Search results for: seismic hazard
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1392

Search results for: seismic hazard

1092 Study on Hysteresis in Sustainable Two-Layer Circular Tube under a Lateral Compression Load

Authors: Ami Nomura, Ken Imanishi, Yukinori Taniguchi, Etsuko Ueda, Tadahiro Wada, Shinichi Enoki

Abstract:

Recently, there have been a lot of earthquakes in Japan. It is necessary to promote seismic isolation devices for buildings. The devices have been hardly diffused in attached houses, because the devices are very expensive. We should develop a low-cost seismic isolation device for detached houses. We suggested a new seismic isolation device which uses a two-layer circular tube as a unit. If hysteresis is produced in the two-layer circular tube under lateral compression load, we think that the two-layer circular tube can have energy absorbing capacity. It is necessary to contact the outer layer and the inner layer to produce hysteresis. We have previously reported how the inner layer comes in contact with the outer layer from a perspective of analysis used mechanics of materials. We have clarified that the inner layer comes in contact with the outer layer under a lateral compression load. In this paper, we explored contact area between the outer layer and the inner layer under a lateral compression load by using FEA. We think that changing the inner layer’s thickness is effective in increase the contact area. In order to change the inner layer’s thickness, we changed the shape of the inner layer. As a result, the contact area changes depending on the inner layer’s thickness. Additionally, we experimented to check whether hysteresis occurs in fact. As a consequence, we can reveal hysteresis in the two-layer circular tube under the condition.

Keywords: contact area, energy absorbing capacity, hysteresis, seismic isolation device

Procedia PDF Downloads 330
1091 Seismic Protection of Automated Stocker System by Customized Viscous Fluid Dampers

Authors: Y. P. Wang, J. K. Chen, C. H. Lee, G. H. Huang, M. C. Wang, S. W. Chen, Y. T. Kuan, H. C. Lin, C. Y. Huang, W. H. Liang, W. C. Lin, H. C. Yu

Abstract:

The hi-tech industries in the Science Park at southern Taiwan were heavily damaged by a strong earthquake early 2016. The financial loss in this event was attributed primarily to the automated stocker system handling fully processed products, and recovery of the automated stocker system from the aftermath proved to contribute major lead time. Therefore, development of effective means for protection of stockers against earthquakes has become the highest priority for risk minimization and business continuity. This study proposes to mitigate the seismic response of the stockers by introducing viscous fluid dampers in between the ceiling and the top of the stockers. The stocker is expected to vibrate less violently with a passive control force on top. Linear damper is considered in this application with an optimal damping coefficient determined from a preliminary parametric study. The damper is small in size in comparison with those adopted for building or bridge applications. Component test of the dampers has been carried out to make sure they meet the design requirement. Shake table tests have been further conducted to verify the proposed scheme under realistic earthquake conditions. Encouraging results have been achieved by effectively reducing the seismic responses of up to 60% and preventing the FOUPs from falling off the shelves that would otherwise be the case if left unprotected. Effectiveness of adopting a viscous fluid damper for seismic control of the stocker on top against the ceiling has been confirmed. This technique has been adopted by Macronix International Co., LTD for seismic retrofit of existing stockers. Demonstrative projects on the application of the proposed technique are planned underway for other companies in the display industry as well.

Keywords: hi-tech industries, seismic protection, automated stocker system, viscous fluid damper

Procedia PDF Downloads 330
1090 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions

Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi

Abstract:

This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.

Keywords: BNWF method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction

Procedia PDF Downloads 362
1089 Active Control Effects on Dynamic Response of Elevated Water Storage Tanks

Authors: Ali Etemadi, Claudia Fernanda Yasar

Abstract:

Elevated water storage tank structures (EWSTs) are high elevated-ponderous structural systems and very vulnerable to seismic vibrations. In past earthquake events, many of these structures exhibit poor performance and experienced severe damage. The dynamic analysis of the EWSTs under earthquake loads is, therefore, of significant importance for the design of the structure and a key issue for the development of modern methods, such as active control design. In this study, a reduced model of the EWSTs is explained, which is based on a tuned mass damper model (TMD). Vibration analysis of a structure under seismic excitation is presented and then used to propose an active vibration controller. MATLAB/Simulink is employed for dynamic analysis of the system and control of the seismic response. A single degree of freedom (SDOF) and two degree of freedom (2DOF) models of ELSTs are going to be used to study the concept of active vibration control. Lab-scale experimental models similar to pendulum are applied to suppress vibrations in ELST under seismic excitation. One of the most important phenomena in liquid storage tanks is the oscillation of fluid due to the movements of the tank body because of its base motions during an earthquake. Simulation results illustrate that the EWSTs vibration can be reduced by means of an input shaping technique that takes into account the dominant mode shape of the structure. Simulations with which to guide many of our designs are presented in detail. A simple and effective real-time control for seismic vibration damping can be, therefore, design and built-in practice.

Keywords: elevated water storage tank, tuned mass damper model, real time control, shaping control, seismic vibration control, the laplace transform

Procedia PDF Downloads 131
1088 A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System

Authors: Arvind Srivastav, Tarun Kanti Bhattacharyya

Abstract:

The north-eastern, Himalayan, and Eastern Ghats Belt of India comprise of earthquake-prone, remote, and hilly terrains. Earthquakes have caused enormous damages in these regions in the past. A wireless sensor network based earthquake early warning system (EEWS) is being developed to mitigate the damages caused by earthquakes. It consists of sensor nodes, distributed over the region, that perform majority voting of the output of the seismic sensors in the vicinity, and relay a message to a base station to alert the residents when an earthquake is detected. At the heart of the EEWS is a low-power two-stage seismic sensor that continuously tracks seismic events from incoming three-axis accelerometer signal at the first-stage, and, in the presence of a seismic event, triggers the second-stage P-wave detector that detects the onset of P-wave in an earthquake event. The parameters of the P-wave detector have been optimized for minimizing detection time and maximizing the accuracy of detection.Working of the sensor scheme has been verified with seven earthquakes data retrieved from IRIS. In all test cases, the scheme detected the onset of P-wave accurately. Also, it has been established that the P-wave onset detection time reduces linearly with the sampling rate. It has been verified with test data; the detection time for data sampled at 10Hz was around 2 seconds which reduced to 0.3 second for the data sampled at 100Hz.

Keywords: earthquake early warning system, EEWS, STA/LTA, polarization, wavelet, event detector, P-wave detector

Procedia PDF Downloads 155
1087 Influence of Foundation Size on Seismic Response of Mid-rise Buildings Considering Soil-Structure-Interaction

Authors: Quoc Van Nguyen, Behzad Fatahi, Aslan S. Hokmabadi

Abstract:

Performance based seismic design is a modern approach to earthquake-resistant design shifting emphasis from “strength” to “performance”. Soil-Structure Interaction (SSI) can influence the performance level of structures significantly. In this paper, a fifteen storey moment resisting frame sitting on a shallow foundation (footing) with different sizes is simulated numerically using ABAQUS software. The developed three dimensional numerical simulation accounts for nonlinear behaviour of the soil medium by considering the variation of soil stiffness and damping as a function of developed shear strain in the soil elements during earthquake. Elastic-perfectly plastic model is adopted to simulate piles and structural elements. Quiet boundary conditions are assigned to the numerical model and appropriate interface elements, capable of modelling sliding and separation between the foundation and soil elements, are considered. Numerical results in terms of base shear, lateral deformations, and inter-storey drifts of the structure are compared for the cases of soil-structure interaction system with different foundation sizes as well as fixed base condition (excluding SSI). It can be concluded that conventional design procedures excluding SSI may result in aggressive design. Moreover, the size of the foundation can influence the dynamic characteristics and seismic response of the building due to SSI and should therefore be given careful consideration in order to ensure a safe and cost effective seismic design.

Keywords: soil-structure-interaction, seismic response, shallow foundation, abaqus, rayleigh damping

Procedia PDF Downloads 480
1086 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.

Keywords: base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops

Procedia PDF Downloads 253
1085 Competing Risk Analyses in Survival Trials During COVID-19 Pandemic

Authors: Ping Xu, Gregory T. Golm, Guanghan (Frank) Liu

Abstract:

In the presence of competing events, traditional survival analysis may not be appropriate and can result in biased estimates, as it assumes independence between competing events and the event of interest. Instead, competing risk analysis should be considered to correctly estimate the survival probability of the event of interest and the hazard ratio between treatment groups. The COVID-19 pandemic has provided a potential source of competing risks in clinical trials, as participants in trials may experienceCOVID-related competing events before the occurrence of the event of interest, for instance, death due to COVID-19, which can affect the incidence rate of the event of interest. We have performed simulation studies to compare multiple competing risk analysis models, including the cumulative incidence function, the sub-distribution hazard function, and the cause-specific hazard function, to the traditional survival analysis model under various scenarios. We also provide a general recommendation on conducting competing risk analysis in randomized clinical trials during the era of the COVID-19 pandemic based on the extensive simulation results.

Keywords: competing risk, survival analysis, simulations, randomized clinical trial, COVID-19 pandemic

Procedia PDF Downloads 161
1084 Shaking Table Test and Seismic Performance Evaluation of Spring Viscous Damper Cable System

Authors: Asad Naeem, Jinkoo Kim

Abstract:

This research proposes a self-centering passive damping system consisting of a spring viscous damper linked with a preloaded tendon. The seismic performance of the spring viscous damper is evaluated by pseudo-dynamic tests, and the results are used for the formulation of an analytical model of the damper in the structural analysis program. The shaking table tests of a two-story steel frame installed with the proposed damping system are carried out using five different earthquake records. The results from the shaking table tests are verified by numerical simulation of the retrofitted structure. The results obtained from experiments and numerical simulations demonstrate that the proposed damping system with self-centering capability is effective in reducing earthquake-induced displacement and member forces.

Keywords: seismic retrofit, spring viscous damper, shaking table test, earthquake resistant structures

Procedia PDF Downloads 155
1083 Nonlinear Homogenized Continuum Approach for Determining Peak Horizontal Floor Acceleration of Old Masonry Buildings

Authors: Andreas Rudisch, Ralf Lampert, Andreas Kolbitsch

Abstract:

It is a well-known fact among the engineering community that earthquakes with comparatively low magnitudes can cause serious damage to nonstructural components (NSCs) of buildings, even when the supporting structure performs relatively well. Past research works focused mainly on NSCs of nuclear power plants and industrial plants. Particular attention should also be given to architectural façade elements of old masonry buildings (e.g. ornamental figures, balustrades, vases), which are very vulnerable under seismic excitation. Large numbers of these historical nonstructural components (HiNSCs) can be found in highly frequented historical city centers and in the event of failure, they pose a significant danger to persons. In order to estimate the vulnerability of acceleration sensitive HiNSCs, the peak horizontal floor acceleration (PHFA) is used. The PHFA depends on the dynamic characteristics of the building, the ground excitation, and induced nonlinearities. Consequently, the PHFA can not be generalized as a simple function of height. In the present research work, an extensive case study was conducted to investigate the influence of induced nonlinearity on the PHFA for old masonry buildings. Probabilistic nonlinear FE time-history analyses considering three different hazard levels were performed. A set of eighteen synthetically generated ground motions was used as input to the structure models. An elastoplastic macro-model (multiPlas) for nonlinear homogenized continuum FE-calculation was calibrated to multiple scales and applied, taking specific failure mechanisms of masonry into account. The macro-model was calibrated according to the results of specific laboratory and cyclic in situ shear tests. The nonlinear macro-model is based on the concept of multi-surface rate-independent plasticity. Material damage or crack formation are detected by reducing the initial strength after failure due to shear or tensile stress. As a result, shear forces can only be transmitted to a limited extent by friction when the cracking begins. The tensile strength is reduced to zero. The first goal of the calibration was the consistency of the load-displacement curves between experiment and simulation. The calibrated macro-model matches well with regard to the initial stiffness and the maximum horizontal load. Another goal was the correct reproduction of the observed crack image and the plastic strain activities. Again the macro-model proved to work well in this case and shows very good correlation. The results of the case study show that there is significant scatter in the absolute distribution of the PHFA between the applied ground excitations. An absolute distribution along the normalized building height was determined in the framework of probability theory. It can be observed that the extent of nonlinear behavior varies for the three hazard levels. Due to the detailed scope of the present research work, a robust comparison with code-recommendations and simplified PHFA distributions are possible. The chosen methodology offers a chance to determine the distribution of PHFA along the building height of old masonry structures. This permits a proper hazard assessment of HiNSCs under seismic loads.

Keywords: nonlinear macro-model, nonstructural components, time-history analysis, unreinforced masonry

Procedia PDF Downloads 140
1082 Seismic Behavior of Short Core Buckling Restrained Braces

Authors: Nader Hoveidae

Abstract:

This paper investigates the seismic behavior of a new type of buckling restrained braces (BRBs) called "Short Core BRBs" in which a shorter core segment is used as an energy dissipating part and an elastic part is serially connected to the core. It seems that a short core BRB is easy to be fabricated, inspected and replaced after a severe earthquake. In addition, the energy dissipating capacity in a short core BRB is higher because of larger core strains. However, higher core strain demands result in high potential of low-cycle fatigue fracture. In this paper, a strategy is proposed to estimate the minimum core length in a short core BRBs. The seismic behavior of short core buckling restrained brace is experimentally examined. The results revealed that the short core buckling restrained brace is able to sustain large inelastic strains without any significant instability or strength degradation.

Keywords: short core, Buckling Restrained Brace, finite element analysis, cyclic test

Procedia PDF Downloads 331
1081 Beam, Column Joints Concrete in Seismic Zone

Authors: Khalifa Kherafa

Abstract:

This east project consists in studying beam–column joints concrete subjected to seismic loads. A bibliographical study was introduced to clarify the work undertaken by the researchers in the field during the three last decades and especially the two last year’s results which were to study for the determination of the method of calculating of transverse reinforcement in the various nodes of a structure. For application, the efforts in the posts el the beams of a building in R+4 in zone 3 were calculate according to the finite element method through the software .

Keywords: beam–column joints, cyclic loading, shearing force, damaged joint

Procedia PDF Downloads 393
1080 Applications of Out-of-Sequence Thrust Movement for Earthquake Mitigation: A Review

Authors: Rajkumar Ghosh

Abstract:

The study presents an overview of the many uses and approaches for estimating out-of-sequence thrust movement in earthquake mitigation. The study investigates how knowing and forecasting thrust movement during seismic occurrences might assist to effective earthquake mitigation measures. The review begins by discussing out-of-sequence thrust movement and its importance in earthquake mitigation strategies. It explores how typical techniques of estimating thrust movement may not capture the full complexity of seismic occurrences and emphasizes the benefits of include out-of-sequence data in the analysis. A thorough review of existing research and studies on out-of-sequence thrust movement estimates for earthquake mitigation. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources such as GPS measurements, satellite imagery, and seismic recordings. The study also examines the use of out-of-sequence thrust movement estimates in earthquake mitigation measures. It investigates how precise calculation of thrust movement may help improve structural design, analyse infrastructure risk, and develop early warning systems. The potential advantages of using out-of-sequence data in these applications to improve the efficiency of earthquake mitigation techniques. The difficulties and limits of estimating out-of-sequence thrust movement for earthquake mitigation. It addresses data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and increase the accuracy and reliability of out-of-sequence thrust movement estimates, the authors recommend topics for additional study and improvement. The study is a helpful resource for seismic monitoring and earthquake risk assessment researchers, engineers, and policymakers, supporting innovations in earthquake mitigation measures based on a better knowledge of thrust movement dynamics.

Keywords: earthquake mitigation, out-of-sequence thrust, satellite imagery, seismic recordings, GPS measurements

Procedia PDF Downloads 55
1079 Seismic Inversion for Geothermal Exploration

Authors: E. N. Masri, E. Takács

Abstract:

Amplitude Versus Offset (AVO) and simultaneous model-based impedance inversion techniques have not been utilized for geothermal exploration commonly; however, some recent publications called the attention that they can be very useful in the geothermal investigations. In this study, we present rock physical attributes obtained from 3D pre-stack seismic data and well logs collected in a study area of the NW part of Pannonian Basin where the geothermal reservoir is located in the fractured zones of Triassic basement and it was hit by three productive-injection well pairs. The holes were planned very successfully based on the conventional 3D migrated stack volume prior to this study. Subsequently, the available geophysical-geological datasets provided a great opportunity to test modern inversion procedures in the same area. In this presentation, we provide a summary of the theory and application of the most promising seismic inversion techniques from the viewpoint of geothermal exploration. We demonstrate P- and S-wave impedance, as well as the velocity (Vp and Vs), the density, and the Vp/Vs ratio attribute volumes calculated from the seismic and well-logging data sets. After a detailed discussion, we conclude that P-wave impedance and Vp/Vp ratio are the most helpful parameters for lithology discrimination in the study area. They detect the hot water saturated fracture zone very well thus they can be very useful in mapping the investigated reservoir. Integrated interpretation of all the obtained rock-physical parameters is essential. We are extending the above discussed pre-stack seismic tools by studying the possibilities of Elastic Impedance Inversion (EII) for geothermal exploration. That procedure provides two other useful rock-physical properties, the compressibility and the rigidity (Lamé parameters). Results of those newly created elastic parameters will also be demonstrated in the presentation. Geothermal extraction is of great interest nowadays; and we can adopt several methods have been successfully applied in the hydrocarbon exploration for decades to discover new reservoirs and reduce drilling risk and cost.

Keywords: fractured zone, seismic, well-logging, inversion

Procedia PDF Downloads 85
1078 Microseismicity of the Tehran Region Based on Three Seismic Networks

Authors: Jamileh Vasheghani Farahani

Abstract:

The main purpose of this research is to show the current active faults and active tectonic of the area by three seismic networks in Tehran region: 1-Tehran Disaster Mitigation and Management Organization (TDMMO), 2-Broadband Iranian National Seismic Network Center (BIN), 3-Iranian Seismological Center (IRSC). In this study, we analyzed microearthquakes happened in Tehran city and its surroundings using the Tehran networks from 1996 to 2015. We found some active faults and trends in the region. There is a 200-year history of historical earthquakes in Tehran. Historical and instrumental seismicity show that the east of Tehran is more active than the west. The Mosha fault in the North of Tehran is one of the active faults of the central Alborz. Moreover, other major faults in the region are Kahrizak, Eyvanakey, Parchin and North Tehran faults. An important seismicity region is an intersection of the Mosha and North Tehran fault systems (Kalan village in Lavasan). This region shows a cluster of microearthquakes. According to the historical and microseismic events analyzed in this research, there is a seismic gap in SE of Tehran. The empirical relationship is used to assess the Mmax based on the rupture length. There is a probability of occurrence of a strong motion of 7.0 to 7.5 magnitudes in the region (based on the assessed capability of the major faults such as Parchin and Eyvanekey faults and historical earthquakes).

Keywords: Iran, major faults, microseismicity, Tehran

Procedia PDF Downloads 340
1077 Two-Dimensional Seismic Response of Concrete Gravity Dams Including Base Sliding

Authors: Djamel Ouzandja, Boualem Tiliouine

Abstract:

The safety evaluation of the concrete gravity dams subjected to seismic excitations is really very complex as the earthquake response of the concrete gravity dam depends upon its contraction joints with foundation soil. This paper presents the seismic response of concrete gravity dams considering friction contact and welded contact. Friction contact is provided using contact elements. Two-dimensional (2D) finite element model of Oued Fodda concrete gravity dam, located in Chlef at the west of Algeria, is used for this purpose. Linear and nonlinear analyses considering dam-foundation soil interaction are performed using ANSYS software. The reservoir water is modeled as added mass using the Westergaard approach. The Drucker-Prager model is preferred for dam and foundation rock in nonlinear analyses. The surface-to-surface contact elements based on the Coulomb's friction law are used to describe the friction. These contact elements use a target surface and a contact surface to form a contact pair. According to this study, the seismic analysis of concrete gravity dams including base sliding. When the friction contact is considered in joints, the base sliding displacement occurs along the dam-foundation soil contact interface. Besides, the base sliding may generally decrease the principal stresses in the dam.

Keywords: concrete gravity dam, dynamic soil-structure interaction, friction contact, sliding

Procedia PDF Downloads 381
1076 Integrated Geophysical Approach for Subsurface Delineation in Srinagar, Uttarakhand, India

Authors: Pradeep Kumar Singh Chauhan, Gayatri Devi, Zamir Ahmad, Komal Chauhan, Abha Mittal

Abstract:

The application of geophysical methods to study the subsurface profile for site investigation is becoming popular globally. These methods are non-destructive and provide the image of subsurface at shallow depths. Seismic refraction method is one of the most common and efficient method being used for civil engineering site investigations particularly for knowing the seismic velocity of the subsurface layers. Resistivity imaging technique is a geo-electrical method used to image the subsurface, water bearing zone, bedrock and layer thickness. Integrated approach combining seismic refraction and 2-D resistivity imaging will provide a better and reliable picture of the subsurface. These are economical and less time-consuming field survey which provide high resolution image of the subsurface. Geophysical surveys carried out in this study include seismic refraction and 2D resistivity imaging method for delineation of sub-surface strata in different parts of Srinagar, Garhwal Himalaya, India. The aim of this survey was to map the shallow subsurface in terms of geological and geophysical properties mainly P-wave velocity, resistivity, layer thickness, and lithology of the area. Both sides of the river, Alaknanda which flows through the centre of the city, have been covered by taking two profiles on each side using both methods. Seismic and electrical surveys were carried out at the same locations to complement the results of each other. The seismic refraction survey was carried out using ABEM TeraLoc 24 channel Seismograph and 2D resistivity imaging was performed using ABEM Terrameter LS equipment. The results show three distinct layers on both sides of the river up to the depth of 20 m. The subsurface is divided into three distinct layers namely, alluvium extending up to, 3 m depth, conglomerate zone lying between the depth of 3 m to 15 m, and compacted pebbles and cobbles beyond 15 m. P-wave velocity in top layer is found in the range of 400 – 600 m/s, in second layer it varies from 700 – 1100 m/s and in the third layer it is 1500 – 3300 m/s. The resistivity results also show similar pattern and were in good agreement with seismic refraction results. The results obtained in this study were validated with an available exposed river scar at one site. The study established the efficacy of geophysical methods for subsurface investigations.

Keywords: 2D resistivity imaging, P-wave velocity, seismic refraction survey, subsurface

Procedia PDF Downloads 226
1075 A New Low Cost Seismic Response Controlling Structures with Semi Base Isolation Devices

Authors: M. Ezati Kooshki, A. Abbaszadeh Shahri

Abstract:

A number of devices used to control seismic structures have been developed during the past decades. One of the effective ways to reduce seismic forces transmitted to the buildings is through the base isolation systems, but the use of these devices is currently limited to large and expensive buildings. This study was an attempt to introduce an effective and low cost way to protect of structures against grand motions by a semi base isolation system. In this new way, structures were not completely decoupled of bases and the natural frequency of structures was changed due to earthquake by changing the horizontal stiffness; therefore, ground excitation energy was dissipated before entering the structures. For analyzing the dynamic behavior, the new method used finite element software (ABAQUS 6-10-1). This investigation introduced a new package of semi base isolation devices with a new material constitutive, but common in automobile industries, seeking to evaluate the effects of additional new devices on the seismic response when compared with structures without additional devises for different ground motions. The proposed semi base isolation devices were applied to a one story frame and the time history analysis was conducted on the record of Kobe earthquake (1995). The results showed that the efficiency reduced the floor acceleration and displacement, as well as velocity.

Keywords: semi base isolation system, finite element, natural frequency, horizontal stiffness

Procedia PDF Downloads 368
1074 Subsurface Structures Related to the Hydrocarbon Migration and Accumulation in the Afghan Tajik Basin, Northern Afghanistan: Insights from Seismic Attribute Analysis

Authors: Samim Khair Mohammad, Takeshi Tsuji, Chanmaly Chhun

Abstract:

The Afghan Tajik (foreland) basin, located in the depression zone between mountain axes, is under compression and deformation during the collision of India with the Eurasian plate. The southern part of the Afghan Tajik basin in the Northern part of Afghanistan has not been well studied and explored, but considered for the significant potential for oil and gas resources. The Afghan Tajik basin depositional environments (< 8km) resulted from mixing terrestrial and marine systems, which has potential prospects of Jurrasic (deep) and Tertiary (shallow) petroleum systems. We used 2D regional seismic profiles with a total length of 674.8 km (or over an area of 2500 km²) in the southern part of the basin. To characterize hydrocarbon systems and structures in this study area, we applied advanced seismic attributes such as spectral decomposition (10 - 60Hz) based on time-frequency analysis with continuous wavelet transform. The spectral decomposition results yield the (averaging 20 - 30Hz group) spectral amplitude anomaly. Based on this anomaly result, seismic, and structural interpretation, the potential hydrocarbon accumulations were inferred around the main thrust folds in the tertiary (Paleogene+Neogene) petroleum systems, which appeared to be accumulated around the central study area. Furthermore, it seems that hydrocarbons dominantly migrated along the main thrusts and then concentrated around anticline fold systems which could be sealed by mudstone/carbonate rocks.

Keywords: The Afghan Tajik basin, seismic lines, spectral decomposition, thrust folds, hydrocarbon reservoirs

Procedia PDF Downloads 64
1073 Finite Element Analysis of the Ordinary Reinforced Concrete Bridge Piers

Authors: Nabin Raj Chaulagain

Abstract:

Most of the concrete bridges in Nepal constructed during 90's and before are made up of low strength ordinary concrete which might be one of the reasons for damage in higher magnitude earthquake. Those bridges were designed by the outdated bridge codes which might not account the large seismic loads. This research investigates the seismic vulnerability of the existing single column ordinary concrete bridge pier by finite element modeling, using the software Seismostruct. The existing bridge pier capacity has been assessed using nonlinear pushover analysis and performance is compared after retrofitting those pier models with CFRP. Furthermore, the seismic evaluation was made by conducting cyclic loading test at different drift percentage. The performance analysis of bridge pier by nonlinear pushover analysis is further validated by energy dissipation phenomenon measured from the hysteric loop for each model of ordinary concrete piers.

Keywords: finite element modeling, ordinary concrete bridge pier, performance analysis, retrofitting

Procedia PDF Downloads 291
1072 Assessing the Seismic Performance of Threaded Rebar Coupler System

Authors: Do-Kyu Hwang, Ho-Young Kim, Ho-Hyeoung Choi, Gi-Beom Park, Jae-Hoon Lee

Abstract:

Currently there are many use of threaded reinforcing bars in construction fields because those do not need additional screw processing when connecting reinforcing bar by threaded coupler. In this study, reinforced concrete bridge piers using threaded rebar coupler system at the plastic hinge area were tested to evaluate seismic performance. The test results showed that threads of the threaded rebar coupler system could be loosened while under tension-compression cyclic loading because tolerance and rib face angle of a threaded rebar coupler system are greater than that of a conventional ribbed rebar coupler system. As a result, cracks were concentrated just outside of the mechanical coupler and stiffness of reinforced concrete bridge pier decreased. Therefore, it is recommended that connection ratio of mechanical couplers in one section shall be below 50% in order that cracks are not concentrated just outside of the mechanical coupler. Also, reduced stiffness of the specimen should be considered when using the threaded rebar coupler system.

Keywords: reinforced concrete column, seismic performance, threaded rebar coupler, threaded reinforcing bar

Procedia PDF Downloads 343
1071 Comparison between Pushover Analysis Techniques and Validation of the Simplified Modal Pushover Analysis

Authors: N. F. Hanna, A. M. Haridy

Abstract:

One of the main drawbacks of the Modal Pushover Analysis (MPA) is the need to perform nonlinear time-history analysis, which complicates the analysis method and time. A simplified version of the MPA has been proposed based on the concept of the inelastic deformation ratio. Furthermore, the effect of the higher modes of vibration is considered by assuming linearly-elastic responses, which enables the use of standard elastic response spectrum analysis. In this thesis, the simplified MPA (SMPA) method is applied to determine the target global drift and the inter-story drifts of steel frame building. The effect of the higher vibration modes is considered within the framework of the SMPA. A comprehensive survey about the inelastic deformation ratio is presented. After that, a suitable expression from literature is selected for the inelastic deformation ratio and then implemented in the SMPA. The estimated seismic demands using the SMPA, such as target drift, base shear, and the inter-story drifts, are compared with the seismic responses determined by applying the standard MPA. The accuracy of the estimated seismic demands is validated by comparing with the results obtained by the nonlinear time-history analysis using real earthquake records.

Keywords: modal analysis, pushover analysis, seismic performance, target displacement

Procedia PDF Downloads 335
1070 Non-Linear Static Analysis of Screwed Moment Connections in Cold-Formed Steel Frames

Authors: Jikhil Joseph, Satish Kumar S R.

Abstract:

Cold-formed steel frames are preferable for framed constructions due to its low seismic weights and results into low seismic forces, but on the contrary, significant lateral deflections are expected under seismic/wind loading. The various factors affecting the lateral stiffness of steel frames are the stiffness of connections, beams and columns. So, by increasing the stiffness of beam, column and making the connections rigid will enhance the lateral stiffness. The present study focused on Structural elements made of rectangular hollow sections and fastened with screwed in-plane moment connections for the building frames. The self-drilling screws can be easily drilled on either side of the connection area with the help of gusset plates. The strength of screwed connections can be made 1.2 times the connecting elements. However, achieving high stiffness in connections is also a challenging job. Hence in addition to beam and column stiffness’s the connection stiffness are also going to be a governing parameter in the lateral deflections of the frames. SAP 2000 Non-linear static analysis has been planned to study the seismic behavior of steel frames. The SAP model will be consisting of nonlinear spring model for the connection to account the semi-rigid connections and the nonlinear hinges will be assigned for beam and column sections according to FEMA 273 guidelines. The reliable spring and hinge parameters will be assigned based on an experimental and analytical database. The non-linear static analysis is mainly focused on the identification of various hinge formations and the estimation of lateral deflection and these will contribute as an inputs for the direct displacement-based Seismic design. The research output from this study are the modelling techniques and suitable design guidelines for the performance-based seismic design of cold-formed steel frames.

Keywords: buckling, cold formed steel, nonlinear static analysis, screwed connections

Procedia PDF Downloads 143
1069 Determination and Distribution of Formation Thickness Using Seismic and Well Data in Baga/Lake Sub-basin, Chad Basin Nigeria

Authors: Gabriel Efomeh Omolaiye, Olatunji Seminu, Jimoh Ajadi, Yusuf Ayoola Jimoh

Abstract:

The Nigerian part of the Chad Basin till date has been one of the few critically studied basins, with few published scholarly works, compared to other basins such as Niger Delta, Dahomey, etc. This work was undertaken by the integration of 3D seismic interpretations and the well data analysis of eight wells fairly distributed in block A, Baga/Lake sub-basin in Borno basin with the aim of determining the thickness of Chad, Kerri-Kerri, Fika, and Gongila Formations in the sub-basin. Da-1 well (type-well) used in this study was subdivided into stratigraphic units based on the regional stratigraphic subdivision of the Chad basin and was later correlated with other wells using similarity of observed log responses. The combined density and sonic logs were used to generate synthetic seismograms for seismic to well ties. Five horizons were mapped, representing the tops of the formations on the 3D seismic data covering the block; average velocity function with maximum error/residual of 0.48% was adopted in the time to depth conversion of all the generated maps. There is a general thickening of sediments from the west to the east, and the estimated thicknesses of the various formations in the Baga/Lake sub-basin are Chad Formation (400-750 m), Kerri-Kerri Formation (300-1200 m), Fika Formation (300-2200 m) and Gongila Formation (100-1300 m). The thickness of the Bima Formation could not be established because the deepest well (Da-1) terminates within the formation. This is a modification to the previous and widely referenced studies of over forty decades that based the estimation of formation thickness within the study area on the observed outcrops at different locations and the use of few well data.

Keywords: Baga/Lake sub-basin, Chad basin, formation thickness, seismic, velocity

Procedia PDF Downloads 142
1068 Estimation of Seismic Deformation Demands of Tall Buildings with Symmetric Setbacks

Authors: Amir Alirezaei, Shahram Vahdani

Abstract:

This study estimates the seismic demands of tall buildings with central symmetric setbacks by using nonlinear time history analysis. Three setback structures, all 60-story high with setback in three levels, are used for evaluation. The effects of irregularities occurred by setback, are evaluated by determination of global-drift, story-displacement and story drift. Story-displacement is modified by roof displacement and first story displacement and story drift is modified by global drift. All results are calculated at the center of mass and in x and y direction. Also the absolute values of these quantities are determined. The results show that increasing of vertical irregularities increases the global drift of the structure and enlarges the deformations in the height of the structure. It is also observed that the effects of geometry irregularity in the seismic deformations of setback structures are higher than those of mass irregularity.

Keywords: deformation demand, drift, setback, tall building

Procedia PDF Downloads 398
1067 Investigation on Remote Sense Surface Latent Heat Temperature Associated with Pre-Seismic Activities in Indian Region

Authors: Vijay S. Katta, Vinod Kushwah, Rudraksh Tiwari, Mulayam Singh Gaur, Priti Dimri, Ashok Kumar Sharma

Abstract:

The formation process of seismic activities because of abrupt slip on faults, tectonic plate moments due to accumulated stress in the Earth’s crust. The prediction of seismic activity is a very challenging task. We have studied the changes in surface latent heat temperatures which are observed prior to significant earthquakes have been investigated and could be considered for short term earthquake prediction. We analyzed the surface latent heat temperature (SLHT) variation for inland earthquakes occurred in Chamba, Himachal Pradesh (32.5 N, 76.1E, M-4.5, depth-5km) nearby the main boundary fault region, the data of SLHT have been taken from National Center for Environmental Prediction (NCEP). In this analysis, we have calculated daily variations with surface latent heat temperature (0C) in the range area 1⁰x1⁰ (~120/KM²) with the pixel covering epicenter of earthquake at the center for a three months period prior to and after the seismic activities. The mean value during that period has been considered in order to take account of the seasonal effect. The monthly mean has been subtracted from daily value to study anomalous behavior (∆SLHT) of SLHT during the earthquakes. The results found that the SLHTs adjacent the epicenters all are anomalous high value 3-5 days before the seismic activities. The abundant surface water and groundwater in the epicenter and its adjacent region can provide the necessary condition for the change of SLHT. To further confirm the reliability of SLHT anomaly, it is necessary to explore its physical mechanism in depth by more earthquakes cases.

Keywords: surface latent heat temperature, satellite data, earthquake, magnetic storm

Procedia PDF Downloads 108
1066 A Theoretical Study of Multi-Leaf Spring in Seismic Response Control

Authors: M. Ezati Kooshki , H. Pourmohamad

Abstract:

Leaf spring dampers are used for commercial vehicles and heavy tracks. The main function of this damper in these vehicles is protection against damage and providing comfort for drivers by creating suspension between road and vehicle. This paper presents a new device, circular leaf spring damper, which is frequently used on vehicles, aiming to gain seismic protection of structures. Finite element analyses were conducted on several one-story structures using finite element software (Abaqus, v6.10-1). The time history analysis was conducted on the records of Kobe (1995) and San Fernando (1971) ground motions to demonstrate the advantages of using leaf spring in structures as compared to simple bracing system. This paper also suggests extending the use of this damper in structures, considering its large control force despite high cycle fatigue properties and low prices.

Keywords: bracing system, finite element analysis, leaf spring, seismic protection, time history analysis

Procedia PDF Downloads 377
1065 Seismic Vulnerability of Structures Designed in Accordance with the Allowable Stress Design and Load Resistant Factor Design Methods

Authors: Mohammadreza Vafaei, Amirali Moradi, Sophia C. Alih

Abstract:

The method selected for the design of structures not only can affect their seismic vulnerability but also can affect their construction cost. For the design of steel structures, two distinct methods have been introduced by existing codes, namely allowable stress design (ASD) and load resistant factor design (LRFD). This study investigates the effect of using the aforementioned design methods on the seismic vulnerability and construction cost of steel structures. Specifically, a 20-story building equipped with special moment resisting frame and an eccentrically braced system was selected for this study. The building was designed for three different intensities of peak ground acceleration including 0.2 g, 0.25 g, and 0.3 g using the ASD and LRFD methods. The required sizes of beams, columns, and braces were obtained using response spectrum analysis. Then, the designed frames were subjected to nine natural earthquake records which were scaled to the designed response spectrum. For each frame, the base shear, story shears, and inter-story drifts were calculated and then were compared. Results indicated that the LRFD method led to a more economical design for the frames. In addition, the LRFD method resulted in lower base shears and larger inter-story drifts when compared with the ASD method. It was concluded that the application of the LRFD method not only reduced the weights of structural elements but also provided a higher safety margin against seismic actions when compared with the ASD method.

Keywords: allowable stress design, load resistant factor design, nonlinear time history analysis, seismic vulnerability, steel structures

Procedia PDF Downloads 244
1064 Seismic Assessment of Passive Control Steel Structure with Modified Parameter of Oil Damper

Authors: Ahmad Naqi

Abstract:

Today, the passively controlled buildings are extensively becoming popular due to its excellent lateral load resistance circumstance. Typically, these buildings are enhanced with a damping device that has high market demand. Some manufacturer falsified the damping device parameter during the production to achieve the market demand. Therefore, this paper evaluates the seismic performance of buildings equipped with damping devices, which their parameter modified to simulate the falsified devices, intentionally. For this purpose, three benchmark buildings of 4-, 10-, and 20-story were selected from JSSI (Japan Society of Seismic Isolation) manual. The buildings are special moment resisting steel frame with oil damper in the longitudinal direction only. For each benchmark buildings, two types of structural elements are designed to resist the lateral load with and without damping devices (hereafter, known as Trimmed & Conventional Building). The target building was modeled using STERA-3D, a finite element based software coded for study purpose. Practicing the software one can develop either three-dimensional Model (3DM) or Lumped Mass model (LMM). Firstly, the seismic performance of 3DM and LMM models was evaluated and found excellent coincide for the target buildings. The simplified model of LMM used in this study to produce 66 cases for both of the buildings. Then, the device parameters were modified by ± 40% and ±20% to predict many possible conditions of falsification. It is verified that the building which is design to sustain the lateral load with support of damping device (Trimmed Building) are much more under threat as a result of device falsification than those building strengthen by damping device (Conventional Building).

Keywords: passive control system, oil damper, seismic assessment, lumped mass model

Procedia PDF Downloads 82
1063 The Normal-Generalized Hyperbolic Secant Distribution: Properties and Applications

Authors: Hazem M. Al-Mofleh

Abstract:

In this paper, a new four-parameter univariate continuous distribution called the Normal-Generalized Hyperbolic Secant Distribution (NGHS) is defined and studied. Some general and structural distributional properties are investigated and discussed, including: central and non-central n-th moments and incomplete moments, quantile and generating functions, hazard function, Rényi and Shannon entropies, shapes: skewed right, skewed left, and symmetric, modality regions: unimodal and bimodal, maximum likelihood (MLE) estimators for the parameters. Finally, two real data sets are used to demonstrate empirically its flexibility and prove the strength of the new distribution.

Keywords: bimodality, estimation, hazard function, moments, Shannon’s entropy

Procedia PDF Downloads 310