Search results for: shape integrity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2853

Search results for: shape integrity

2643 Design of Compact UWB Multilayered Microstrip Filter with Wide Stopband

Authors: N. Azadi-Tinat, H. Oraizi

Abstract:

Design of compact UWB multilayered microstrip filter with E-shape resonator is presented, which provides wide stopband up to 20 GHz and arbitrary impedance matching. The design procedure is developed based on the method of least squares and theory of N-coupled transmission lines. The dimensions of designed filter are about 11 mm × 11 mm and the three E-shape resonators are placed among four dielectric layers. The average insertion loss in the passband is less than 1 dB and in the stopband is about 30 dB up to 20 GHz. Its group delay in the UWB region is about 0.5 ns. The performance of the optimized filter design perfectly agrees with the microwave simulation softwares.

Keywords: method of least square, multilayer microstrip filter, n-coupled transmission lines, ultra-wideband

Procedia PDF Downloads 359
2642 Study of Cavitation Phenomena Based on Flow Visualization Test in 3-Way Reversing Valve

Authors: Hyo Lim Kang, Tae An Kim, Seung Ho Han

Abstract:

A 3-way reversing valve has been used in automotive washing machines to remove remaining oil and dirt on machined engine and transmission blocks. It provides rapid and accurate changes of water flow direction without any precise control device. However, due to its complicated bottom-plug shape, a cavitation occurs in a wide range of the bottom-plug in a downstream. In this study, the cavitation index and POC (percent of cavitation) were used to evaluate quantitatively the cavitation phenomena occurring at the bottom-plug. An optimal shape design was carried out via parametric study for geometries of the bottom-plug, in which a simple CAE-model was used in order to avoid time-consuming CFD analysis and hard to achieve convergence. To verify the results of numerical analysis, a flow visualization test was carried out using a test specimen with a transparent acryl pipe according to ISA-RP75.23. The flow characteristics such as the cavitation occurring in the downstream were investigated by using a flow test equipment with valve and pump including a flow control system and high-speed camera.

Keywords: cavitation, flow visualization test, optimal shape design, percent of cavitation, reversing valve

Procedia PDF Downloads 271
2641 Morphological Interaction of Porcine Oocyte and Cumulus Cells Study on in vitro Oocyte Maturation Using Electron Microscopy

Authors: M. Areekijseree, W. Pongsawat, M. Pumipaiboon, C. Thepsithar, S. Sengsai, T. Chuen-Im

Abstract:

Morphological interaction of porcine cumulus-oocyte complexes (pCOCs) was investigated on in vitro condition using electron microscope (SEM and TEM). The totals of 1,923 oocytes were round in shape, surrounded by zona pellucida with layer of cumulus cells ranging between 59.29-202.14 µm in size. They were classified into intact-, multi-, partial cumulus cell layer oocyte, and completely denuded oocyte, at the percentage composition of 22.80% 32.70%, 18.60%, and 25.90 % respectively. The pCOCs classified as intact- and multi cumulus cell layer oocytes were further culturing at 37°C with 5% CO2, 95% air atmosphere and high humidity for 44 h in M199 with Earle’s salts supplemented with 10% HTFCS, 2.2 mg/mL NaHCO3, 1 M Hepes, 0.25 mM pyruvate, 15 µg/mL porcine follicle-stimulating hormone, 1 µg/mL LH, 1µg/mL estradiol with ethanol, and 50 µg/mL gentamycin sulfate. On electron microscope study, cumulus cells were found to stick their processes to secrete substance from the sac-shape end into zona pellucida of the oocyte and also communicated with the neighboring cells through their microvilli on the beginning of incubation period. It is believed that the cumulus cells communicate with the oocyte by inserting the microvilli through this gap and embedded in the oocyte cytoplasm before secreting substance, through the sac-shape end of the microvilli, to inhibit primary oocyte development at the prophase I. Morphological changes of the complexes were observed after culturing for 24-44 h. One hundred percentages of the cumulus layers were expanded and cumulus cells were peeling off from the oocyte surface. In addition, the round-shape cumulus cells transformed themselves into either an elongate shape or a columnar shape, and no communication between cumulus neighboring cells. After 44 h of incubation time, diameter of oocytes surrounded by cumulus cells was larger than 0 h incubation. The effect of hormones in culture medium is exerted by their receptors present in porcine oocyte. It is likely that all morphological changes of the complexes after hormone treatment were to allow maturation of the oocyte. This study demonstrated that the association of hormones in M199 could promote porcine follicle activation in 44 h in vitro condition. This culture system should be useful for studying the regulation of early follicular growth and development, especially because these follicles represent a large source of oocytes that could be used in vitro for cell technology.

Keywords: cumulus cells, electron microscopy, in vitro, porcine oocyte

Procedia PDF Downloads 358
2640 An Effort at Improving Reliability of Laboratory Data in Titrimetric Analysis for Zinc Sulphate Tablets Using Validated Spreadsheet Calculators

Authors: M. A. Okezue, K. L. Clase, S. R. Byrn

Abstract:

The requirement for maintaining data integrity in laboratory operations is critical for regulatory compliance. Automation of procedures reduces incidence of human errors. Quality control laboratories located in low-income economies may face some barriers in attempts to automate their processes. Since data from quality control tests on pharmaceutical products are used in making regulatory decisions, it is important that laboratory reports are accurate and reliable. Zinc Sulphate (ZnSO4) tablets is used in treatment of diarrhea in pediatric population, and as an adjunct therapy for COVID-19 regimen. Unfortunately, zinc content in these formulations is determined titrimetrically; a manual analytical procedure. The assay for ZnSO4 tablets involves time-consuming steps that contain mathematical formulae prone to calculation errors. To achieve consistency, save costs, and improve data integrity, validated spreadsheets were developed to simplify the two critical steps in the analysis of ZnSO4 tablets: standardization of 0.1M Sodium Edetate (EDTA) solution, and the complexometric titration assay procedure. The assay method in the United States Pharmacopoeia was used to create a process flow for ZnSO4 tablets. For each step in the process, different formulae were input into two spreadsheets to automate calculations. Further checks were created within the automated system to ensure validity of replicate analysis in titrimetric procedures. Validations were conducted using five data sets of manually computed assay results. The acceptance criteria set for the protocol were met. Significant p-values (p < 0.05, α = 0.05, at 95% Confidence Interval) were obtained from students’ t-test evaluation of the mean values for manual-calculated and spreadsheet results at all levels of the analysis flow. Right-first-time analysis and principles of data integrity were enhanced by use of the validated spreadsheet calculators in titrimetric evaluations of ZnSO4 tablets. Human errors were minimized in calculations when procedures were automated in quality control laboratories. The assay procedure for the formulation was achieved in a time-efficient manner with greater level of accuracy. This project is expected to promote cost savings for laboratory business models.

Keywords: data integrity, spreadsheets, titrimetry, validation, zinc sulphate tablets

Procedia PDF Downloads 147
2639 Effect of Rolling Parameters on Thin Strip Profile in Cold Rolling

Authors: H. B. Tibar, Z. Y. Jiang

Abstract:

In this study, the influence of rolling process parameters such as the work roll cross angle and work roll shifting value on the strip shape and profile of aluminum have been investigated under dry conditions at a speed ratio of 1.3 using Hille 100 experimental mill. The strip profile was found to improve significantly with increase in work roll cross angle from 0o to 1o, with an associated decrease in rolling force. The effect of roll shifting (from 0 to 8mm) was not as significant as the roll cross angle. However, an increase in work roll shifting value achieved a similar decrease in rolling force as that of work roll cross angle. The effect of work roll shifting was also found to be maximum at an optimum roll speed of 0.0986 m/s for the desired thickness. Of all these parameters, the most significant effect of the strip shape profile was observed with variation of work roll cross angle. However, the rolling force can be a significantly reduced by either increasing the the work roll cross angle or work roll shifting.

Keywords: rolling speed ratio, strip shape, work roll cross angle, work roll shifting

Procedia PDF Downloads 385
2638 Effect on the Integrity of the DN300 Pipe and Valves in the Cooling Water System Imposed by the Pipes and Ventilation Pipes above in an Earthquake Situation

Authors: Liang Zhang, Gang Xu, Yue Wang, Chen Li, Shao Chong Zhou

Abstract:

Presently, more and more nuclear power plants are facing the issue of life extension. When a nuclear power plant applies for an extension of life, its condition needs to meet the current design standards, which is not fine for all old reactors, typically for seismic design. Seismic-grade equipment in nuclear power plants are now generally placed separately from the non-seismic-grade equipment, but it was not strictly required before. Therefore, it is very important to study whether non-seismic-grade equipment will affect the seismic-grade equipment when dropped down in an earthquake situation, which is related to the safety of nuclear power plants and future life extension applications. This research was based on the cooling water system with the seismic and non-seismic grade equipment installed together, as an example to study whether the non-seismic-grade equipment such as DN50 fire pipes and ventilation pipes arranged above will damage the DN300 pipes and valves arranged below when earthquakes occur. In the study, the simulation was carried out by ANSYS / LY-DYNA, and Johnson-Cook was used as the material model and failure model. For the experiments, the relative positions of objects in the room were restored by 1: 1. In the experiment, the pipes and valves were filled with water with a pressure of 0.785 MPa. The pressure-holding performance of the pipe was used as a criterion for damage. In addition to the pressure-holding performance, the opening torque was considered as well for the valves. The research results show that when the 10-meter-long DN50 pipe was dropped from the position of 8 meters height and the 8-meter-long air pipe dropped from a position of 3.6 meters height, they do not affect the integrity of DN300 pipe below. There is no failure phenomenon in the simulation as well. After the experiment, the pressure drop in two hours for the pipe is less than 0.1%. The main body of the valve does not fail either. The opening torque change after the experiment is less than 0.5%, but the handwheel of the valve may break, which affects the opening actions. In summary, impacts of the upper pipes and ventilation pipes dropdown on the integrity of the DN300 pipes and valves below in a cooling water system of a typical second-generation nuclear power plant under an earthquake was studied. As a result, the functionality of the DN300 pipeline and the valves themselves are not significantly affected, but the handwheel of the valve or similar articles can probably be broken and need to take care.

Keywords: cooling water system, earthquake, integrity, pipe and valve

Procedia PDF Downloads 87
2637 Effects of Position and Shape of Atomic Defects on the Band Gap of Graphene Nano-Ribbon Superlattices

Authors: Zeinab Jokar, Mohammad Reza Moslemi

Abstract:

In this work, we study the behavior of introducing atomic size vacancy in a graphene nanoribbon superlattice. Our investigations are based on the density functional theory (DFT) with the Local Density Approximation in Atomistix Toolkit (ATK). We show that, in addition to its shape, the position of vacancy has a major impact on the electrical properties of a graphene nanoribbon superlattice. We show that the band gap of an armchair graphene nanoribbon may be tuned by introducing an appropriate periodic pattern of vacancies. The band gap changes in a zig-zag manner similar to the variation of the band gap of a graphene nanoribbon by changing its width.

Keywords: AGNR, antidot, atomistic toolKit, vacancy

Procedia PDF Downloads 947
2636 Aerodynamic Heating Analysis of Hypersonic Flow over Blunt-Nosed Bodies Using Computational Fluid Dynamics

Authors: Aakash Chhunchha, Assma Begum

Abstract:

The qualitative aspects of hypersonic flow over a range of blunt bodies have been extensively analyzed in the past. It is well known that the curvature of a body’s geometry in the sonic region predominantly dictates the bow shock shape and its standoff distance from the body, while the surface pressure distribution depends on both the sonic region and on the local body shape. The present study is an extension to analyze the hypersonic flow characteristics over several blunt-nosed bodies using modern Computational Fluid Dynamics (CFD) tools to determine the shock shape and its effect on the heat flux around the body. 4 blunt-nosed models with cylindrical afterbodies were analyzed for a flow at a Mach number of 10 corresponding to the standard atmospheric conditions at an altitude of 50 km. The nose radii of curvature of the models range from a hemispherical nose to a flat nose. Appropriate numerical models and the supplementary convergence techniques that were implemented for the CFD analysis are thoroughly described. The flow contours are presented highlighting the key characteristics of shock wave shape, shock standoff distance and the sonic point shift on the shock. The variation of heat flux, due to different shock detachments for various models is comprehensively discussed. It is observed that the more the bluntness of the nose radii, the farther the shock stands from the body; and consequently, the less the surface heating at the nose. The results obtained from the CFD analyses are compared with approximated theoretical engineering correlations. Overall, a satisfactory agreement is observed between the two.

Keywords: aero-thermodynamics, blunt-nosed bodies, computational fluid dynamics (CFD), hypersonic flow

Procedia PDF Downloads 117
2635 Time and Energy Saving Kitchen Layout

Authors: Poonam Magu, Kumud Khanna, Premavathy Seetharaman

Abstract:

The two important resources of any worker performing any type of work at any workplace are time and energy. These are important inputs of the worker and need to be utilised in the best possible manner. The kitchen is an important workplace where the homemaker performs many essential activities. Its layout should be so designed that optimum use of her resources can be achieved.Ideally, the shape of the kitchen, as determined by the physical space enclosed by the four walls, can be square, rectangular or irregular. But it is the shape of the arrangement of counter that one normally refers to while talking of the layout of the kitchen. The arrangement can be along a single wall, along two opposite walls, L shape, U shape or even island. A study was conducted in 50 kitchens belonging to middle income group families. These were DDA built kitchens located in North, South, East and West Delhi.The study was conducted in three phases. In the first phase, 510 non working homemakers were interviewed. The data related to personal characteristics of the homemakers was collected. Additional information was also collected regarding the kitchens-the size, shape , etc. The homemakers were also questioned about various aspects related to meal preparation-people performing the task, number of items cooked, areas used for meal preparation , etc. In the second phase, a suitable technique was designed for conducting time and motion study in the kitchen while the meal was being prepared. This technique was called Path Process Chart. The final phase was carried out in 50 kitchens. The criterion for selection was that all items for a meal should be cooked at the same time. All the meals were cooked by the homemakers in their own kitchens. The meal preparation was studied using the Path Process Chart technique. The data collected was analysed and conclusions drawn. It was found that of all the shapes, it was the kitchen with L shape arrangement in which, on an average a homemaker spent minimum time on meal preparation and also travelled the minimum distance. Thus, the average distance travelled in a L shaped layout was 131.1 mts as compared to 181.2 mts in an U shaped layout. Similarly, 48 minutes was the average time spent on meal preparation in L shaped layout as compared to 53 minutes in U shaped layout. Thus, the L shaped layout was more time and energy saving layout as compared to U shaped.

Keywords: kitchen layout, meal preparation, path process chart technique, workplace

Procedia PDF Downloads 181
2634 Enhancement of Long Term Peak Demand Forecast in Peninsular Malaysia Using Hourly Load Profile

Authors: Nazaitul Idya Hamzah, Muhammad Syafiq Mazli, Maszatul Akmar Mustafa

Abstract:

The peak demand forecast is crucial to identify the future generation plant up needed in the long-term capacity planning analysis for Peninsular Malaysia as well as for the transmission and distribution network planning activities. Currently, peak demand forecast (in Mega Watt) is derived from the generation forecast by using load factor assumption. However, a forecast using this method has underperformed due to the structural changes in the economy, emerging trends and weather uncertainty. The dynamic changes of these drivers will result in many possible outcomes of peak demand for Peninsular Malaysia. This paper will look into the independent model of peak demand forecasting. The model begins with the selection of driver variables to capture long-term growth. This selection and construction of variables, which include econometric, emerging trend and energy variables, will have an impact on the peak forecast. The actual framework begins with the development of system energy and load shape forecast by using the system’s hourly data. The shape forecast represents the system shape assuming all embedded technology and use patterns to continue in the future. This is necessary to identify the movements in the peak hour or changes in the system load factor. The next step would be developing the peak forecast, which involves an iterative process to explore model structures and variables. The final step is combining the system energy, shape, and peak forecasts into the hourly system forecast then modifying it with the forecast adjustments. Forecast adjustments are among other sales forecasts for electric vehicles, solar and other adjustments. The framework will result in an hourly forecast that captures growth, peak usage and new technologies. The advantage of this approach as compared to the current methodology is that the peaks capture new technology impacts that change the load shape.

Keywords: hourly load profile, load forecasting, long term peak demand forecasting, peak demand

Procedia PDF Downloads 130
2633 A Comparative Case Study of the Impact of Square and Yurt-Shape Buildings on Energy Efficiency

Authors: Valeriya Tyo, Serikbolat Yessengabulov

Abstract:

Regions with extreme climate conditions such as Astana city require energy saving measures to increase the energy performance of buildings which are responsible for more than 40% of total energy consumption. Identification of optimal building geometry is one of the key factors to be considered. The architectural form of a building has the impact on space heating and cooling energy use, however, the interrelationship between the geometry and resultant energy use is not always readily apparent. This paper presents a comparative case study of two prototypical buildings with compact building shape to assess its impact on energy performance.

Keywords: building geometry, energy efficiency, heat gain, heat loss

Procedia PDF Downloads 473
2632 Criteria for Good Governance in Georgian Defense Sector:Standards and Principles

Authors: Vephkhvia Grigalashvili

Abstract:

This paper provides an overview of criteria for good governance in Georgian defense sector and scientific outcomes of comparative research. A respect for good governance and its realization into Georgian national defense sector represents a fundamental institutional necessity as well as country`s politico-legal obligation within the framework of the existing collaboration mechanisms with NATO (especially Building Integrity (BI) Programme) and the Association Agreement between the EU and Georgia. Furthermore good governance is considered as a democracy measuring criterion in country`s Euro-Atlantic integration process. Accordingly, integration and further development of the contemporary approaches of good governance into Georgian defense management model represents a burning issue of the country. The assessment of an existing model of the country, identification of defects and determination of course of institutional reforms in a mutual comparison format of good governance mechanisms of NATO or/and the EU member Eastern European or Baltic countries positively assessed by the international organizations is considered as a precondition for its effective realization. Scientific aims of this study are: (a) to conduct comparative analysis of Georgian national principles and generalized standards of NATO or/and the EU member Eastern European and Baltic countries in following segments of good governance: open governance; anticorruption policy; conflict of interests; integrity; internal and external control bodies; (b) to formulate theoretical and practical recommendations on reforms to be implemented in the country`s national defence sector. As research reveals, although, institutional / legal pillars of good governance in Georgian defense sector generally are in compliance with international principles, the quality of implementation of good government norms still remains as an area that needs further development by raising awareness of public servants and community.

Keywords: anti-corruption policy within Georgian defense governance, conflict of interests within Georgian defense governance, good governance in Georgian defense sector, principles of integrity in Georgian defense management

Procedia PDF Downloads 134
2631 Micro-Cantilever Tests on Hydride Blister and Zirconium Matrix of Zircaloy-4 Cladding Tube

Authors: Ho-A Kim, Jae-Soo Noh

Abstract:

During reactor operation, hydride blister can occur in spent nuclear fuel (SNF) claddings, and it could worsen the integrity of the claddings locally. Hydride blister can be critical when a pinch-type load is applied in the process of SNF handling and transportation. Micro-cantilever tests were performed to evaluate the risk of local hydride blister by comparing the fracture toughness of local hydride blister and pre-hydrided Zr alloy matrix of SNF cladding on a microscale. Hydride blister was generated by a gaseous charging procedure to simulate an SNF cladding. Micro-cantilevers and pre-cracks were ion-milled with the Ga+ ion beam of FEI Helios 600 at 30kV acceleration voltage. Micro-cantilever tests were conducted using PI 85 pico-indenter (HYSTRON) with for sided conductive diamond flat tip (1 μm x 1 μm) at a speed of 5 nm/sec. The results show that the hydride blister specimen could be fractured in the elastic deformation region, and the fracture toughness of the hydride blister specimen could drop up to 60% of that of the pre-hydrided Zr alloy matrix. Therefore, local hydride blister can degrade the integrity of SNF cladding, and the effect of hydride blister should be taken into account when evaluating failure criteria of claddings during handling, storage, and transportation of SNF.

Keywords: fracture toughness, hydride blister, micro-cantilever test, spent nuclear fuel cladding.

Procedia PDF Downloads 113
2630 Blockchain for IoT Security and Privacy in Healthcare Sector

Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab

Abstract:

The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas, and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It's is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain. Then we try to describe various application areas, challenges, and future directions in the healthcare sector where blockchain platforms merge with IoT networks.

Keywords: IoT, blockchain, cryptocurrency, healthcare, consensus, data

Procedia PDF Downloads 142
2629 An Automated System for the Detection of Citrus Greening Disease Based on Visual Descriptors

Authors: Sidra Naeem, Ayesha Naeem, Sahar Rahim, Nadia Nawaz Qadri

Abstract:

Citrus greening is a bacterial disease that causes considerable damage to citrus fruits worldwide. Efficient method for this disease detection must be carried out to minimize the production loss. This paper presents a pattern recognition system that comprises three stages for the detection of citrus greening from Orange leaves: segmentation, feature extraction and classification. Image segmentation is accomplished by adaptive thresholding. The feature extraction stage comprises of three visual descriptors i.e. shape, color and texture. From shape feature we have used asymmetry index, from color feature we have used histogram of Cb component from YCbCr domain and from texture feature we have used local binary pattern. Classification was done using support vector machines and k nearest neighbors. The best performances of the system is Accuracy = 88.02% and AUROC = 90.1% was achieved by automatic segmented images. Our experiments validate that: (1). Segmentation is an imperative preprocessing step for computer assisted diagnosis of citrus greening, and (2). The combination of shape, color and texture features form a complementary set towards the identification of citrus greening disease.

Keywords: citrus greening, pattern recognition, feature extraction, classification

Procedia PDF Downloads 144
2628 Calculational-Experimental Approach of Radiation Damage Parameters on VVER Equipment Evaluation

Authors: Pavel Borodkin, Nikolay Khrennikov, Azamat Gazetdinov

Abstract:

The problem of ensuring of VVER type reactor equipment integrity is now most actual in connection with justification of safety of the NPP Units and extension of their service life to 60 years and more. First of all, it concerns old units with VVER-440 and VVER-1000. The justification of the VVER equipment integrity depends on the reliability of estimation of the degree of the equipment damage. One of the mandatory requirements, providing the reliability of such estimation, and also evaluation of VVER equipment lifetime, is the monitoring of equipment radiation loading parameters. In this connection, there is a problem of justification of such normative parameters, used for an estimation of the pressure vessel metal embrittlement, as the fluence and fluence rate (FR) of fast neutrons above 0.5 MeV. From the point of view of regulatory practice, a comparison of displacement per atom (DPA) and fast neutron fluence (FNF) above 0.5 MeV has a practical concern. In accordance with the Russian regulatory rules, neutron fluence F(E > 0.5 MeV) is a radiation exposure parameter used in steel embrittlement prediction under neutron irradiation. However, the DPA parameter is a more physically legitimate quantity of neutron damage of Fe based materials. If DPA distribution in reactor structures is more conservative as neutron fluence, this case should attract the attention of the regulatory authority. The purpose of this work was to show what radiation load parameters (fluence, DPA) on all VVER equipment should be under control, and give the reasonable estimations of such parameters in the volume of all equipment. The second task is to give the conservative estimation of each parameter including its uncertainty. Results of recently received investigations allow to test the conservatism of calculational predictions, and, as it has been shown in the paper, combination of ex-vessel measured data with calculated ones allows to assess unpredicted uncertainties which are results of specific unique features of individual equipment for VVER reactor. Some results of calculational-experimental investigations are presented in this paper.

Keywords: equipment integrity, fluence, displacement per atom, nuclear power plant, neutron activation measurements, neutron transport calculations

Procedia PDF Downloads 133
2627 Construction and Validation of Allied Bank-Teller Aptitude Test

Authors: Muhammad Kashif Fida

Abstract:

In the bank, teller’s job (cash officer) is highly important and critical as at one end it requires soft and brisk customer services and on the other side, handling cash with integrity. It is always challenging for recruiters to hire competent and trustworthy tellers. According to author’s knowledge, there is no comprehensive test available that may provide assistance in recruitment in Pakistan. So there is a dire need of a psychometric battery that could provide support in recruitment of potential candidates for the teller’ position. So, the aim of the present study was to construct ABL-Teller Aptitude Test (ABL-TApT). Three major phases have been designed by following American Psychological Association’s guidelines. The first phase was qualitative, indicators of the test have been explored by content analysis of the a) teller’s job descriptions (n=3), b) interview with senior tellers (n=6) and c) interview with HR personals (n=4). Content analysis of above yielded three border constructs; i). Personality, ii). Integrity/honesty, iii). Professional Work Aptitude. Identified indicators operationalized and statements (k=170) were generated using verbatim. It was then forwarded to the five experts for review of content validity. They finalized 156 items. In the second phase; ABL-TApT (k=156) administered on 323 participants through a computer application. The overall reliability of the test shows significant alpha coefficient (α=.81). Reliability of subscales have also significant alpha coefficients. Confirmatory Factor Analysis (CFA) performed to estimate the construct validity, confirms four main factors comprising of eight personality traits (Confidence, Organized, Compliance, Goal-oriented, Persistent, Forecasting, Patience, Caution), one Integrity/honesty factor, four factors of professional work aptitude (basic numerical ability and perceptual accuracy of letters, numbers and signature) and two factors for customer services (customer services, emotional maturity). Values of GFI, AGFI, NNFI, CFI, RFI and RMSEA are in recommended range depicting significant model fit. In third phase concurrent validity evidences have been pursued. Personality and integrity part of this scale has significant correlations with ‘conscientiousness’ factor of NEO-PI-R, reflecting strong concurrent validity. Customer services and emotional maturity have significant correlations with ‘Bar-On EQI’ showing another evidence of strong concurrent validity. It is concluded that ABL-TAPT is significantly reliable and valid battery of tests, will assist in objective recruitment of tellers and help recruiters in finding a more suitable human resource.

Keywords: concurrent validity, construct validity, content validity, reliability, teller aptitude test, objective recruitment

Procedia PDF Downloads 202
2626 Effect of Composition Fuel on Safety of Combustion Process

Authors: Lourdes I. Meriño, Viatcheslav Kafarov, Maria Gómez

Abstract:

Fuel gas used in the burner receives as contributors other gases from different processes and this result in variability in the composition, which may cause an incomplete combustion. The burners are designed to operate in a certain curve, the calorific power dependent on the pressure and gas burners. When deviation of propane and C5+ is huge, there is a large release of energy, which causes it to work out the curves of the burners, because less pressure is required to force curve into operation. That increases the risk of explosion in an oven, besides of a higher environmental impact. There should be flame detection systems, and instrumentation equipment, such as local pressure gauges located at the entrance of the gas burners, to permit verification by the operator. Additionally, distributed control systems must be configured with different combustion instruments associated with respective alarms, as well as its operational windows, and windows control guidelines of integrity, leaving the design information of this equipment. Therefore, it is desirable to analyze when a plant is taken out of service and make good operational analysis to determine the impact of changes in fuel gas streams contributors, by varying the calorific power. Hence, poor combustion is one of the cause instability in the flame of the burner and having a great impact on process safety, the integrity of individuals and teams and environment.

Keywords: combustion process, fuel composition, safety, fuel gas

Procedia PDF Downloads 464
2625 A Non-Iterative Shape Reconstruction of an Interface from Boundary Measurement

Authors: Mourad Hrizi

Abstract:

In this paper, we study the inverse problem of reconstructing an interior interface D appearing in the elliptic partial differential equation: Δu+χ(D)u=0 from the knowledge of the boundary measurements. This problem arises from a semiconductor transistor model. We propose a new shape reconstruction procedure that is based on the Kohn-Vogelius formulation and the topological sensitivity method. The inverse problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a function. The unknown subdomain D is reconstructed using a level-set curve of the topological gradient. Finally, we give several examples to show the viability of our proposed method.

Keywords: inverse problem, topological optimization, topological gradient, Kohn-Vogelius formulation

Procedia PDF Downloads 217
2624 Cylindrical Spacer Shape Optimization for Enhanced Inhalation Therapy

Authors: Shahab Azimi, Siamak Arzanpour, Anahita Sayyar

Abstract:

Asthma and Chronic obstructive pulmonary disease (COPD) are common lung diseases that have a significant global impact. Pressurized metered dose inhalers (pMDIs) are widely used for treatment, but they can have limitations such as high medication release speed resulting in drug deposition in the mouth or oral cavity and difficulty achieving proper synchronization with inhalation by users. Spacers are add-on devices that improve the efficiency of pMDIs by reducing the release speed and providing space for aerosol particle breakup to have finer and medically effective medication. The aim of this study is to optimize the size and cylindrical shape of spacers to enhance their drug delivery performance. The study was based on fluid dynamics theory and employed Ansys software for simulation and optimization. Results showed that optimization of the spacer's geometry greatly influenced its performance and improved drug delivery. This study provides a foundation for future research on enhancing the efficiency of inhalation therapy for lung diseases.

Keywords: asthma, COPD, pressurized metered dose inhalers, spacers, CFD, shape optimization

Procedia PDF Downloads 56
2623 Analog Input Output Buffer Information Specification Modelling Techniques for Single Ended Inter-Integrated Circuit and Differential Low Voltage Differential Signaling I/O Interfaces

Authors: Monika Rawat, Rahul Kumar

Abstract:

Input output Buffer Information Specification (IBIS) models are used for describing the analog behavior of the Input Output (I/O) buffers of a digital device. They are widely used to perform signal integrity analysis. Advantages of using IBIS models include simple structure, IP protection and fast simulation time with reasonable accuracy. As design complexity of driver and receiver increases, capturing exact behavior from transistor level model into IBIS model becomes an essential task to achieve better accuracy. In this paper, an improvement in existing methodology of generating IBIS model for complex I/O interfaces such as Inter-Integrated Circuit (I2C) and Low Voltage Differential Signaling (LVDS) is proposed. Furthermore, the accuracy and computational performance of standard method and proposed approach with respect to SPICE are presented. The investigations will be useful to further improve the accuracy of IBIS models and to enhance their wider acceptance.

Keywords: IBIS, signal integrity, open-drain buffer, low voltage differential signaling, behavior modelling, transient simulation

Procedia PDF Downloads 163
2622 Finite Element Analysis of Shape Memory Alloy Stents in Coronary Arteries

Authors: Amatulraheem Al-Abassi, K. Khanafer, Ibrahim Deiab

Abstract:

The coronary artery stent is a promising technology that can treat various coronary diseases. Materials used for manufacturing medical stents should have high biocompatible properties. Stent alloys, in particular, are remarkably promising good clinical outcomes, however, there is threaten of restenosis (reoccurring of artery narrowing due to fatty plaque), stent recoiling, or in long-term the occurrence of stent fracture. However, stents that are made of Nickel-titanium (Nitinol) can bare extensive plastic deformation and resist restenosis. This shape memory alloy has outstanding mechanical properties. Nitinol is a unique shape memory alloy as it has unique mechanical properties such as; biocompatibility, super-elasticity, and recovery to original shape under certain loads. Stent failure may cause complications in vascular diseases and possibly blockage of blood flow. Thus, studying the behaviors of the stent under different medical conditions will help the doctors and cardiologists to predict when it is necessary to change the stent in order to prevent any severe morbidity outcomes. To the best of our knowledge, there are limited published papers that analyze the stent behavior with regards to the contact surfaces of plaque layer and blood vessel. Thus, stent material properties will be discussed in this investigation to highlight the mechanical and clinical differences between various stents. This research analyzes the performance of Nitinol stent in well-known stent design to determine its bearing with stress and its dislocation in blood vessels, in comparison to stents made of different biocompatible materials. In addition, a study of its performance will be represented in the system. Finite Element Analysis is the core of this study. Thus, a physical representative model will be discussed to show the distribution of stress and strain along the interaction surface between the stent and the artery. The reaction of vascular tissue to the stent will be evaluated to predict the possibility of restenosis within the treated area.

Keywords: shape memory alloy, stent, coronary artery, finite element analysis

Procedia PDF Downloads 179
2621 Experimental Behavior of Composite Shear Walls Having L Shape Steel Sections in Boundary Regions

Authors: S. Bahadır Yüksel, Alptuğ Ünal

Abstract:

The composite shear walls (CSW) with steel encased profiles can be used as lateral-load resisting systems for buildings that require considerable large lateral-load capacity. The aim of this work is to propose the experimental work conducted on CSW having L section folded plate (L shape steel made-up sections) as longitudinal reinforcement in boundary regions. The study in this paper present the experimental test conducted on CSW having L section folded plate as longitudinal reinforcement in boundary regions. The tested 1/3 geometric scaled CSW has aspect ratio of 3.2. L-shape structural steel materials with 2L-19x57x7mm dimensions were placed in shear wall boundary zones. The seismic behavior of CSW test specimen was investigated by evaluating and interpreting the hysteresis curves, envelope curves, rigidity and consumed energy graphs of this tested element. In addition to this, the experimental results, deformation and cracking patterns were evaluated, interpreted and suggestions of the design recommendations were proposed.

Keywords: shear wall, composite shear wall, boundary reinforcement, earthquake resistant structural design, L section

Procedia PDF Downloads 298
2620 Experimental Studies of the Response of Single Piles Under Torsional and Vertical Combined Loads in Contaminated Sand

Authors: Ahmed Mohamed Nasr, Waseim Ragab Azzam, Nada Osama Ramadan

Abstract:

Contaminated soil can weaken the stability of buildings and infrastructure, posing serious risks to their structural integrity. Therefore, this study aims to understand how oil contamination affects the torsion behavior of model steel piles at different soil densities. This research is crucial for evaluating the structural integrity and stability of piles in oil-contaminated environments. Clean sand samples and heavy motor oil were mixed in amounts ranging from 0 to 6% of the soil's dry weight. The mixture was thoroughly mixed to ensure uniform distribution of the oil throughout the sandy soil for simulating the field conditions. In these investigations, the relative densities (Dr), pile slenderness ratio (Lp/Dp), oil content (O.C%), and contaminated sand layer thickness (LC) were all different. Also, the paper presents an analysis of piles that are loaded both vertically and torsionally. The findings demonstrated that the pre-applied torsion load led to a decrease in the vertical bearing ability of the pile. Also, at Dr = 80%, the ultimate vertical load under combined load at constant torsional load T = (1/3Tu, 2/3Tu, and Tu) in the cases of (Lc/Lp) = 0.5 and (Lp/Dp) =13.3 was found to be reduced by (1.48, 2.78, and 4.15%) less than piles under independent vertical load, respectively so it is crucial to consider the torsion load during pile design.

Keywords: torsion-vertical load, oil-contaminated sand, twist angle, steel pile

Procedia PDF Downloads 26
2619 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation

Authors: Peiming Li

Abstract:

This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.

Keywords: federated learning system, block chain, decentralized oracles, hidden markov model

Procedia PDF Downloads 30
2618 Investigation of Optimal Parameter Settings in Super Duplex Stainless Steel Welding Welding

Authors: R. M. Chandima Ratnayake, Daniel Dyakov

Abstract:

Super steel materials play vital role in construction and fabrication of structural, piping and pipeline components. They enable to minimize the life cycle costs in assuring the integrity of onshore and offshore operating systems. In this context, Duplex stainless steel (DSS) material related welding on constructions and fabrications play a significant role in maintaining and assuring integrity at an optimal expenditure over the life cycle of production and process systems as well as associated structures. In DSS welding, the factors such as gap geometry, shielding gas supply rate, welding current, and type of the welding process play a vital role on the final joint performance. Hence, an experimental investigation has been performed using engineering robust design approach (ERDA) to investigate the optimal settings that generate optimal super DSS (i.e. UNS S32750) joint performance. This manuscript illustrates the mathematical approach and experimental design, optimal parameter settings and results of verification experiment.

Keywords: duplex stainless steel welding, engineering robust design, mathematical framework, optimal parameter settings

Procedia PDF Downloads 390
2617 Plot Scale Estimation of Crop Biophysical Parameters from High Resolution Satellite Imagery

Authors: Shreedevi Moharana, Subashisa Dutta

Abstract:

The present study focuses on the estimation of crop biophysical parameters like crop chlorophyll, nitrogen and water stress at plot scale in the crop fields. To achieve these, we have used high-resolution satellite LISS IV imagery. A new methodology has proposed in this research work, the spectral shape function of paddy crop is employed to get the significant wavelengths sensitive to paddy crop parameters. From the shape functions, regression index models were established for the critical wavelength with minimum and maximum wavelengths of multi-spectrum high-resolution LISS IV data. Moreover, the functional relationships were utilized to develop the index models. From these index models crop, biophysical parameters were estimated and mapped from LISS IV imagery at plot scale in crop field level. The result showed that the nitrogen content of the paddy crop varied from 2-8%, chlorophyll from 1.5-9% and water content variation observed from 40-90% respectively. It was observed that the variability in rice agriculture system in India was purely a function of field topography.

Keywords: crop parameters, index model, LISS IV imagery, plot scale, shape function

Procedia PDF Downloads 140
2616 Study the Effect of Leading-Edge Serration at Owl Wing Feathers on Flow-Induced Noise Generation

Authors: Suprabha Islam, Sifat Ullah Tanzil

Abstract:

During past few decades, being amazed by the excellent silent flight of owl, scientists have been trying to demystify the unique features of its wing feathers. Our present study is dedicated to taking our understanding further on this phenomenon. In this present study, a numerical investigation was performed to analyze how the shape of the leading-edge serration at owl wing feathers effects the flow-induced noise generation. For the analysis, an owl inspired single feather wing model was prepared for both with and without serrations at the leading edge. The serration profiles were taken at different positions of the vane length for a single feather. The broadband noise was studied to quantify the local contribution to the total acoustic power generated by the flow, where the results clearly showed the effect of serrations in reducing the noise generation. It was also clearly visible that the shape of the serration has a very strong influence on noise generation. The frequency spectrum of noise was also analyzed and a strong relation was found between the shape of the serration and the noise generation. It showed that the noise suppression is strongly influenced by the height to length ratio of the serration. With the increase in height to length ratio, the noise suppression is enhanced further.

Keywords: aeroacoustics, aerodynamic, biomimetics, serrations

Procedia PDF Downloads 141
2615 Analysis of Intra-Varietal Diversity for Some Lebanese Grapevine Cultivars

Authors: Stephanie Khater, Ali Chehade, Lamis Chalak

Abstract:

The progressive replacement of the Lebanese autochthonous grapevine cultivars during the last decade by the imported foreign varieties almost resulted in the genetic erosion of the local germplasm and the confusion with cultivars' names. Hence there is a need to characterize these local cultivars and to assess the possible existing variability at the cultivar level. This work was conducted in an attempt to evaluate the intra-varietal diversity within Lebanese traditional cultivars 'Aswad', 'Maghdoushe', 'Maryame', 'Merweh', 'Meksese' and 'Obeide'. A total of 50 accessions distributed over five main geographical areas in Lebanon were collected and submitted to both ampelographic description and ISSR DNA analysis. A set of 35 ampelographic descriptors previously established by the International Office of Vine and Wine and related to leaf, bunch, berry, and phenological stages, were examined. Variability was observed between accessions within cultivars for blade shape, density of prostrate and erect hairs, teeth shape, berry shape, size and color, cluster shape and size, and flesh juiciness. At the molecular level, nine ISSR (inter-simple sequence repeat) primers, previously developed for grapevine, were used in this study. These primers generated a total of 35 bands, of which 30 (85.7%) were polymorphic. Totally, 29 genetic profiles were differentiated, of which 9 revealed within 'Obeide', 6 for 'Maghdoushe', 5 for 'Merweh', 4 within 'Maryame', 3 for 'Aswad' and 2 within 'Meksese'. Findings of this study indicate the existence of several genotypes that form the basis of the main indigenous cultivars grown in Lebanon and which should be further considered in the establishment of new vineyards and selection programs.

Keywords: ampelography, autochthonous cultivars, ISSR markers, Lebanon, Vitis vinifera L.

Procedia PDF Downloads 114
2614 Cryopreservation of Ring-Necked Pheasant (Phasianus colchicus) Semen for Establishing Cryobank

Authors: Rida Pervaiz, Bushra Allah Rakha, Muhammad Sajjad Ansari, Shamim Akhter, Kainat Waseem, Sumiyyah Zuha, Tooba Javed

Abstract:

Ring-necked pheasant (Phasianus colchicus) belongs to order Galliformes and family Phasianidae. It has been recognized as the most hunted bird due to its attractive colorful appearance and meat. Loss of habitat and hunting pressure has caused population fluctuations in the native range. Under these circumstances, this species can be conserved by employing ex-situ in vitro conservation techniques. Captive breeding, in combination with semen cryobanking is the most appropriate option to conserve/propagate this species without deteriorating the genetic diversity. Cryopreservation protocols of adequate efficiency are necessary to establish semen cryobanking for a species. Therefore, present study was designed to devise an efficient extender for cryopreservation of ring-necked pheasant semen. For this purpose, a range of extenders (Beltsville Poultry, red fowl, Lake, EK, Tselutin Poultry and Chicken semen extenders) were evaluated for cryopreservation of ring-necked pheasant semen. Semen collected from 10 cocks, diluted in the Beltsville Poultry (BPSE), Red Fowl (RFE), Lake (LE), EK (EKE), Tselutin Poultry (TPE) and Chicken Semen (CSE) extenders and cryopreserved. Glycerol (10%) was added to semen at 4°C, equilibrated for 10 min, filled in 0.5 mL French straws, kept over liquid nitrogen vapors for 10 min, cryopreserved in LN2 and stored. Sperm motility (%), viability (%), live/dead ratio (%), plasma membrane (%) and DNA Integrity (%) were evaluated at post-dilution, post-cooling, post-equilibration and post-thawing stage of cryopreservation. Sperm motility (83.8 ± 3.1; 81.3 ± 3.8; 73.8 ± 2.4; 62.5 ± 1.4), viability (79.0 ± 1.7; 75.5 ± 1.6; 69.5 ± 2.3; 65.5 ± 2.4), live/dead ratio (80.5 ± 5.7; 77.3 ± 4.9; 76.0 ± 2.7; 68.3 ± 2.3), plasma membrane (74.5 ± 2.9; 73.8 ± 3.4; 71.3 ± 2.3; 75.0 ± 3.4) and DNA integrity (78.3 ± 1.7; 73.0 ± 1.2; 68.0 ± 2.0; 63.0 ± 2.5) at all four stages of cryopreservation were recorded higher (P < 0.05) in red fowl extender compared to all experimental extenders. It is concluded that red fowl extender is the best extender for cryopreservation of ring-necked pheasant semen and can be used in establishing cryobank for ex situ conservation.

Keywords: ring-necked pheasant; extenders; cryopreservation; semen quality; DNA integrity

Procedia PDF Downloads 112