the potential gains in energy efficiency that cloud computing offers. In energy-efficient cloud computing, virtualization is one aspect that can integrate several technologies to achieve consolidation and better resource utilization. Moreover, the Green Cloud Architecture for cloud data centers is discussed in terms of cost, performance, and energy consumption, and appropriate solutions for various application areas are provided.

Keywords: greener cloud, cloud computing, energy efficiency, energy consumption, metadata tags, green cloud advisor

Procedia PDF Downloads 53
18334 Design of a Solar Water Heating System with Thermal Storage for a Three-Bedroom House in Newfoundland

Authors: Ahmed Aisa, Tariq Iqbal

Abstract:

This letter talks about the ready-to-use design of a solar water heating system because, in Canada, the average consumption of hot water per person is approximately 50 to 75 L per day and the average Canadian household uses 225 L. Therefore, this paper will demonstrate the method of designing a solar water heating system with thermal storage. It highlights the renewable hybrid power system, allowing you to obtain a reliable, independent system with the optimization of the ingredient size and at an improved capital cost. The system can provide hot water for a big building. The main power for the system comes from solar panels. Solar Advisory Model (SAM) and HOMER are used. HOMER and SAM are design models that calculate the consumption of hot water and cost for a house. Some results, obtained through simulation, were for monthly energy production, annual energy production, after tax cash flow, the lifetime of the system and monthly energy usage represented by three types of energy. These are system energy, electricity load electricity and net metering credit.

Keywords: water heating, thermal storage, capital cost solar, consumption

Procedia PDF Downloads 403
18333 Climate Change and Economic Performance in Selected Oil-Producing African Countries: A Trend Analysis Approach

Authors: Waheed O. Majekodunmi

Abstract:

Climate change is a real global phenomenon and an unquestionable threat to our quest for a healthy and livable planet. It is now regarded as potentially the most monumental environmental challenge people and the planet will be confronted with over the next centuries. Expectedly, climate change mitigation was one of the central themes of COP 28. Despite contributing the least to climate change, Africa is and remains the hardest hit by the negative consequences of climate change including poor growth performance. Currently, it is being hypothesized that the high level of vulnerability and exposure to climate-related disasters, low adaptive capacity against global warming and high mitigation costs of climate change across the continent could be linked to the recent abysmal economic performance of African countries, especially in oil-producing countries where greenhouse gas emissions, is potentially more prevalent. This paper examines the impact of climate change on the economic performance of selected oil-producing countries in Africa using evidence from Nigeria, Algeria and Angola. The objective of the study is to determine whether or not climate change influences the economic performance of oil-producing countries in Africa by examining the nexus between economic growth and climate-related variables. The study seeks to investigate the effect of climate change on the pace of economic growth in African oil-producing countries. To achieve the research objectives, this study utilizes a quantitative approach by using historical and current secondary data sets to determine the relationship between climate-related variables and economic growth variables in the selected countries. The study employed numbers, percentages, tables and trend graphs to explain the trends or common patterns between climate change, economic growth and determinants of economic growth: governance effectiveness, infrastructure, macroeconomic stability and regulatory efficiency. Results from the empirical analysis of data show that the trends of economic growth and climate-related variables in the selected oil-producing countries are in the opposite directions as the increasing share of renewable energy sources in total energy consumption and the reduction in greenhouse gas emissions per capita in the oil-producing countries did not translate to higher economic growth. Further findings show that annual surface temperatures in the selected countries do not share similar trends with the food imports ratio and GDP per capita annual growth rate suggesting that climate change does not impact significantly agricultural productivity and economic growth in oil-producing countries in Africa. Annual surface temperature was also found to not share a similar pattern with governance effectiveness, macroeconomic stability and regulatory efficiency reinforcing the claim that some economic growth variables are independent of climate change. The policy implication of this research is that oil-producing African countries need to focus more on improving the macroeconomic environment and streamlining governance and institutional processes to boost their economic performance before considering the adoption of climate change adaptation and mitigation strategies.

Keywords: climate change, climate vulnerability, economic growth, greenhouse gas emissions per capita, oil-producing countries, share of renewable energy in total energy consumption

Procedia PDF Downloads 16
18332 Impact of Wheel-Housing on Aerodynamic Drag and Effect on Energy Consumption on an Bus

Authors: Amitabh Das, Yash Jain, Mohammad Rafiq B. Agrewale, K. C. Vora

Abstract:

Role of wheel and underbody aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing geometry and pattern. Based on benchmarking a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption on an electric bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.

Keywords: wheel-housing, CFD simulation, drag coefficient, energy consumption

Procedia PDF Downloads 159
18331 Analysis of Energy Planning and Optimization with Microgrid System in Dawei Region

Authors: Hninn Thiri Naing

Abstract:

In Myanmar, there are many regions that are far away from the national grid. For these areas, isolated regional micro-grids are one of the solutions. The study area in this paper is also operating in such way. The main difficulty in such regions is the high cost of electrical energy. This paper will be approached to cost-effective or cost-optimization by energy planning with renewable energy resources and natural gas. Micro-grid will be set up for performance in the Dawei region since it is economic zone in lower Myanmar and so far from national grids. The required metrological and geographical data collections are done. Currently, the status is electric unit rate is higher than the other. For microgrid planning and optimization, Homer Pro-software is employed in this research.

Keywords: energy planning, renewable energy, homer pro, cost of energy

Procedia PDF Downloads 106
18330 Investigation on Biomass as an Alternate Source for Power Generation

Authors: Narsimhulu Sanke, D. N. Reddy

Abstract:

The purpose of the paper is to discuss the biomass as a renewable source of energy for power generation. The setup is designed and fabricated in the Centre for Energy Technology (CET) and four different fuels are tested in the laboratory, but here the focus is on wood blocks (fuel) combustion with temperature, gas composition percentage by volume and the heating values.

Keywords: biomass, downdraft gasifier, power generation, renewable energy sources

Procedia PDF Downloads 513
18329 Assessment of Energy Use and Energy Efficiency in Two Portuguese Slaughterhouses

Authors: M. Feliciano, F. Rodrigues, A. Gonçalves, J. M. R. C. A. Santos, V. Leite

Abstract:

With the objective of characterizing the profile and performance of energy use by slaughterhouses, surveys and audits were performed in two different facilities located in the northeastern region of Portugal. Energy consumption from multiple energy sources was assessed monthly, along with production and costs, for the same reference year. Gathered data was analyzed to identify and quantify the main consuming processes and to estimate energy efficiency indicators for benchmarking purposes. Main results show differences between the two slaughterhouses concerning energy sources, consumption by source and sector, and global energy efficiency. Electricity is the most used source in both slaughterhouses with a contribution of around 50%, being essentially used for meat processing and refrigeration. Natural gas, in slaughterhouse A, and pellets, in slaughterhouse B, used for heating water take the second place, with a mean contribution of about 45%. On average, a 62 kgoe/t specific energy consumption (SEC) was found, although with differences between slaughterhouses. A prominent negative correlation between SEC and carcass production was found specially in slaughterhouse A. Estimated Specific Energy Cost and Greenhouse Gases Intensity (GHGI) show mean values of about 50 €/t and 1.8 tCO2e/toe, respectively. Main results show that there is a significant margin for improving energy efficiency and therefore lowering costs in this type of non-energy intensive industries.

Keywords: meat industry, energy intensity, energy efficiency, GHG emissions

Procedia PDF Downloads 336
18328 How to Capitalize on BioCNG at a Wastewater Plant

Authors: William G. "Gus" Simmons

Abstract:

Municipal and industrial wastewater plants across our country utilize anaerobic digestion as either primary treatment or as a means of waste sludge treatment and reduction. The emphasis on renewable energy and clean energy over the past several years, coupled with increasing electricity costs and increasing consumer demands for efficient utility operations has led to closer examination of the potential for harvesting the energy value of the biogas produced by anaerobic digestion. Although some facilities may have already come to the belief that harvesting this energy value is not practical or a top priority as compared to other capital needs and initiatives at the wastewater plant, we see that many are seeing biogas, and an opportunity for additional revenues, go up in flames as they continue to flare. Conversely, few wastewater plants under progressive and visionary leadership have demonstrated that harvesting the energy value from anaerobic digestion is more than “smoke and hot air”. From providing thermal energy to adjacent or on-campus operations to generating electricity and/or transportation fuels, these facilities are proving that energy harvesting can not only be profitable, but sustainable. This paper explores ways in which wastewater treatment plants can increase their value and import to the communities they serve through the generation of clean, renewable energy; also presented the processes in which these facilities moved from energy and cost sinks to sparks of innovation and pride in the communities in which they operate.

Keywords: anaerobic digestion, harvesting energy, biogas, renewable energy, sustainability

Procedia PDF Downloads 280
18327 Economic Analysis of Policy Instruments for Energy Efficiency

Authors: Etidel Labidi

Abstract:

Energy efficiency improvement is one of the means to reduce energy consumption and carbon emissions. Recently, some developed countries have implemented the tradable white certificate scheme (TWC) as a new policy instrument based on market approach to support energy efficiency improvements. The major focus of this paper is to compare the White Certificates (TWC) scheme as an innovative policy instrument for energy efficiency improvement to other policy instruments: energy taxes and regulations setting a minimum level of energy efficiency. On the basis of our theoretical discussion and numerical simulation, we show that the white certificates system is the most interesting policy instrument for saving energy because it generates the most important level of energy savings and the least increase in energy service price.

Keywords: energy savings, energy efficiency, energy policy, white certificates

Procedia PDF Downloads 305
18326 Effects of Thermal Properties of Aggregate Materials on Energy Consumption and Ghg Emissions of Transportation Infrastructure Assets Construction: Case Study for Japan

Authors: Ali Jamshidi, Kiyofumi Kurumisawa, Toyoharu Nawa

Abstract:

Transportation infrastructure assets can be considered as backbone of transportation system. They are routinely developed and or maintained which can be used effectively for movement of passengers, commodities and providing vital services. However, the infrastructure assets construction, maintenance and rehabilitation significantly depend on non-renewable natural resources, such as carbon-based energy carriers and aggregate materials. In this study, effects of thermal properties of aggregate materials were characterized for production of hot-mix asphalt in Japan, as a case study. The results indicated that incorporation of the aggregate with lower required heat energy significantly reduces fuel consumption greenhouse gas emission, irrespective of physical property of aggregate. The results also clearly showed that as 75% high-energy limestone is replaced with low-energy limestone in producing an asphalt mixture at 180 °C, 97,879 Japanese households would be energized per annum using the saved energy without any modification in the current asphalt mixing plants.

Keywords: zero energy infrastructure, sustainable development, greenhouse gas emission, asphalt pavement

Procedia PDF Downloads 203
18325 Evaluation of Alternative Energy Sources for Energy Production in Turkey

Authors: Naci Büyükkaracığan, Murat Ahmet Ökmen

Abstract:

In parallel with the population growth rate, the need of human being for energy sources in the world is gradually increasing incessant. The addition of this situation that demand for energy will be busier in the future, industrialization, the rise in living standards and technological developments, especially in developing countries. Alternative energy sources have aroused interest due to reasons such as serious environmental issues that were caused by fossil energy sources, potentially decreasing reserves, different social, political and economic problems caused by dependency on source providing countries and price instability. Especially in developed countries as European countries and also U.S.A particularly, alternative energy sources such as wind, geothermal, solar and biomass energy, hydrolic and hydrogen have been utilized in different forms, especially in electricity production. It includes a review of technical and environmental factors for energy sources that are potential replacements for fossil fuels and examines their fitness to supply the energy for a high standard of living on a worldwide basis. Despite all developments, fossil energy sources have been overwhelmingly used all around the world in primary energy sources consumption and they will outnumber other energy sources in the short term. Today, parallel to population growth and economy in Turkey, energy sources consumption is increasingly continuing. On one side, Turkey, currently 80% dependent on energy providing countries, has been heavily conducting fossil energy sources raw material quest within its own borders in order to lower the percentage, and the other side, there have been many researches for exploring potential of alternative energy sources and utilization. This case will lead to both a decrease in foreign energy dependency and a variety of energy sources. This study showed the current energy potential of Turkey and presents historical development of these energy sources and their share in electricity production. The research also seeked for answers to arguments that if the potential can be sufficient in the future. As a result of this study, it was concluded that observed geothermal energy, particularly active tectonic regions of Turkey, to have an alternative energy potential could be considered to be valuable on bass wind and solar energy.

Keywords: alternative energy sources, energy productions, hydroenergy, solar energy, wind energy

Procedia PDF Downloads 601
18324 Challenges and Opportunities in Modelling Energy Behavior of Household in Malaysia

Authors: Zuhaina Zakaria, Noraliza Hamzah, Siti Halijjah Shariff, Noor Aizah Abdul Karim

Abstract:

The residential sector in Malaysia has become the single largest energy sector accounting for 21% of the entire energy usage of the country. In the past 10 years, a number of energy efficiency initiatives in the residential sector had been undertaken by the government including. However, there is no clear evidence that the total residential energy consumption has been reduced substantially via these strategies. Household electrical appliances such as air conditioners, refrigerators, lighting and televisions are used depending on the consumers’ activities. The behavior of household occupants played an important role in energy consumption and influenced the operation of the physical devices. Therefore, in order to ensure success in energy efficiency program, it requires not only the technological aspect but also the consumers’ behaviors component. This paper focuses on the challenges and opportunities in modelling residential consumer behavior in Malaysia. A field survey to residential consumers was carried out and responses from the survey were analyzed to determine the consumers’ level of knowledge and awareness on energy efficiency. The analyses will be used in determining a right framework to explain household energy use intentions and behavior. These findings will be beneficial to power utility company and energy regulator in addressing energy efficiency related issues.

Keywords: consumer behavior theories, energy efficiency, household occupants, residential consumer

Procedia PDF Downloads 297
18323 An Overview of Heating and Cooling Techniques Used in Green Buildings

Authors: Umesh Kumar Soni, Suresh Kumar Soni, S. R. Awasthi

Abstract:

Worldwide biggest difficulties are climate change, future availability of fossil fuels, and economical feasibility of renewable energy. They force us to use to a greater extent renewable energy and develop suitable hybrid renewable systems. Building heating/cooling consumes significant amount of energy. It can be conserved by use of proper heating/cooling techniques. This paper reviews and critically analyzes various active, passive and hybrid heating/cooling techniques used in green buildings.

Keywords: natural ventilation, energy conservation, hybrid ventilation techniques, climate change

Procedia PDF Downloads 574
18322 A Study of the Trade-off Energy Consumption-Performance-Schedulability for DVFS Multicore Systems

Authors: Jalil Boudjadar

Abstract:

Dynamic Voltage and Frequency Scaling (DVFS) multicore platforms are promising execution platforms that enable high computational performance, less energy consumption and flexibility in scheduling the system processes. However, the resulting interleaving and memory interference together with per-core frequency tuning make real-time guarantees hard to be delivered. Besides, energy consumption represents a strong constraint for the deployment of such systems on energy-limited settings. Identifying the system configurations that would achieve a high performance and consume less energy while guaranteeing the system schedulability is a complex task in the design of modern embedded systems. This work studies the trade-off between energy consumption, cores utilization and memory bottleneck and their impact on the schedulability of DVFS multicore time-critical systems with a hierarchy of shared memories. We build a model-based framework using Parametrized Timed Automata of UPPAAL to analyze the mutual impact of performance, energy consumption and schedulability of DVFS multicore systems, and demonstrate the trade-off on an actual case study.

Keywords: time-critical systems, multicore systems, schedulability analysis, energy consumption, performance analysis

Procedia PDF Downloads 83
18321 The Relationship between Energy Consumption and Economic Growth in Turkey: A Time Series Analysis

Authors: Burcu Guvenek, Volkan Alptekin

Abstract:

Turkey is a country in the process of development and its economy has undergone structural reforms in order to realize a sustainable development and energy has vital role as a basic input for this aim. Turkey has been in the process of economic growth and development and, because of this, has an increasing energy need. This paper investigates relationship between economic growth and electricity consumption using annual data for Turkey between 1970-2008 by using bounds test. As economic growth and energy consumption variables used in empirical analysis was different order of integration I(0) and I(1), we employed bounds test approach. We have not found co-integration relationship between the variables.

Keywords: bounds test, economic growth, energy consumption, Turkey

Procedia PDF Downloads 339
18320 Willingness of Spanish Wineries to Implement Renewable Energies in Their Vineyards and Wineries, as Well as the Limitations They Perceive for Their Implementation

Authors: Javier Carroquino, Nieves García-Casarejos, Pilar Gargallo

Abstract:

Climate change, depletion of non-renewable resources in the current energies, pollution from them, the greater ecological awareness of the population, are factors that suggest the change of energy sources in business. The agri-food industry is a growth sector, concerned about product innovation, process and with a clear awareness of what climate change may mean for it. This sector is supposed to have a high receptivity to the implementation of clean energy, as this favors not only the environment but also the essence of its business. This work, through surveys, aims to know the willingness of Spanish wineries to implement renewable energies in their vineyards, as well as the limitations they perceive for their implementation. This questionnaire allows the characterization of the sector in terms of its geographical typologies, their activity levels, their perception of environmental issues, the degree of implementation of measures to mitigate climate change and improve energy efficiency, and its uses and energy consumption. The analysis of data proves that the penetration of renewable energies is still at low levels, being the most used energies, solar thermal, photovoltaic and biomass. The initial investment seems to be at the origin of the lack of implantation of this type of energy in the wineries, and not so much the costs of operations and maintenance. The environmental management of the wineries is still at an embryonic stage within the company's organization chart, because these services are either outsourced or, if technicians are available, they are not exclusively dedicated to these tasks. However, there is a strong environmental awareness, as evidenced by the number of climate change mitigation and energy efficiency measures already adopted. The gap between high awareness and low achievement is probably due to the lack of knowledge about how to do it or the perception of a high cost.

Keywords: survey, renewable energy, winery, Spanish case

Procedia PDF Downloads 230
18319 Insulation, Sustainable Construction, and Architectural Design to Reduce Energy Consumption in Sustainable Buildings

Authors: Gholamreza Namavar, Ali Bayati

Abstract:

Nowadays according to increasing the population all around the world, consuming of fossil fuels increased dramatically. Many believe that most of the atmospheric pollution comes by using fossil fuels. The process of natural sources entering cities show one of the large challenges in consumption sources management. Nowadays, everyone considered about the consumption of fossil fuels and also reduction of consumption civil energy in megacities that play a key role in solving serious problems such as air pollution, producing greenhouse gasses, global warming and damage ozone layer. In construction industry we should use the materials with the lowest need to energy for making and carrying them, and also the materials which need the lowest energy and expenses to recycling. In this way, the kind of usage material, the way of processing, regional materials and the adaption with environment is critical. Otherwise, the isolation should be use and mention in long term. Accordingly, in this article we investigates the new ways in order to reduce environmental pollution and save more energy by using materials that are not harmful to the environment, fully insulated materials in buildings, sustainable and diversified buildings, suitable urban design and using solar energy more efficiently in order to reduce energy consumption.

Keywords: architectural design, insulation, sustainable construction, reducing energy consumption

Procedia PDF Downloads 219
18318 Valorization of Residues from Forest Industry for the Generation of Energy

Authors: M. A. Amezcua-Allieri, E. Torres, J. A. Zermeño Eguía-Lis, M. Magdaleno, L. A. Melgarejo, E. Palmerín, A. Rosas, D. López, J. Aburto

Abstract:

The use of biomass to produce renewable energy is one of the forms that can be used to reduce the impact of energy production. Like any other energy resource, there are limitations for biomass use, and it must compete not only with fossil fuels but also with other renewable energy sources such as solar or wind energy. Combustion is currently the most efficient and widely used waste-to-energy process, in the areas where direct use of biomass is possible, without the need to make large transfers of raw material. Many industrial facilities can use agricultural or forestry waste, straw, chips, bagasse, etc. in their thermal systems without making major transformations or adjustments in the feeding to the ovens, making this waste an attractive and cost-effective option in terms of availability, access, and costs. In spite of the facilities and benefits, the environmental reasons (emission of gases and particulate material) are decisive for its use for energy purpose. This paper describes a valorization of residues from forest industry to generate energy, using a case study.

Keywords: bioenergy, forest waste, life-cycle assessment, waste-to-energy, electricity

Procedia PDF Downloads 275
18317 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment

Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji

Abstract:

Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.

Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems

Procedia PDF Downloads 63
18316 Towards the Use of Software Product Metrics as an Indicator for Measuring Mobile Applications Power Consumption

Authors: Ching Kin Keong, Koh Tieng Wei, Abdul Azim Abd. Ghani, Khaironi Yatim Sharif

Abstract:

Maintaining factory default battery endurance rate over time in supporting huge amount of running applications on energy-restricted mobile devices has created a new challenge for mobile applications developer. While delivering customers’ unlimited expectations, developers are barely aware of efficient use of energy from the application itself. Thus developers need a set of valid energy consumption indicators in assisting them to develop energy saving applications. In this paper, we present a few software product metrics that can be used as an indicator to measure energy consumption of Android-based mobile applications in the early of design stage. In particular, Trepn Profiler (Power profiling tool for Qualcomm processor) has used to collect the data of mobile application power consumption, and then analyzed for the 23 software metrics in this preliminary study. The results show that McCabe cyclomatic complexity, number of parameters, nested block depth, number of methods, weighted methods per class, number of classes, total lines of code and method lines have direct relationship with power consumption of mobile application.

Keywords: battery endurance, software metrics, mobile application, power consumption

Procedia PDF Downloads 369