Search results for: shape prediction
4373 Modeling and Shape Prediction for Elastic Kinematic Chains
Authors: Jiun Jeon, Byung-Ju Yi
Abstract:
This paper investigates modeling and shape prediction of elastic kinematic chains such as colonoscopy. 2D and 3D models of elastic kinematic chains are suggested and their behaviors are demonstrated through simulation. To corroborate the effectiveness of those models, experimental work is performed using a magnetic sensor system.Keywords: elastic kinematic chain, shape prediction, colonoscopy, modeling
Procedia PDF Downloads 6054372 Numerical Prediction of Effects of Location of Across-the-Width Laminations on Tensile Properties of Rectangular Wires
Authors: Kazeem K. Adewole
Abstract:
This paper presents the finite element analysis numerical investigation of the effects of the location of across-the-width lamination on the tensile properties of rectangular wires for civil engineering applications. FE analysis revealed that the presence of the mid-thickness across-the-width lamination changes the cup and cone fracture shape exhibited by the lamination-free wire to a V-shaped fracture shape with an opening at the bottom/pointed end of the V-shape at the location of the mid-thickness across-the-width lamination. FE analysis also revealed that the presence of the mid-width across-the-thickness lamination changes the cup and cone fracture shape of the lamination-free wire without an opening to a cup and cone fracture shape with an opening at the location of the mid-width across-the-thickness lamination. The FE fracture behaviour prediction approach presented in this work serves as a tool for failure analysis of wires with lamination at different orientations which cannot be conducted experimentally.Keywords: across-the-width lamination, tensile properties, lamination location, wire
Procedia PDF Downloads 4744371 Rheological Modeling for Shape-Memory Thermoplastic Polymers
Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev
Abstract:
This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of heat-shrinkable products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.Keywords: elastic deformation, heating, shape-memory polymers, stress-strain behavior, viscoelastic model
Procedia PDF Downloads 3234370 Estimation of Fourier Coefficients of Flux Density for Surface Mounted Permanent Magnet (SMPM) Generators by Direct Search Optimization
Authors: Ramakrishna Rao Mamidi
Abstract:
It is essential for Surface Mounted Permanent Magnet (SMPM) generators to determine the performance prediction and analyze the magnet’s air gap flux density wave shape. The flux density wave shape is neither a pure sine wave or square wave nor a combination. This is due to the variation of air gap reluctance between the stator and permanent magnets. The stator slot openings and the number of slots make the wave shape highly complicated. To reduce the complexity of analysis, approximations are made to the wave shape using Fourier analysis. In contrast to the traditional integration method, the Fourier coefficients, an and bn, are obtained by direct search method optimization. The wave shape with optimized coefficients gives a wave shape close to the desired wave shape. Harmonics amplitudes are worked out and compared with initial values. It can be concluded that the direct search method can be used for estimating Fourier coefficients for irregular wave shapes.Keywords: direct search, flux plot, fourier analysis, permanent magnets
Procedia PDF Downloads 2164369 Improved Structure and Performance by Shape Change of Foam Monitor
Authors: Tae Gwan Kim, Hyun Kyu Cho, Young Hoon Lee, Young Chul Park
Abstract:
Foam monitors are devices that are installed on cargo tank decks to suppress cargo area fires in oil tankers or hazardous chemical ship cargo ships. In general, the main design parameter of the foam monitor is the distance of the projection through the foam monitor. In this study, the relationship between flow characteristics and projection distance, depending on the shape was examined. Numerical techniques for fluid analysis of foam monitors have been developed for prediction. The flow pattern of the fluid varies depending on the shape of the flow path of the foam monitor, as the flow losses affecting projection distance were calculated through numerical analysis. The basic shape of the foam monitor was an L shape designed by N Company. The modified model increased the length of the flow path and used the S shape model. The calculation result shows that the L shape, which is the basic shape, has a problem that the force is directed to one side and the vibration and noise are generated there. In order to solve the problem, S-shaped model, which is a change model, was used. As a result, the problem is solved, and the projection distance from the nozzle is improved.Keywords: CFD, foam monitor, projection distance, moment
Procedia PDF Downloads 3434368 A Study on Prediction Model for Thermally Grown Oxide Layer in Thermal Barrier Coating
Authors: Yongseok Kim, Jeong-Min Lee, Hyunwoo Song, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok
Abstract:
Thermal barrier coating(TBC) is applied for gas turbine components to protect the components from extremely high temperature condition. Since metallic substrate cannot endure such severe condition of gas turbines, delamination of TBC can cause failure of the system. Thus, delamination life of TBC is one of the most important issues for designing the components operating at high temperature condition. Thermal stress caused by thermally grown oxide(TGO) layer is known as one of the major failure mechanisms of TBC. Thermal stress by TGO mainly occurs at the interface between TGO layer and ceramic top coat layer, and it is strongly influenced by the thickness and shape of TGO layer. In this study, Isothermal oxidation is conducted on coin-type TBC specimens prepared by APS(air plasma spray) method. After the isothermal oxidation at various temperature and time condition, the thickness and shape(rumpling shape) of the TGO is investigated, and the test data is processed by numerical analysis. Finally, the test data is arranged into a mathematical prediction model with two variables(temperature and exposure time) which can predict the thickness and rumpling shape of TGO.Keywords: thermal barrier coating, thermally grown oxide, thermal stress, isothermal oxidation, numerical analysis
Procedia PDF Downloads 3424367 Gender Differences in the Descriptions of Shape
Authors: Shu-Feng Chang
Abstract:
During the past years, gender issues have been discussed in many fields. It causes such differences not only in physical field but also in mental field. Gender differences also appear in our daily life, especially in the communication of spoken language. This statement was proved in the descriptions of color. However, the research about describing shape was fewer. The purpose of the study was to determine the description of the shape was different or alike due to gender. If it was different, this difference was dissimilar or as the same as the conclusion of color. Data were collected on the shape descriptions by 15 female and 15male participants in describing five pictures. As a result, it was really different for the descriptions of shape due to gender factor. The findings of shape descriptions were almost as the same as color naming with gender factor.Keywords: gender, naming, shape, sociolinguistics
Procedia PDF Downloads 5524366 SEMCPRA-Sar-Esembled Model for Climate Prediction in Remote Area
Authors: Kamalpreet Kaur, Renu Dhir
Abstract:
Climate prediction is an essential component of climate research, which helps evaluate possible effects on economies, communities, and ecosystems. Climate prediction involves short-term weather prediction, seasonal prediction, and long-term climate change prediction. Climate prediction can use the information gathered from satellites, ground-based stations, and ocean buoys, among other sources. The paper's four architectures, such as ResNet50, VGG19, Inception-v3, and Xception, have been combined using an ensemble approach for overall performance and robustness. An ensemble of different models makes a prediction, and the majority vote determines the final prediction. The various architectures such as ResNet50, VGG19, Inception-v3, and Xception efficiently classify the dataset RSI-CB256, which contains satellite images into cloudy and non-cloudy. The generated ensembled S-E model (Sar-ensembled model) provides an accuracy of 99.25%.Keywords: climate, satellite images, prediction, classification
Procedia PDF Downloads 734365 Studying Projection Distance and Flow Properties by Shape Variations of Foam Monitor
Authors: Hyun-Kyu Cho, Jun-Su Kim, Choon-Geun Huh, Geon Lee Young-Chul Park
Abstract:
In this study, the relationship between flow properties and fluid projection distance look into connection for shape variations of foam monitor. A numerical analysis technique for fluid analysis of a foam monitor was developed for the prediction. Shape of foam monitor the flow path of fluid flow according to the shape, The fluid losses were calculated from flow analysis result.. The modified model used the length increase model of the flow path, and straight line of the model. Inlet pressure was 7 [bar] and external was atmosphere codition. am. The results showed that the length increase model of the flow path and straight line of the model was improved in the nozzle projection distance.Keywords: injection performance, finite element method, foam monitor, Projection distance
Procedia PDF Downloads 3464364 A Study of Parameters That Have an Influence on Fabric Prints in Judging the Attractiveness of a Female Body Shape
Authors: Man N. M. Cheung
Abstract:
In judging the attractiveness of female body shape, visual sense is one of the important means. The ratio and proportion of body shape influence the perception of female physical attractiveness. This study aims to examine visual perception of digital textile prints on a virtual 3D model in judging the attractiveness of the body shape. Also, investigate the influences when using different shape parameters and their relationships. Participants were asked to conduct a set of questionnaires with images to rank the attractiveness of the female body shape. Results showed that morphing the fabric prints with a certain ratio and combination of shape parameters - waist and hip, can enhance the attractiveness of the female body shape.Keywords: digital printing, 3D body modeling, fashion print design, body shape attractiveness
Procedia PDF Downloads 1774363 Prediction of Bubbly Plume Characteristics Using the Self-Similarity Model
Authors: Li Chen, Alex Skvortsov, Chris Norwood
Abstract:
Gas releasing into water can be found in for many industrial situations. This process results in the formation of bubbles and acoustic emission which depends upon the bubble characteristics. If the bubble creation rates (bubble volume flow rate) are of interest, an inverse method has to be used based on the measurement of acoustic emission. However, there will be sound attenuation through the bubbly plume which will influence the measurement and should be taken into consideration in the model. The sound transmission through the bubbly plume depends on the characteristics of the bubbly plume, such as the shape and the bubble distributions. In this study, the bubbly plume shape is modelled using a self-similarity model, which has been normally applied for a single phase buoyant plume. The prediction is compared with the experimental data. It has been found the model can be applied to a buoyant plume of gas-liquid mixture. The influence of the gas flow rate and discharge nozzle size is studied.Keywords: bubbly plume, buoyant plume, bubble acoustics, self-similarity model
Procedia PDF Downloads 2874362 Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region
Authors: B. Sir, M. Podhoranyi, S. Kuchar, T. Kocyan
Abstract:
Rainfall-runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15–May 18 2014). The prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice.Keywords: flood, HEC-HMS, prediction, rainfall, runoff
Procedia PDF Downloads 3944361 Protein Tertiary Structure Prediction by a Multiobjective Optimization and Neural Network Approach
Authors: Alexandre Barbosa de Almeida, Telma Woerle de Lima Soares
Abstract:
Protein structure prediction is a challenging task in the bioinformatics field. The biological function of all proteins majorly relies on the shape of their three-dimensional conformational structure, but less than 1% of all known proteins in the world have their structure solved. This work proposes a deep learning model to address this problem, attempting to predict some aspects of the protein conformations. Throughout a process of multiobjective dominance, a recurrent neural network was trained to abstract the particular bias of each individual multiobjective algorithm, generating a heuristic that could be useful to predict some of the relevant aspects of the three-dimensional conformation process formation, known as protein folding.Keywords: Ab initio heuristic modeling, multiobjective optimization, protein structure prediction, recurrent neural network
Procedia PDF Downloads 2054360 Thermal Performance Investigation on Cross V-Shape Solar Air Collectors
Authors: Xi Luo, Xu Ji, Yunfeng Wang, Guoliang Li, Chongqiang Yan, Ming Li
Abstract:
Two different kinds of cross V-shape solar air collectors are designed and constructed. In the transverse cross V-shape collector, the V-shape bottom plate is along the air flow direction and the absorbing plate is perpendicular to the air flow direction. In the lengthway cross V-shape collector, the V-shape absorbing plate is along the air flow direction and the bottom plate is perpendicular to the air flow direction. Based on heat balance, the mathematical model is built to evaluate their performances. These thermal performances of the two cross V-shape solar air collectors and an extra traditional flat-plate solar air collector are characterized under various operating conditions by experiments. The experimental results agree well with the calculation values. The experimental results prove that the thermal efficiency of transverse cross V-shape collector precedes that of others. The air temperature at any point along the flow direction of the transverse cross V-shape collector is higher than that of the lengthway cross V-shape collector. For the transverse cross V-shape collector, the most effective length of flow channel is 0.9m. For the lengthway cross V-shape collector, a longer flow channel is necessary to achieve a good thermal performance.Keywords: cross v-shape, performance, solar air collector, thermal efficiency
Procedia PDF Downloads 3114359 Monthly River Flow Prediction Using a Nonlinear Prediction Method
Authors: N. H. Adenan, M. S. M. Noorani
Abstract:
River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to developed an efficient water management system to optimize the allocation water resources.Keywords: river flow, nonlinear prediction method, phase space, local linear approximation
Procedia PDF Downloads 4124358 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.Keywords: solubility, random forest, molecular descriptors, maccs keys
Procedia PDF Downloads 464357 On Improving Breast Cancer Prediction Using GRNN-CP
Authors: Kefaya Qaddoum
Abstract:
The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.Keywords: neural network, conformal prediction, cancer classification, regression
Procedia PDF Downloads 2914356 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks
Abstract:
Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.Keywords: springback, cold stamping, convolutional neural networks, machine learning
Procedia PDF Downloads 1494355 A Study on Optimum Shape in According to Equivalent Stress Distributions at the Die and Plug in the Multi-Pass Drawing Process
Authors: Yeon-Jong Jeong, Mok-Tan Ahn, Seok-Hyeon Park, Seong-Hun Ha, Joon-Hong Park, Jong-Bae Park
Abstract:
Multi-stage drawing process is an important technique for forming a shape that cannot be molded in a single process. multi-stage drawing process in number of passes and the shape of the die are an important factors influencing the productivity and formability of the product. The number and shape of the multi-path in the mold of the drawing process is very influencing the productivity and formability of the product. Half angle of the die and mandrel affects the drawing force and it also affects the completion of the final shape. Thus reducing the number of pass and the die shape optimization are necessary to improve the formability of the billet. Analyzing the load on the die through the FEM analysis and in consideration of the formability of the material presents a die model.Keywords: multi-pass shape drawing, equivalent stress, FEM, finite element method, optimum shape
Procedia PDF Downloads 4794354 Multi-Pass Shape Drawing Process Design for Manufacturing of Automotive Reinforcing Agent with Closed Cross-Section Shape using Finite Element Method Analysis
Authors: Mok-Tan Ahn, Hyeok Choi, Joon-Hong Park
Abstract:
Multi-stage drawing process is an important technique for forming a shape that cannot be molded in a single process. multi-stage drawing process in number of passes and the shape of the die are an important factor influencing the productivity and moldability of the product. The number and shape of the multi-path in the mold of the drawing process is very influencing the productivity and moldability of the product. Half angle of the die and mandrel affects the drawing force and it also affects the completion of the final shape. Thus reducing the number of pass and the die shape optimization are necessary to improve the formability of the billet. The purpose of this study, Analyzing the load on the die through the FEM analysis and in consideration of the formability of the material presents a die model.Keywords: automotive reinforcing agent, multi-pass shape drawing, automotive parts, FEM analysis
Procedia PDF Downloads 4544353 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters
Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu
Abstract:
An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters
Procedia PDF Downloads 3094352 Study of Energy Dissipation in Shape Memory Alloys: A Comparison between Austenite and Martensite Phase of SMAs
Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani
Abstract:
Shape memory alloys with high capability of energy dissipation and large deformation bearing with return ability to their original shape without too much hysteresis strain have opened their place among the other damping systems as smart materials. Ninitol which is the most well-known and most used alloy material from the shape memory alloys family, has high resistance and fatigue and is coverage for large deformations. Shape memory effect and super-elasticity by shape alloys like Nitinol, are the reasons of the high power of these materials in energy depreciation. Thus, these materials are suitable for use in reciprocating dynamic loading conditions. The experiments results showed that Nitinol wires with small diameter have greater energy dissipation capability and by increase of diameter and thickness the damping capability and energy dissipation increase.Keywords: shape memory alloys, shape memory effect, super elastic effect, nitinol, energy dissipation
Procedia PDF Downloads 5124351 Diesel Fault Prediction Based on Optimized Gray Neural Network
Authors: Han Bing, Yin Zhenjie
Abstract:
In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.Keywords: fault prediction, neural network, GM(1, 5) genetic algorithm, GBPGA
Procedia PDF Downloads 3044350 A Machining Method of Cross-Shape Nano Channel and Experiments for Silicon Substrate
Authors: Zone-Ching Lin, Hao-Yuan Jheng, Zih-Wun Jhang
Abstract:
The paper innovatively proposes using the concept of specific down force energy (SDFE) and AFM machine to establish a machining method of cross-shape nanochannel on single-crystal silicon substrate. As for machining a cross-shape nanochannel by AFM machine, the paper develop a method of machining cross-shape nanochannel groove at a fixed down force by using SDFE theory and combining the planned cutting path of cross-shape nanochannel up to 5th machining layer it finally achieves a cross-shape nanochannel at a cutting depth of around 20nm. Since there may be standing burr at the machined cross-shape nanochannel edge, the paper uses a smaller down force to cut the edge of the cross-shape nanochannel in order to lower the height of standing burr and converge the height of standing burr at the edge to below 0.54nm as set by the paper. Finally, the paper conducts experiments of machining cross-shape nanochannel groove on single-crystal silicon by AFM probe, and compares the simulation and experimental results. It is proved that this proposed machining method of cross-shape nanochannel is feasible.Keywords: atomic force microscopy (AFM), cross-shape nanochannel, silicon substrate, specific down force energy (SDFE)
Procedia PDF Downloads 3724349 Study of Tool Shape during Electrical Discharge Machining of AISI 52100 Steel
Authors: Arminder Singh Walia, Vineet Srivastava, Vivek Jain
Abstract:
In Electrical Discharge Machining (EDM) operations, the workpiece confers to the shape of the tool. Further, the cost of the tool contributes the maximum effect on total operation cost. Therefore, the shape and profile of the tool become highly significant. Thus, in this work, an attempt has been made to study the effect of process parameters on the shape of the tool. Copper has been used as the tool material for the machining of AISI 52100 die steel. The shape of the tool has been evaluated by determining the difference in out of roundness of tool before and after machining. Statistical model has been developed and significant process parameters have been identified which affect the shape of the tool. Optimum process parameters have been identified which minimizes the shape distortion.Keywords: discharge current, flushing pressure, pulse-on time, pulse-off time, out of roundness, electrical discharge machining
Procedia PDF Downloads 2834348 A New 3D Shape Descriptor Based on Multi-Resolution and Multi-Block CS-LBP
Authors: Nihad Karim Chowdhury, Mohammad Sanaullah Chowdhury, Muhammed Jamshed Alam Patwary, Rubel Biswas
Abstract:
In content-based 3D shape retrieval system, achieving high search performance has become an important research problem. A challenging aspect of this problem is to find an effective shape descriptor which can discriminate similar shapes adequately. To address this problem, we propose a new shape descriptor for 3D shape models by combining multi-resolution with multi-block center-symmetric local binary pattern operator. Given an arbitrary 3D shape, we first apply pose normalization, and generate a set of multi-viewed 2D rendered images. Second, we apply Gaussian multi-resolution filter to generate several levels of images from each of 2D rendered image. Then, overlapped sub-images are computed for each image level of a multi-resolution image. Our unique multi-block CS-LBP comes next. It allows the center to be composed of m-by-n rectangular pixels, instead of a single pixel. This process is repeated for all the 2D rendered images, derived from both ‘depth-buffer’ and ‘silhouette’ rendering. Finally, we concatenate all the features vectors into one dimensional histogram as our proposed 3D shape descriptor. Through several experiments, we demonstrate that our proposed 3D shape descriptor outperform the previous methods by using a benchmark dataset.Keywords: 3D shape retrieval, 3D shape descriptor, CS-LBP, overlapped sub-images
Procedia PDF Downloads 4454347 Induction Heating and Electromagnetic Stirring of Bi-Phasic Metal/Glass Molten Bath for Mixed Nuclear Waste Treatment
Authors: P. Charvin, R. Bourrou, F. Lemont, C. Lafon, A. Russello
Abstract:
For nuclear waste treatment and confinement, a specific IN-CAN melting module based on low-frequency induction heating have been designed. The frequency of 50Hz has been chosen to improve penetration length through metal. In this design, the liquid metal, strongly stirred by electromagnetic effects, presents shape of a dome caused by strong Laplace forces developing in the bulk of bath. Because of a lower density, the glass phase is located above the metal phase and is heated and stirred by metal through interface. Electric parameters (Intensity, frequency) give precious information about metal load and composition (resistivity of alloy) through impedance modification. Then, power supply can be adapted to energy transfer efficiency for suitable process supervision. Modeling of this system allows prediction of metal dome shape (in agreement with experimental measurement with a specific device), glass and metal velocity, heat and motion transfer through interface. MHD modeling is achieved with COMSOL and Fluent. First, a simplified model is used to obtain the shape of the metal dome. Then the shape is fixed to calculate the fluid flow and the thermal part.Keywords: electromagnetic stirring, induction heating, interface modeling, metal load
Procedia PDF Downloads 2664346 A Prediction Model of Adopting IPTV
Authors: Jeonghwan Jeon
Abstract:
With the advent of IPTV in the fierce competition with existing broadcasting system, it is emerged as an important issue to predict how much the adoption of IPTV service will be. This paper aims to suggest a prediction model for adopting IPTV using classification and Ranking Belief Simplex (CaRBS). A simplex plot method of representing data allows a clear visual representation to the degree of interaction of the support from the variables to the prediction of the objects. CaRBS is applied to the survey data on the IPTV adoption.Keywords: prediction, adoption, IPTV, CaRBS
Procedia PDF Downloads 4124345 Effect of Particle Aspect Ratio and Shape Factor on Air Flow inside Pulmonary Region
Authors: Pratibha, Jyoti Kori
Abstract:
Particles in industry, harvesting, coal mines, etc. may not necessarily be spherical in shape. In general, it is difficult to find perfectly spherical particle. The prediction of movement and deposition of non spherical particle in distinct airway generation is much more difficult as compared to spherical particles. Moreover, there is extensive inflexibility in deposition between ducts of a particular generation and inside every alveolar duct since particle concentrations can be much bigger than the mean acinar concentration. Consequently, a large number of particles fail to be exhaled during expiration. This study presents a mathematical model for the movement and deposition of those non-spherical particles by using particle aspect ratio and shape factor. We analyse the pulsatile behavior underneath sinusoidal wall oscillation due to periodic breathing condition through a non-Darcian porous medium or inside pulmonary region. Since the fluid is viscous and Newtonian, the generalized Navier-Stokes equation in two-dimensional coordinate system (r, z) is used with boundary-layer theory. Results are obtained for various values of Reynolds number, Womersley number, Forchsheimer number, particle aspect ratio and shape factor. Numerical computation is done by using finite difference scheme for very fine mesh in MATLAB. It is found that the overall air velocity is significantly increased by changes in aerodynamic diameter, aspect ratio, alveoli size, Reynolds number and the pulse rate; while velocity is decreased by increasing Forchheimer number.Keywords: deposition, interstitial lung diseases, non-Darcian medium, numerical simulation, shape factor
Procedia PDF Downloads 1854344 Method and Experiment of Fabricating and Cutting the Burr for Y Shape Nanochannel
Authors: Zone-Ching Lin, Hao-Yuan Jheng, Shih-Hung Ma
Abstract:
The present paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish a method for fabricating and cutting the burr for Y shape nanochannel on silicon (Si) substrate. For fabricating Y shape nanochannel, it first makes the experimental cutting path planning for fabricating Y shape nanochannel until the fifth cutting layer. Using the constant down force by AFM and SDFE theory and following the experimental cutting path planning, the cutting depth and width of each pass of Y shape nanochannel can be predicted by simulation. The paper plans the path for cutting the burr at the edge of Y shape nanochannel. Then, it carries out cutting the burr along the Y nanochannel edge by using a smaller down force. The height of standing burr at the edge is required to be below the set value of 0.54 nm. The results of simulation and experiment of fabricating and cutting the burr for Y shape nanochannel is further compared.Keywords: atomic force microscopy (AFM), nanochannel, specific down force energy (SDFE), Y shape, burr, silicon
Procedia PDF Downloads 407