Search results for: separation analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27601

Search results for: separation analysis

27571 Heart Murmurs and Heart Sounds Extraction Using an Algorithm Process Separation

Authors: Fatima Mokeddem

Abstract:

The phonocardiogram signal (PCG) is a physiological signal that reflects heart mechanical activity, is a promising tool for curious researchers in this field because it is full of indications and useful information for medical diagnosis. PCG segmentation is a basic step to benefit from this signal. Therefore, this paper presents an algorithm that serves the separation of heart sounds and heart murmurs in case they exist in order to use them in several applications and heart sounds analysis. The separation process presents here is founded on three essential steps filtering, envelope detection, and heart sounds segmentation. The algorithm separates the PCG signal into S1 and S2 and extract cardiac murmurs.

Keywords: phonocardiogram signal, filtering, Envelope, Detection, murmurs, heart sounds

Procedia PDF Downloads 112
27570 Evaluation of Solid-Gas Separation Efficiency in Natural Gas Cyclones

Authors: W. I. Mazyan, A. Ahmadi, M. Hoorfar

Abstract:

Objectives/Scope: This paper proposes a mathematical model for calculating the solid-gas separation efficiency in cyclones. This model provides better agreement with experimental results compared to existing mathematical models. Methods: The separation ratio efficiency, ϵsp, is evaluated by calculating the outlet to inlet count ratio. Similar to mathematical derivations in the literature, the inlet and outlet particle count were evaluated based on Eulerian approach. The model also includes the external forces acting on the particle (i.e., centrifugal and drag forces). In addition, the proposed model evaluates the exact length that the particle travels inside the cyclone for the evaluation of number of turns inside the cyclone. The separation efficiency model derivation using Stoke’s law considers the effect of the inlet tangential velocity on the separation performance. In cyclones, the inlet velocity is a very important factor in determining the performance of the cyclone separation. Therefore, the proposed model provides accurate estimation of actual cyclone separation efficiency. Results/Observations/Conclusion: The separation ratio efficiency, ϵsp, is studied to evaluate the performance of the cyclone for particles ranging from 1 microns to 10 microns. The proposed model is compared with the results in the literature. It is shown that the proposed mathematical model indicates an error of 7% between its efficiency and the efficiency obtained from the experimental results for 1 micron particles. At the same time, the proposed model gives the user the flexibility to analyze the separation efficiency at different inlet velocities. Additive Information: The proposed model determines the separation efficiency accurately and could also be used to optimize the separation efficiency of cyclones at low cost through trial and error testing, through dimensional changes to enhance separation and through increasing the particle centrifugal forces. Ultimately, the proposed model provides a powerful tool to optimize and enhance existing cyclones at low cost.

Keywords: cyclone efficiency, solid-gas separation, mathematical model, models error comparison

Procedia PDF Downloads 363
27569 Aerodynamic Analysis of Dimple Effect on Aircraft Wing

Authors: E. Livya, G. Anitha, P. Valli

Abstract:

The main objective of aircraft aerodynamics is to enhance the aerodynamic characteristics and maneuverability of the aircraft. This enhancement includes the reduction in drag and stall phenomenon. The airfoil which contains dimples will have comparatively less drag than the plain airfoil. Introducing dimples on the aircraft wing will create turbulence by creating vortices which delays the boundary layer separation resulting in decrease of pressure drag and also increase in the angle of stall. In addition, wake reduction leads to reduction in acoustic emission. The overall objective of this paper is to improve the aircraft maneuverability by delaying the flow separation point at stall and thereby reducing the drag by applying the dimple effect over the aircraft wing. This project includes both computational and experimental analysis of dimple effect on aircraft wing, using NACA 0018 airfoil. Dimple shapes of Semi-sphere, hexagon, cylinder, square are selected for the analysis; airfoil is tested under the inlet velocity of 30m/s at different angle of attack (5˚, 10˚, 15˚, 20˚, and 25˚). This analysis favours the dimple effect by increasing L/D ratio and thereby providing the maximum aerodynamic efficiency, which provides the enhanced performance for the aircraft.

Keywords: airfoil, dimple effect, turbulence, boundary layer separation

Procedia PDF Downloads 508
27568 Multi-Layer Silica Alumina Membrane Performance for Flue Gas Separation

Authors: Ngozi Nwogu, Mohammed Kajama, Emmanuel Anyanwu, Edward Gobina

Abstract:

With the objective to create technologically advanced materials to be scientifically applicable, multi-layer silica alumina membranes were molecularly fabricated by continuous surface coating silica layers containing hybrid material onto a ceramic porous substrate for flue gas separation applications. The multi-layer silica alumina membrane was prepared by dip coating technique before further drying in an oven at elevated temperature. The effects of substrate physical appearance, coating quantity, the cross-linking agent, a number of coatings and testing conditions on the gas separation performance of the membrane have been investigated. Scanning electron microscope was used to investigate the development of coating thickness. The membrane shows impressive perm selectivity especially for CO2 and N2 binary mixture representing a stimulated flue gas stream

Keywords: gas separation, silica membrane, separation factor, membrane layer thickness

Procedia PDF Downloads 373
27567 Process Simulation of 1-Butene Separation from C4 Mixture by Extractive Distillation

Authors: Muhammad Naeem, Abdulrahman A. Al-Rabiah, Wasif Mughees

Abstract:

Technical mixture of C4 containing 1-butene and n-butane are very close to each other with regard to their boiling points i.e. -6.3°C for 1-butene and -1°C for n-butane. Extractive distillation process is used for the separation of 1-butene from the existing mixture of C4. The solvent is the essential of extractive distillation, and an appropriate solvent plays an important role in the process economy of extractive distillation. Aspen Plus has been applied for the separation of these hydrocarbons as a simulator. Moreover, NRTL activity coefficient model was used in the simulation. This model indicated that the material balances in this separation process were accurate for several solvent flow rates. Mixture of acetonitrile and water used as a solvent and 99% pure 1-butene was separated. This simulation proposed the ratio of the feed to solvent as 1: 7.9 and 15 plates for the solvent recovery column. Previously feed to solvent ratio was more than this and the number of proposed plates were 30, which shows that the separation process can be economized.

Keywords: extractive distillation, 1-butene, aspen plus, ACN solvent

Procedia PDF Downloads 498
27566 Separation of Rare-Earth Metals from E-Wastes

Authors: Gulsara Akanova, Akmaral Ismailova, Duisek Kamysbayev

Abstract:

The separation of rare earth metals (REM) from a neodymium magnet has been widely studied in the last year. The waste of computer hard disk contains 25.41 % neodymium, 64.09 % iron, and <<1 % boron. To further the separation of rare-earth metals, the magnet dissolved in open and closed systems with nitric acid. In the closed system, the magnet was dissolved in a microwave sample preparation system at different temperatures and pressures and the dissolution process lasted 1 hour. In the open system, the acid dissolution of the magnet was conducted at room temperature and the process lasted 30-40 minutes. To remove the iron in the magnet, oxalic acid was used and precipitated as oxalates under both conditions. For separation of rare earth metals (Nd, Pr and Dy) from magnet waste is used sorption method.

Keywords: dissolution of the magnet, Neodymium magnet, rare earth metals, separation, Sorption

Procedia PDF Downloads 175
27565 Study of Skid-Mounted Natural Gas Treatment Process

Authors: Di Han, Lingfeng Li

Abstract:

Selection of low-temperature separation dehydration and dehydrochlorination process applicable to skid design, using Hysys software to simulate the low-temperature separation dehydration and dehydrochlorination process under different refrigeration modes, focusing on comparing the refrigeration effect of different refrigeration modes, the condensation amount of hydrocarbon liquids and alcoholic wastewater, as well as the adaptability of the process, and determining the low-temperature separation process applicable to the natural gas dehydration and dehydrochlorination skid into the design of skid; and finally, to carry out the CNG recycling process calculations of the processed qualified natural gas and to determine the dehydration scheme and the key parameters of the compression process.

Keywords: skidding, dehydration and dehydrochlorination, cryogenic separation process, CNG recovery process calculations

Procedia PDF Downloads 111
27564 Solid-Liquid-Polymer Mixed Matrix Membrane Using Liquid Additive Adsorbed on Activated Carbon Dispersed in Polymeric Membrane for CO2/CH4 Separation

Authors: P. Chultheera, T. Rirksomboon, S. Kulprathipanja, C. Liu, W. Chinsirikul, N. Kerddonfag

Abstract:

Gas separation by selective transport through polymeric membranes is one of the rapid growing branches of membrane technology. However, the tradeoff between the permeability and selectivity is one of the critical challenges encountered by pure polymer membranes, which in turn limits their large-scale application. To enhance gas separation performances, mixed matrix membranes (MMMs) have been developed. In this study, MMMs were prepared by a solution-coating method and tested for CO2/CH4 separation through permeability and selectivity using a membrane testing unit at room temperature and a pressure of 100 psig. The fabricated MMMs were composed of silicone rubber dispersed with the activated carbon individually absorbed with polyethylene glycol (PEG) as a liquid additive. PEG emulsified silicone rubber MMMs showed superior gas separation on cellulose acetate membrane with both high permeability and selectivity compared with silicone rubber membrane and alone support membrane. However, the MMMs performed limited stability resulting from the undesirable PEG leakage. To stabilize the MMMs, PEG was then incorporated into activated carbon by adsorption. It was found that the incorporation of solid and liquid was effective to improve the separation performance of MMMs.

Keywords: mixed matrix membrane, membrane, CO₂/CH₄ separation, activated carbon

Procedia PDF Downloads 303
27563 Energy Separation Mechanism in Uni-Flow Vortex Tube Using Compressible Vortex Flow

Authors: Hiroshi Katanoda, Mohd Hazwan bin Yusof

Abstract:

A theoretical investigation from the viewpoint of gas-dynamics and thermodynamics was carried out, in order to clarify the energy separation mechanism in a viscous compressible vortex, as a primary flow element in a uni-flow vortex tube. The mathematical solutions of tangential velocity, density and temperature in a viscous compressible vortical flow were used in this study. It is clear that a total temperature in the vortex core falls well below that distant from the vortex core in the radial direction, causing a region with higher total temperature, compared to the distant region, peripheral to the vortex core.

Keywords: energy separation mechanism, theoretical analysis, vortex tube, vortical flow

Procedia PDF Downloads 364
27562 Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fiber Ion-Exchanged with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher, I. Musbah

Abstract:

Cs-type nanocomposite zeolite membrane was successfully synthesized on an alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm; cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.

Keywords: MFI membrane, nanocomposite, ceramic hollow fibre, CO2, ion-exchange

Procedia PDF Downloads 263
27561 Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fibre Ion-Exchanged with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher, I. Musbah

Abstract:

Cs-type nanocomposite zeolite membrane was successfully synthesized on a alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm, cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.

Keywords: MFI membrane, CO2, nanocomposite, ceramic hollow fibre, ion-exchange

Procedia PDF Downloads 453
27560 Implementation of Real-Time Multiple Sound Source Localization and Separation

Authors: Jeng-Shin Sheu, Qi-Xun Zheng

Abstract:

This paper mainly discusses a method of separating speech when using a microphone array without knowing the number and direction of sound sources. In recent years, there have been many studies on the method of separating signals by using masking, but most of the separation methods must be operated under the condition of a known number of sound sources. Such methods cannot be used for real-time applications. In our method, this paper uses Circular-Integrated-Cross-Spectrum to estimate the statistical histogram distribution of the direction of arrival (DOA) to obtain the number of sound sources and sound in the mixed-signal Source direction. In calculating the relevant parameters of the ring integrated cross-spectrum, the phase (Phase of the Cross-Power Spectrum) and phase rotation factors (Phase Rotation Factors) calculated by the cross power spectrum of each microphone pair are used. In the part of separating speech, it uses the DOA weighting and shielding separation method to calculate the sound source direction (DOA) according to each T-F unit (time-frequency point). The weight corresponding to each T-F unit can be used to strengthen the intensity of each sound source from the T-F unit and reduce the influence of the remaining sound sources, thereby achieving voice separation.

Keywords: real-time, spectrum analysis, sound source localization, sound source separation

Procedia PDF Downloads 122
27559 Production of Hydrophilic PVC Surfaces with Microwave Treatment for its Separation from Mixed Plastics by Froth Floatation

Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thanh Truc, Byeong-Kyu Lee

Abstract:

Organic polymeric materials (plastics) are widely used in our daily life and various industrial fields. The separation of waste plastics is important for its feedstock and mechanical recycling. One of the major problems in incineration for thermal recycling or heat melting for material recycling is the polyvinyl chloride (PVC) contained in waste plastics. This is due to the production of hydrogen chloride, chlorine gas, dioxins, and furans originated from PVC. Therefore, the separation of PVC from waste plastics is necessary before recycling. The separation of heavy polymers (PVC 1.42, PMMA 1.12, PC 1.22 and PET 1.27 g/cm3 ) from light ones (PE and PP 0.99 g/cm3) can be achieved on the basis of their density. However it is difficult to separate PVC from other heavy polymers basis of density. There are no simple and inexpensive techniques to separate PVC from others. If hydrophobic the PVC surface is selectively changed into hydrophilic, where other polymers still have hydrophobic surface, flotation process can separate PVC from others. In the present study, the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment after alkaline/acid washing and with activated carbon was studied as the pre-treatment of its separation by the following froth flotation. In presence of activated carbon as absorbent, the microwave treatment could selectively increase the hydrophilicity of the PVC surface (i.e. PVC contact angle decreased about 19o) among other plastics mixture. At this stage, 100% PVC separation from other plastics could be achieved by the combination of the pre- microwave treatment with activated carbon and the following froth floatation. The hydrophilization of PVC by surface analysis would be due to the hydrophilic groups produced by microwave treatment with activated carbon. The effect of optimum condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated.

Keywords: Hydrophilic, PVC, contact angle, additive, microwave, froth floatation, waste plastics

Procedia PDF Downloads 597
27558 Ionic Liquid Effects on Metal Ion-Based Extractions of Olefin/Paraffin Hydrocarbon

Authors: Ellen M. Lukasik

Abstract:

In coordination and support of the Center for Innovative and Strategic Transformation of Alkane Resources (CISTAR) Research Experience for Teachers (RET) at the University of Texas at Austin and under the guidance and direction of Professor Joan Brennecke, this study examined the addition of silver in an ionic liquid used to separate cyclohexane from cyclohexene. We recreated the liquid-liquid separation experimental results from the literature on cyclohexene, cyclohexane, and [allylmim][Tf2N] to verify our method, then evaluated the separation performance of silver - ionic liquid (IL) mixtures by various characterization techniques. To introduce the concepts of this research in high school education, a lesson plan was developed to instruct students on the principles of liquid-liquid separation.

Keywords: ionic liquids, liquid-liquid separation, hydrocarbon, research experience for teachers

Procedia PDF Downloads 72
27557 Chemical Fingerprinting of the Ephedrine Pathway to Methamphetamine

Authors: Luke Andrighetto, Paul G. Stevenson, Luke C. Henderson, Jim Pearson, Xavier A. Conlan

Abstract:

As pseudoephedrine, a common ingredient in cold and flu medications is closely monitored and restricted in Australia, alternative methods of accessing it are of interest. The impurities and by-products of every reaction step of pseudoephedrine/ephedrine and methamphetamine synthesis have been mapped in order to develop a chemical fingerprint based on synthetic route. Likewise, seized methamphetamine contains a combination of different cutting agents and starting materials. Therefore, in-silico optimised two-dimensional HPLC with DryLab® and OpenMS® software has been used to efficiently separate complex seizure samples. An excellent match between simulated and real separations was observed. Targeted separation of model compounds was completed with significantly reduced method development time. This study produced a two-dimensional separation regime that offers unprecedented separation power (separation space) while maintaining a rapid analysis time that is faster than those previously reported for gas chromatography, single dimension high performance liquid chromatography or capillary electrophoresis.

Keywords: chemical fingerprint, ephedrine, methamphetamine, two-dimensional HPLC

Procedia PDF Downloads 436
27556 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.

Keywords: emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi method

Procedia PDF Downloads 263
27555 Numerical Simulation of External Flow Around D-Shaped Cylinders

Authors: Ouldouz Nourani Zonouz, Mehdi Salmanpour

Abstract:

Investigation and analysis of flow behavior around different shapes bluff bodies is one of the reputed topics for several years. The importance of these researches is about the unwanted phenomena called flow separation. The location of separation and the size of the wake region should be considered in different industrial designs. In this research a bluff body with D-shaped cross section has been analyzed. In circular cylinder flow separation point changes with Reynolds number but in D-Shaped cylinder there is fix flow separation point. So there is more wake steadiness in D-Shaped cylinder as compared to Circular cylinder and drag reduction because of wake steadiness. In the present work CFD simulation is carried out for flow past a D-Shaped cylinder to see the wake behavior. The Reynolds number regime currently studied corresponds to low Reynolds number and nominally two-dimensional wake. Also the effect of D-Shaped cylinders on the rate of heat transfer has been considered. Various results such as velocity, pressure and temperature contours and also some dimensionless numbers like drag coefficient, pressure coefficient and Nusselt number calculated for different cases.

Keywords: D-shaped, CFD, external flow, low Reynolds number, square cylinder

Procedia PDF Downloads 438
27554 The Effect of Environmental Enrichment on Anxiety and Stress Hormone in Maternally Separated Male Rats

Authors: Özge Selin Çevik, Leyla Şahin, Gülhan Örekeci Temel

Abstract:

The early postnatal period is critical for the development of cognitive and emotional functions. Maternal separation is a detrimental postnatal influence, whereas environmental enrichment is a therapeutic and protective agent. It is unclear if long-term environmental enrichment can compensate for the effects of maternal separation stress on anxiety behavior. This study was designed to examine how environmental enrichment affects anxiety levels and corticosterone levels in maternally separated rats. There are six main groups in this study: control (C), maternal separation+standard cage (MS), maternal separation+enriched environment (MSE), enriched environment (E), the maternal separation that decapitated at postnatal (PN) 21 (MS21), and standard cage that decapitated at PN21 (STD21). The maternal separation procedure consisted of PN for 21 days (between 09:00 a.m and 12:00 a.m). Enriched (E, MSE) or standard cage environment rats (MS, C) spent PN (22-55) days in either enriched cages or standard cages. Anxiety and locomotor activity were examined with the open field and elevated plus-maze test. Blood corticosterone level was evaluated by the enzyme-linked immunosorbent assay (ELISA) method. Results showed that maternal separation (MS) increased locomotor activity and anxiety. An enriched environment (E) did not change the locomotor activity. MSE group’s anxiety and locomotor activity did not change. Corticosterone levels increased in the maternal separation group that decapitated at the PN 21 days. Maternal separation increases anxiety. Environmental enrichment alone was insufficient to cause alterations in the anxiety level. In addition, environmental enrichment did not ameliorate the anxiety level in maternally separated rats. However, environmental enrichment decreased the locomotor activity in the maternally separated rats.

Keywords: maternal separation, environment enrichment, stress, hippocampus, anxiety, memory, rat

Procedia PDF Downloads 58
27553 Sheathless, Viscoelastic Circulating Tumor Cell Separation Using Closed-Loop Microfluidics

Authors: Hyunjung Lim, Jeonghun Nam, Hyuk Choi

Abstract:

High-throughput separation is an essential technique for cancer research and diagnosis. Here, we propose a viscoelastic microfluidic device for sheathless, high-throughput isolation of circulating tumor cells (CTCs) from white blood cells. Here, we demonstrate a viscoelastic method for separation and concentration of CTCs using closed-loop microfluidics. Our device is a rectangular straight channel with a low aspect ratio. Also, to achieve high-efficiency, high-throughput processing, we used a polymer solution with low viscosity. At the inlet, CTCs and white blood cells (WBCs) were randomly injected into the microchannel. Due to the viscoelasticity-induced lateral migration to the equilibrium positions, large CTCs could be collected from the side outlet while small WBCs were removed at the center outlet. By recirculating the collected CTCs from the side outlet back to the sample reservoir, continuous separation and concentration of CTCs could be achieved with high separation efficiency (~ 99%). We believe that our device has the potential to be applied in resource-limited clinical settings.

Keywords: circulating tumor cell, closed-loop microfluidics, concentration, separation, viscoelastic fluid

Procedia PDF Downloads 133
27552 Rapid Separation of Biomolecules and Neutral Analytes with a Cationic Stationary Phase by Capillary Electrochromatography

Authors: A. Aslihan Gokaltun, Ali Tuncel

Abstract:

The unique properties of capillary electrochromatography (CEC) such as high performance, high selectivity, low consumption of both reagents and analytes ensure this technique an attractive one for the separation of biomolecules including nucleosides and nucleotides, peptides, proteins, carbohydrates. Monoliths have become a well-established separation media for CEC in the format that can be compared to a single large 'particle' that does not include interparticular voids. Convective flow through the pores of monolith significantly accelerates the rate of mass transfer and enables a substantial increase in the speed of the separation. In this work, we propose a new approach for the preparation of cationic monolithic stationary phase for capillary electrochromatography. Instead of utilizing a charge bearing monomer during polymerization, the desired charge-bearing group is generated on the capillary monolith after polymerization by using the reactive moiety of the monolithic support via one-pot, simple reaction. Optimized monolithic column compensates the disadvantages of frequently used reversed phases, which are difficult for separation of polar solutes. Rapid separation and high column efficiencies are achieved for the separation of neutral analytes, nucleic acid bases and nucleosides in reversed phase mode. Capillary monolith showed satisfactory hydrodynamic permeability and mechanical stability with relative standard deviation (RSD) values below 2 %. A new promising, reactive support that has a 'ligand selection flexibility' due to its reactive functionality represent a new family of separation media for CEC.

Keywords: biomolecules, capillary electrochromatography, cationic monolith, neutral analytes

Procedia PDF Downloads 188
27551 Selective Extraction Separation of Vanadium and Chromium in the Leaching/Aqueous Solution with Trioctylamine

Authors: Xiaohua Jing

Abstract:

Efficient extraction for separation of V and Cr in the leaching/aqueous solution is essential to the reuse of V and Cr in the V-Cr slag. Trioctylamine, a common tertiary amine extractant, with some good characters (e.g., weak base, insoluble in water and good stability) different from N1923, was investigated in this paper. The separation factor of Cr and V can be reached to 230.71 when initial pH of the aqueous solution is 0.5, so trioctylamine can be used for extracting Cr from the leaching/aqueous solution contained V and Cr. The highest extraction percentages of Cr and V were 98.73% and 90.22% when the initial pH values were 0.5 and 1.5, respectively. Via FT-IR spectra of loaded organic phase and trioctylamine, the hydrogen bond association mechanism of extracting V and Cr was investigated, which was the same with the way of extracting the two metals with primary amine N1923.

Keywords: selective extraction, trioctylamine, V and Cr, separation factor, hydrogen bond association

Procedia PDF Downloads 323
27550 Influences of Separation of the Boundary Layer in the Reservoir Pressure in the Shock Tube

Authors: Bruno Coelho Lima, Joao F.A. Martos, Paulo G. P. Toro, Israel S. Rego

Abstract:

The shock tube is a ground-facility widely used in aerospace and aeronautics science and technology for studies on gas dynamic and chemical-physical processes in gases at high-temperature, explosions and dynamic calibration of pressure sensors. A shock tube in its simplest form is comprised of two separate tubes of equal cross-section by a diaphragm. The diaphragm function is to separate the two reservoirs at different pressures. The reservoir containing high pressure is called the Driver, the low pressure reservoir is called Driven. When the diaphragm is broken by pressure difference, a normal shock wave and non-stationary (named Incident Shock Wave) will be formed in the same place of diaphragm and will get around toward the closed end of Driven. When this shock wave reaches the closer end of the Driven section will be completely reflected. Now, the shock wave will interact with the boundary layer that was created by the induced flow by incident shock wave passage. The interaction between boundary layer and shock wave force the separation of the boundary layer. The aim of this paper is to make an analysis of influences of separation of the boundary layer in the reservoir pressure in the shock tube. A comparison among CDF (Computational Fluids Dynamics), experiments test and analytical analysis were performed. For the analytical analysis, some routines in Python was created, in the numerical simulations (Computational Fluids Dynamics) was used the Ansys Fluent, and the experimental tests were used T1 shock tube located in IEAv (Institute of Advanced Studies).

Keywords: boundary layer separation, moving shock wave, shock tube, transient simulation

Procedia PDF Downloads 287
27549 Blind Speech Separation Using SRP-PHAT Localization and Optimal Beamformer in Two-Speaker Environments

Authors: Hai Quang Hong Dam, Hai Ho, Minh Hoang Le Ngo

Abstract:

This paper investigates the problem of blind speech separation from the speech mixture of two speakers. A voice activity detector employing the Steered Response Power - Phase Transform (SRP-PHAT) is presented for detecting the activity information of speech sources and then the desired speech signals are extracted from the speech mixture by using an optimal beamformer. For evaluation, the algorithm effectiveness, a simulation using real speech recordings had been performed in a double-talk situation where two speakers are active all the time. Evaluations show that the proposed blind speech separation algorithm offers a good interference suppression level whilst maintaining a low distortion level of the desired signal.

Keywords: blind speech separation, voice activity detector, SRP-PHAT, optimal beamformer

Procedia PDF Downloads 252
27548 Gas Separation by Water-Swollen Membrane

Authors: Lenka Morávková, Zuzana Sedláková, Jiří Vejražka, Věra Jandová, Pavel Izák

Abstract:

The need to minimize the costs of biogas upgrading leads to a continuous search for new and more effective membrane materials. The improvement of biogas combustion efficiency is connected with polar gases removal from a feed stream. One of the possibilities is the use of water–swollen polyamide layer of thin film composite reverse osmosis membrane for simultaneous carbon dioxide and hydrogen sulphide removal. Transport properties and basic characteristics of a thin film composite membrane were compared in the term of appropriate water-swollen membrane choice for biogas upgrading. SEM analysis showed that the surface of the best performing composites changed significantly upon swelling by water. The surface changes were found to be a proof that the selective skin polyamide layer was swollen well. Further, the presence of a sufficient number of associative centers, namely amido groups, inside the upper layer of the hydrophilic thin composite membrane can play an important role in the polar gas separation from a non-polar gas. The next key factor is a high porosity of the membrane support.

Keywords: biogas upgrading, carbon dioxide separation, hydrogen sulphide separation, water-swollen membrane

Procedia PDF Downloads 318
27547 Microporous 3D Aluminium Metal-Organic Frameworks in Chitosan Based Mixed Matrix Membrane for Ethanol/Water Separation

Authors: Madhan Vinu, Yue-Chun Jiang, Yi-Feng Lin, Chia-Her Lin

Abstract:

An effective approach to enhance the ethanol/water pervaporation of mixed matrix membranes prepared from three microporous aluminium based metal-organic frameworks (MOFs), [Al(OH)(BPDC)] (DUT-5), [Al(OH)(NDC)] (DUT-4) and [Al(OH)(BzPDC)] (CAU-8) have been synthesized by employing solvothermal reactions. Interestingly, all Al-MOFs showed attractive surface area with microporous 12.3, 10.2 and 8.0 Å for DUT-5, DUT-4 and CAU-8 MOFs which are confirmed through N₂ gas sorption measurements. All the microporous compounds are highly stable as confirmed by thermogravimetric analysis and temperature-dependent powder X-ray diffraction measurements. Furthermore, the synthesized microporous MOF particles of DUT-5, DUT-4, and CAU-8 were successfully incorporated into biological chitosan (CS) membranes to form DUT-5@CS, DUT-4@CS, and CAU-8@CS membranes. The different MOF loadings such as 0.1, 0.15, and 0.2 wt% in CS networks have been prepared, and the same were used to separate mixtures of water and ethanol at 25ºC in the pervaporation process. In particular, when 0.15 wt% of DUT-5 was loaded, MOF@CS membrane displayed excellent permeability and selectivity in ethanol/water separation than that of the previous literature. These CS based membranes separation through functionalized microporous MOFs reveals the key governing factors that are essential for designing novel MOF membranes for bioethanol purification.

Keywords: metal-organic framework, microporous materials, separation, chitosan membranes

Procedia PDF Downloads 186
27546 Separation of Chlorinated Plastics and Immobilization of Heavy Metals in Hazardous Automotive Shredder Residue

Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thi Thanh Truc, Byeong-Kyu Lee

Abstract:

In the present study, feasibility of the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment was evaluated to facilitate the separation from automotive shredder residue (ASR), by the froth flotation. The combination of 60 sec microwave treatment with PAC, a sharp and significant decrease about 16.5° contact angle of PVC was observed in ASR plastic compared with other plastics. The microwave treatment with the addition of PAC resulted in a synergetic effect for the froth flotation, which may be a result of the 90% selective separation of PVC from ASR plastics, with 82% purity. While, simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR soil/residues. The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. Microwave treatment can be a simple and effective method for PVC separation from ASR plastics.

Keywords: automotive shredder residue, chlorinated plastics, hazardous waste, heavy metals, immobilization, separation

Procedia PDF Downloads 485
27545 Nano-Structured Hydrophobic Silica Membrane for Gas Separation

Authors: Sajid Shah, Yoshimitsu Uemura, Katsuki Kusakabe

Abstract:

Sol-gel derived hydrophobic silica membranes with pore sizes less than 1 nm are quite attractive for gas separation in a wide range of temperatures. A nano-structured hydrophobic membrane was prepared by sol-gel technique on a porous α–Al₂O₃ tubular support with yttria stabilized zirconia (YSZ) as an intermediate layer. Bistriethoxysilylethane (BTESE) derived sol was modified by adding phenyltriethoxysilylethane (PhTES) as an organic template. Six times dip coated modified silica membrane having a thickness of about 782 nm was characterized by field emission scanning electron microscopy. Thermogravimetric analysis, together along contact angle and Fourier transform infrared spectroscopy, showed that hydrophobic properties were improved by increasing the PhTES content. The contact angle of water droplet increased from 37° for pure to 111.5° for the modified membrane. The permeance of single gas H₂ was higher than H₂:CO₂ ratio of 75:25 binary feed mixtures. However, the permeance of H₂ for 60:40 H₂:CO₂ was found lower than single and binary mixture 75:25 H₂:CO₂. The binary selectivity values for 75:25 H₂:CO₂ were 24.75, 44, and 57, respectively. Selectivity had an inverse relation with PhTES content. Hydrophobicity properties were improved by increasing PhTES content in the silica matrix. The system exhibits proper three layers adhesion or integration, and smoothness. Membrane system suitable in steam environment and high-temperature separation. It was concluded that the hydrophobic silica membrane is highly promising for the separation of H₂/CO₂ mixture from various H₂-containing process streams.

Keywords: gas separation, hydrophobic properties, silica membrane, sol–gel method

Procedia PDF Downloads 98
27544 Study of Bifurcation Curve with Aspect Ratio at Low Reynolds Number

Authors: Amit K. Singh, Subhankar Sen

Abstract:

The bifurcation curve of separation in steady two-dimensional viscous flow past an elliptic cylinder is studied by varying the angle of incidence (α) with different aspect ratio (ratio of minor to major axis). The solutions are based on numerical investigation, using finite element analysis, of the Navier-Stokes equations for incompressible flow. Results are presented for Reynolds number up to 50 and angle of incidence varies from 0° to 90°. Range of aspect ratio (Ar) is from 0.1 to 1 (in steps of 0.1) and flow is considered as unbounded flow. Bifurcation curve represents the locus of Reynolds numbers (Res) at which flow detaches or separates from the surface of the body at a given α and Ar. In earlier studies, effect of Ar on laminar separation curve or bifurcation curve is limited for Ar = 0.1, 0.2, 0.5 and 0.8. Some results are also available at α = 90° and 45°. The present study attempts to provide a systematic data and clear understanding on the effect of Ar at bifurcation curve and its point of maxima. In addition, issues regarding location of separation angle and maximum ratio of coefficient of lift to drag are studied. We found that nature of curve, separation angle and maximum ratio of lift to drag changes considerably with respect to change in Ar.

Keywords: aspect ratio, bifurcation curve, elliptic cylinder, GMRES, stabilized finite-element

Procedia PDF Downloads 307
27543 Separation of Powers and Judicial Review vis-a-vis Judicial Overreach in South Africa: A Critical Analysis

Authors: Linda Muswaka

Abstract:

The Constitution of the Republic of South Africa, 1996 ranks the Constitution as the Supreme law of the Republic. Law or conduct, inconsistent with the provisions of the Constitution is invalid to the extent of the inconsistency. The Constitution binds all persons and legislative, executive and judicial organs of the State at all levels of government. The Constitution embodies a Bill of Rights and expressly allows for judicial review. The introduction of a chapter of rights requires the judiciary to examine the decisions of the legislature and the executive. In a situation where these conflicts with the Bill of Rights, the judiciary have the constitutional power to overrule such decisions. In exercising its adjudicatory and interpretative powers, the judiciary sometimes arrives at unpopular decisions and accusations of judicial overreach are made. A problem, therefore, emerges on the issue of the separation of powers and judicial review. This paper proposes to, through the South African perspective, investigate the application of the doctrine of separation of powers and judicial review. In this regard, the qualitative method of research will be employed. The reason is that it is best suited to this type of study which entails a critical analysis of legal issues. The following findings are made: (i) a complete separation of powers is not possible. This is because some overlapping of the functions of the three branches of state are unavoidable; (ii) the powers vested in the judiciary does not make it more powerful than the executive and the legislature; (iii) interference by the judiciary in matters concerning other branches is not automatically, judicial overreach; and (iv) if both the executive and legislative organs of government adhere to their constitutional obligations there would be a decrease in the need for judicial interference through court adjudication. The researcher concludes by submitting that the judiciary should not derogate from their constitutionally mandated function of judicial review. The rationale being that that if the values contained in the Constitution are not scrupulously observed and their precepts not carried out conscientiously, the result will be a constitutional crisis of great magnitude.

Keywords: constitution, judicial review, judicial overreach, separation of powers

Procedia PDF Downloads 183
27542 Solvent Extraction of Rb and Cs from Jarosite Slag Using t-BAMBP

Authors: Zhang Haiyan, Su Zujun, Zhao Fengqi

Abstract:

Lepidolite after extraction of Lithium by sulfate produced many jarosite slag which contains a lot of Rb and Cs.The separation and recovery of Rubidium(Rb) and Cesium(Cs) can make full of use of Lithium mica. XRF analysis showed that the slag mainly including K Rb Cs Al and etc. Fractional solvent extraction tests were carried out; the results show that using20% t-BAMBP plus 80% sulfonated kerosene, the separation of Rb and Cs can be achieved by adjusting the alkalinity. Extraction is the order of Cs Rb, ratio of Cs to Rb and ratio of Rb to K can reach above 1500 and 2500 respectively.

Keywords: cesium, jarosite slag, rubidium, solvent extraction, t-BAMBP

Procedia PDF Downloads 551