Search results for: secure transmission
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2548

Search results for: secure transmission

88 Spectral Responses of the Laser Generated Coal Aerosol

Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Tomi Smausz, Zoltán Kónya, Béla Hopp, Gábor Szabó, Zoltán Bozóki

Abstract:

Characterization of spectral responses of light absorbing carbonaceous particulate matter (LAC) is of great importance in both modelling its climate effect and interpreting remote sensing measurement data. The residential or domestic combustion of coal is one of the dominant LAC constituent. According to some related assessments the residential coal burning account for roughly half of anthropogenic BC emitted from fossil fuel burning. Despite of its significance in climate the comprehensive investigation of optical properties of residential coal aerosol is really limited in the literature. There are many reason of that starting from the difficulties associated with the controlled burning conditions of the fuel, through the lack of detailed supplementary proximate and ultimate chemical analysis enforced, the interpretation of the measured optical data, ending with many analytical and methodological difficulties regarding the in-situ measurement of coal aerosol spectral responses. Since the gas matrix of ambient can significantly mask the physicochemical characteristics of the generated coal aerosol the accurate and controlled generation of residential coal particulates is one of the most actual issues in this research area. Most of the laboratory imitation of residential coal combustion is simply based on coal burning in stove with ambient air support allowing one to measure only the apparent spectral feature of the particulates. However, the recently introduced methodology based on a laser ablation of solid coal target opens up novel possibilities to model the real combustion procedure under well controlled laboratory conditions and makes the investigation of the inherent optical properties also possible. Most of the methodology for spectral characterization of LAC is based on transmission measurement made of filter accumulated aerosol or deduced indirectly from parallel measurements of scattering and extinction coefficient using free floating sampling. In the former one the accuracy while in the latter one the sensitivity are liming the applicability of this approaches. Although the scientific community are at the common platform that aerosol-phase PhotoAcoustic Spectroscopy (PAS) is the only method for precise and accurate determination of light absorption by LAC, the PAS based instrumentation for spectral characterization of absorption has only been recently introduced. In this study, the investigation of the inherent, spectral features of laser generated and chemically characterized residential coal aerosols are demonstrated. The experimental set-up and its characteristic for residential coal aerosol generation are introduced here. The optical absorption and the scattering coefficients as well as their wavelength dependency are determined by our state-of-the-art multi wavelength PAS instrument (4λ-PAS) and multi wavelength cosinus sensor (Aurora 3000). The quantified wavelength dependency (AAE and SAE) are deduced from the measured data. Finally, some correlation between the proximate and ultimate chemical as well as the measured or deduced optical parameters are also revealed.

Keywords: absorption, scattering, residential coal, aerosol generation by laser ablation

Procedia PDF Downloads 323
87 Radiofrequency and Near-Infrared Responsive Core-Shell Multifunctional Nanostructures Using Lipid Templates for Cancer Theranostics

Authors: Animesh Pan, Geoffrey D. Bothun

Abstract:

With the development of nanotechnology, research in multifunctional delivery systems has a new pace and dimension. An incipient challenge is to design an all-in-one delivery system that can be used for multiple purposes, including tumor targeting therapy, radio-frequency (RF-), near-infrared (NIR-), light-, or pH-induced controlled release, photothermal therapy (PTT), photodynamic therapy (PDT), and medical diagnosis. In this regard, various inorganic nanoparticles (NPs) are known to show great potential as the 'functional components' because of their fascinating and tunable physicochemical properties and the possibility of multiple theranostic modalities from individual NPs. Magnetic, luminescent, and plasmonic properties are the three most extensively studied and, more importantly biomedically exploitable properties of inorganic NPs. Although successful attempts of combining any two of them above mentioned functionalities have been made, integrating them in one system has remained challenge. Keeping those in mind, controlled designs of complex colloidal nanoparticle system are one of the most significant challenges in nanoscience and nanotechnology. Therefore, systematic and planned studies providing better revelation are demanded. We report a multifunctional delivery platform-based liposome loaded with drug, iron-oxide magnetic nanoparticles (MNPs), and a gold shell on the surface of liposomes, were synthesized using a lipid with polyelectrolyte (layersomes) templating technique. MNPs and the anti-cancer drug doxorubicin (DOX) were co-encapsulated inside liposomes composed by zwitterionic phophatidylcholine and anionic phosphatidylglycerol using reverse phase evaporation (REV) method. The liposomes were coated with positively charge polyelectrolyte (poly-L-lysine) to enrich the interface with gold anion, exposed to a reducing agent to form a gold nanoshell, and then capped with thio-terminated polyethylene glycol (SH-PEG2000). The core-shell nanostructures were characterized by different techniques like; UV-Vis/NIR scanning spectrophotometer, dynamic light scattering (DLS), transmission electron microscope (TEM). This multifunctional system achieves a variety of functions, such as radiofrequency (RF)-triggered release, chemo-hyperthermia, and NIR laser-triggered for photothermal therapy. Herein, we highlight some of the remaining major design challenges in combination with preliminary studies assessing therapeutic objectives. We demonstrate an efficient loading and delivery system to significant cell death of human cancer cells (A549) with therapeutic capabilities. Coupled with RF and NIR excitation to the doxorubicin-loaded core-shell nanostructure helped in securing targeted and controlled drug release to the cancer cells. The present core-shell multifunctional system with their multimodal imaging and therapeutic capabilities would be eminent candidates for cancer theranostics.

Keywords: cancer thernostics, multifunctional nanostructure, photothermal therapy, radiofrequency targeting

Procedia PDF Downloads 105
86 Photo-Fenton Degradation of Organic Compounds by Iron(II)-Embedded Composites

Authors: Marius Sebastian Secula, Andreea Vajda, Benoit Cagnon, Ioan Mamaliga

Abstract:

One of the most important classes of pollutants is represented by dyes. The synthetic character and complex molecular structure make them more stable and difficult to be biodegraded in water. The treatment of wastewaters containing dyes in order to separate/degrade dyes is of major importance. Various techniques have been employed to remove and/or degrade dyes in water. Advanced oxidation processes (AOPs) are known as among the most efficient ones towards dye degradation. The aim of this work is to investigate the efficiency of a cheap Iron-impregnated activated carbon Fenton-like catalyst in order to degrade organic compounds in aqueous solutions. In the presented study an anionic dye, Indigo Carmine, is considered as a model pollutant. Various AOPs are evaluated for the degradation of Indigo Carmine to establish the effect of the prepared catalyst. It was found that the Iron(II)-embedded activated carbon composite enhances significantly the degradation process of Indigo Carmine. Using the wet impregnation procedure, 5 g of L27 AC material were contacted with Fe(II) solutions of FeSO4 precursor at a theoretical iron content in the resulted composite of 1 %. The L27 AC was impregnated for 3h at 45°C, then filtered, washed several times with water and ethanol and dried at 55 °C for 24 h. Thermogravimetric analysis, Fourier transform infrared, X-ray diffraction, and transmission electron microscopy were employed to investigate the structural, textural, and micromorphology of the catalyst. Total iron content in the obtained composites and iron leakage were determined by spectrophotometric method using phenantroline. Photo-catalytic tests were performed using an UV - Consulting Peschl Laboratory Reactor System. UV light irradiation tests were carried out to determine the performance of the prepared Iron-impregnated composite towards the degradation of Indigo Carmine in aqueous solution using different conditions (17 W UV lamps, with and without in-situ generation of O3; different concentrations of H2O2, different initial concentrations of Indigo Carmine, different values of pH, different doses of NH4-OH enhancer). The photocatalytic tests were performed after the adsorption equilibrium has been established. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. The investigated process obeys the pseudo-first order kinetics. The photo-Fenton degradation of IC was tested at different values of initial concentration. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. Acknowledgments: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.

Keywords: photodegradation, heterogeneous Fenton, anionic dye, carbonaceous composite, screening factorial design

Procedia PDF Downloads 230
85 Plasmonic Biosensor for Early Detection of Environmental DNA (eDNA) Combined with Enzyme Amplification

Authors: Monisha Elumalai, Joana Guerreiro, Joana Carvalho, Marta Prado

Abstract:

DNA biosensors popularity has been increasing over the past few years. Traditional analytical techniques tend to require complex steps and expensive equipment however DNA biosensors have the advantage of getting simple, fast and economic. Additionally, the combination of DNA biosensors with nanomaterials offers the opportunity to improve the selectivity, sensitivity and the overall performance of the devices. DNA biosensors are based on oligonucleotides as sensing elements. These oligonucleotides are highly specific to complementary DNA sequences resulting in the hybridization of the strands. DNA biosensors are not only an advantage in the clinical field but also applicable in numerous research areas such as food analysis or environmental control. Zebra Mussels (ZM), Dreissena polymorpha are invasive species responsible for enormous negative impacts on the environment and ecosystems. Generally, the detection of ZM is made when the observation of adult or macroscopic larvae's is made however at this stage is too late to avoid the harmful effects. Therefore, there is a need to develop an analytical tool for the early detection of ZM. Here, we present a portable plasmonic biosensor for the detection of environmental DNA (eDNA) released to the environment from this invasive species. The plasmonic DNA biosensor combines gold nanoparticles, as transducer elements, due to their great optical properties and high sensitivity. The detection strategy is based on the immobilization of a short base pair DNA sequence on the nanoparticles surface followed by specific hybridization in the presence of a complementary target DNA. The hybridization events are tracked by the optical response provided by the nanospheres and their surrounding environment. The identification of the DNA sequences (synthetic target and probes) to detect Zebra mussel were designed by using Geneious software in order to maximize the specificity. Moreover, to increase the optical response enzyme amplification of DNA might be used. The gold nanospheres were synthesized and characterized by UV-visible spectrophotometry and transmission electron microscopy (TEM). The obtained nanospheres present the maximum localized surface plasmon resonance (LSPR) peak position are found to be around 519 nm and a diameter of 17nm. The DNA probes modified with a sulfur group at one end of the sequence were then loaded on the gold nanospheres at different ionic strengths and DNA probe concentrations. The optimal DNA probe loading will be selected based on the stability of the optical signal followed by the hybridization study. Hybridization process leads to either nanoparticle dispersion or aggregation based on the presence or absence of the target DNA. Finally, this detection system will be integrated into an optical sensing platform. Considering that the developed device will be used in the field, it should fulfill the inexpensive and portability requirements. The sensing devices based on specific DNA detection holds great potential and can be exploited for sensing applications in-loco.

Keywords: ZM DNA, DNA probes, nicking enzyme, gold nanoparticles

Procedia PDF Downloads 212
84 Correlates of Comprehensive HIV/AIDS Knowledge and Acceptance Attitude Towards People Living with HIV/AIDS: A Cross-Sectional Study among Unmarried Young Women in Uganda

Authors: Tesfaldet Mekonnen Estifanos, Chen Hui, Afewerki Weldezgi

Abstract:

Background: Youth in general and young females in particular, remain at the center of the HIV/AIDS epidemic. Sexual risk-taking among young unmarried women is relatively high and are the most vulnerable and highly exposed to HIV/AIDS. Improvements in the status of HIV/AIDS knowledge and acceptance attitude towards people living with HIV (PLWHIV) plays a great role in averting the incidence of HIV/AIDS. Thus, the aim of the study was to explore the level and correlates of HIV/AIDS knowledge and accepting attitude toward PLWHIV. Methods: A cross-sectional study was conducted using data from the Uganda Demographic Health Survey 2016 (UDHS-2016). National level representative household surveys using a multistage cluster probability sampling method, face to face interviews with standard questionnaires were performed. Unmarried women aged 15-24 years with a sample size of 2019 were selected from the total sample of 8674 women aged 15-49 years and were analyzed using SPSS version 23. Independent variables such as age, religion, educational level, residence, and wealth index were included. Two binary outcome variables (comprehensive HIV/AIDS knowledge and acceptance attitude toward PLWHIV) were utilized. We used the chi-square test as well as multivariate regression analysis to explore correlations of explanatory variables with the outcome variables. The results were reported by odds ratios (OR) with 95% confidence interval (95% CI), taking a p-value less than 0.05 as significant. Results: Almost all (99.3%) of the unmarried women aged 15-24 years were aware of HIV/AIDS, but only 51.2% had adequate comprehensive knowledge on HIV/AIDS. Only 69.4% knew both methods: using a condom every time had sex, and having only one faithful uninfected partner can prevent HIV/AIDS transmission. About 66.6% of the unmarried women reject at least two common local misconceptions about HIV/AIDS. Moreover, an alarmingly few (20.3%) of the respondents had a positive acceptance attitude to PLWHIV. On multivariate analysis, age (20-24 years), living in urban, being educated and wealthier, were predictors of having adequate comprehensive HIV/AIDS knowledge. On the other hand, research participants with adequate comprehensive knowledge about HIV/AIDS were highly likely (OR, 1.94 95% CI, 1.52-2.46) to have a positive acceptance attitude to PLWHIV than those with inadequate knowledge. Respondents with no education, Muslim, and Pentecostal religion were emerged less likely to have a positive acceptance attitude to PLWHIV. Conclusion: This study found out the highly accepted level of awareness, but the knowledge and positive acceptance attitude are not encouraging. Thus, expanding access to comprehensive sexuality and strengthening educational campaigns on HIV/AIDS in communities, health facilities, and schools is needed with a greater focus on disadvantaged women having low educational level, poor socioeconomic status, and those residing in rural areas. Sexual risk behaviors among the most affected people - young women have also a role in the spread of HIV/AIDS. Hence, further research assessing the significant contributing factors for sexual risk-taking might have a positive impact on the fight against HIV/AIDS.

Keywords: acceptance attitude, HIV/AIDS, knowledge, unmarried women

Procedia PDF Downloads 116
83 The Influence of Mechanical and Physicochemical Characteristics of Perfume Microcapsules on Their Rupture Behaviour and How This Relates to Performance in Consumer Products

Authors: Andrew Gray, Zhibing Zhang

Abstract:

The ability for consumer products to deliver a sustained perfume response can be a key driver for a variety of applications. Many compounds in perfume oils are highly volatile, meaning they readily evaporate once the product is applied, and the longevity of the scent is poor. Perfume capsules have been introduced as a means of abating this evaporation once the product has been delivered. The impermeable capsules are aimed to be stable within the formulation, and remain intact during delivery to the desired substrate, only rupturing to release the core perfume oil through application of mechanical force applied by the consumer. This opens up the possibility of obtaining an olfactive response hours, weeks or even months after delivery, depending on the nature of the desired application. Tailoring the properties of the polymeric capsules to better address the needs of the application is not a trivial challenge and currently design of capsules is largely done by trial and error. The aim of this work is to have more predictive methods for capsule design depending on the consumer application. This means refining formulations such that they rupture at the right time for the specific consumer application, not too early, not too late. Finding the right balance between these extremes is essential if a benefit is sought with respect to neat addition of perfume to formulations. It is important to understand the forces that influence capsule rupture, first, by quantifying the magnitude of these different forces, and then by assessing bulk rupture in real-world applications to understand how capsules actually respond. Samples were provided by an industrial partner and the mechanical properties of individual capsules within the samples were characterized via a micromanipulation technique, developed by Professor Zhang at the University of Birmingham. The capsules were synthesized such as to change one particular physicochemical property at a time, such as core: wall material ratio, and the average size of capsules. Analysis of shell thickness via Transmission Electron Microscopy, size distribution via the use of a Mastersizer, as well as a variety of other techniques confirmed that only one particular physicochemical property was altered for each sample. The mechanical analysis was subsequently undertaken, showing the effect that changing certain capsule properties had on the response under compression. It was, however, important to link this fundamental mechanical response to capsule performance in real-world applications. As such, the capsule samples were introduced to a formulation and exposed to full scale stresses. GC-MS headspace analysis of the perfume oil released from broken capsules enabled quantification of what the relative strengths of capsules truly means for product performance. Correlations have been found between the mechanical strength of capsule samples and performance in terms of perfume release in consumer applications. Having a better understanding of the key parameters that drive performance benefits the design of future formulations by offering better guidelines on the parameters that can be adjusted without worrying about the performance effects, and singles out those parameters that are essential in finding the sweet spot for capsule performance.

Keywords: consumer products, mechanical and physicochemical properties, perfume capsules, rupture behaviour

Procedia PDF Downloads 112
82 Assessment of On-Site Solar and Wind Energy at a Manufacturing Facility in Ireland

Authors: A. Sgobba, C. Meskell

Abstract:

The feasibility of on-site electricity production from solar and wind and the resulting load management for a specific manufacturing plant in Ireland are assessed. The industry sector accounts directly and indirectly for a high percentage of electricity consumption and global greenhouse gas emissions; therefore, it will play a key role in emission reduction and control. Manufacturing plants, in particular, are often located in non-residential areas since they require open spaces for production machinery, parking facilities for the employees, appropriate routes for supply and delivery, special connections to the national grid and other environmental impacts. Since they have larger spaces compared to commercial sites in urban areas, they represent an appropriate case study for evaluating the technical and economic viability of energy system integration with low power density technologies, such as solar and wind, for on-site electricity generation. The available open space surrounding the analysed manufacturing plant can be efficiently used to produce a discrete quantity of energy, instantaneously and locally consumed. Therefore, transmission and distribution losses can be reduced. The usage of storage is not required due to the high and almost constant electricity consumption profile. The energy load of the plant is identified through the analysis of gas and electricity consumption, both internally monitored and reported on the bills. These data are not often recorded and available to third parties since manufacturing companies usually keep track only of the overall energy expenditures. The solar potential is modelled for a period of 21 years based on global horizontal irradiation data; the hourly direct and diffuse radiation and the energy produced by the system at the optimum pitch angle are calculated. The model is validated using PVWatts and SAM tools. Wind speed data are available for the same period within one-hour step at a height of 10m. Since the hub of a typical wind turbine reaches a higher altitude, complementary data for a different location at 50m have been compared, and a model for the estimate of wind speed at the required height in the right location is defined. Weibull Statistical Distribution is used to evaluate the wind energy potential of the site. The results show that solar and wind energy are, as expected, generally decoupled. Based on the real case study, the percentage of load covered every hour by on-site generation (Level of Autonomy LA) and the resulting electricity bought from the grid (Expected Energy Not Supplied EENS) are calculated. The economic viability of the project is assessed through Net Present Value, and the influence the main technical and economic parameters have on NPV is presented. Since the results show that the analysed renewable sources can not provide enough electricity, the integration with a cogeneration technology is studied. Finally, the benefit to energy system integration of wind, solar and a cogeneration technology is evaluated and discussed.

Keywords: demand, energy system integration, load, manufacturing, national grid, renewable energy sources

Procedia PDF Downloads 105
81 Preparation of Biodegradable Methacrylic Nanoparticles by Semicontinuous Heterophase Polymerization for Drugs Loading: The Case of Acetylsalicylic Acid

Authors: J. Roberto Lopez, Hened Saade, Graciela Morales, Javier Enriquez, Raul G. Lopez

Abstract:

Implementation of systems based on nanostructures for drug delivery applications have taken relevance in recent studies focused on biomedical applications. Although there are several nanostructures as drugs carriers, the use of polymeric nanoparticles (PNP) has been widely studied for this purpose, however, the main issue for these nanostructures is the size control below 50 nm with a narrow distribution size, due to they must go through different physiological barriers and avoid to be filtered by kidneys (< 10 nm) or the spleen (> 100 nm). Thus, considering these and other factors, it can be mentioned that drug-loaded nanostructures with sizes varying between 10 and 50 nm are preferred in the development and study of PNP/drugs systems. In this sense, the Semicontinuous Heterophase Polymerization (SHP) offers the possibility to obtain PNP in the desired size range. Considering the above explained, methacrylic copolymer nanoparticles were obtained under SHP. The reactions were carried out in a jacketed glass reactor with the required quantities of water, ammonium persulfate as initiator, sodium dodecyl sulfate/sodium dioctyl sulfosuccinate as surfactants, methyl methacrylate and methacrylic acid as monomers with molar ratio of 2/1, respectively. The monomer solution was dosed dropwise during reaction at 70 °C with a mechanical stirring of 650 rpm. Nanoparticles of poly(methyl methacrylate-co-methacrylic acid) were loaded with acetylsalicylic acid (ASA, aspirin) by a chemical adsorption technique. The purified latex was put in contact with a solution of ASA in dichloromethane (DCM) at 0.1, 0.2, 0.4 or 0.6 wt-%, at 35°C during 12 hours. According to the boiling point of DCM, as well as DCM and water densities, the loading process is completed when the whole DCM is evaporated. The hydrodynamic diameter was measured after polymerization by quasi-elastic light scattering and transmission electron microscopy, before and after loading procedures with ASA. The quantitative and qualitative analyses of PNP loaded with ASA were measured by infrared spectroscopy, differential scattering calorimetry and thermogravimetric analysis. Also, the molar mass distributions of polymers were determined in a gel permeation chromatograph apparatus. The load capacity and efficiency were determined by gravimetric analysis. The hydrodynamic diameter results for methacrylic PNP without ASA showed a narrow distribution with an average particle size around 10 nm and a composition methyl methacrylate/methacrylic acid molar ratio equal to 2/1, same composition of Eudragit S100, which is a commercial compound widely used as excipient. Moreover, the latex was stabilized in a relative high solids content (around 11 %), a monomer conversion almost 95 % and a number molecular weight around 400 Kg/mol. The average particle size in the PNP/aspirin systems fluctuated between 18 and 24 nm depending on the initial percentage of aspirin in the loading process, being the drug content as high as 24 % with an efficiency loading of 36 %. These average sizes results have not been reported in the literature, thus, the methacrylic nanoparticles here reported are capable to be loaded with a considerable amount of ASA and be used as a drug carrier.

Keywords: aspirin, biocompatibility, biodegradable, Eudragit S100, methacrylic nanoparticles

Procedia PDF Downloads 109
80 Green Synthesis (Using Environment Friendly Bacteria) of Silver-Nanoparticles and Their Application as Drug Delivery Agents

Authors: Sutapa Mondal Roy, Suban K. Sahoo

Abstract:

The primary aim of this work is to synthesis silver nanoparticles (AgNPs) through environmentally benign routes to avoid any chemical toxicity related undesired side effects. The nanoparticles were stabilized with drug ciprofloxacin (Cp) and were studied for their effectiveness as drug delivery agent. Targeted drug delivery improves the therapeutic potential of drugs at the diseased site as well as lowers the overall dose and undesired side effects. The small size of nanoparticles greatly facilitates the transport of active agents (drugs) across biological membranes and allows them to pass through the smallest capillaries in the body that are 5-6 μm in diameter, and can minimize possible undesired side effects. AgNPs are non-toxic, inert, stable, and has a high binding capacity and thus can be considered as biomaterials. AgNPs were synthesized from the nutrient broth supernatant after the culture of environment-friendly bacteria Bacillus subtilis. The AgNPs were found to show the surface plasmon resonance (SPR) band at 425 nm. The Cp capped Ag nanoparticles formation was complete within 30 minutes, which was confirmed from absorbance spectroscopy. Physico-chemical nature of the AgNPs-Cp system was confirmed by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) etc. The AgNPs-Cp system size was found to be in the range of 30-40 nm. To monitor the kinetics of drug release from the surface of nanoparticles, the release of Cp was carried out by careful dialysis keeping AgNPs-Cp system inside the dialysis bag at pH 7.4 over time. The drug release was almost complete after 30 hrs. During the drug delivery process, to understand the AgNPs-Cp system in a better way, the sincere theoretical investigation is been performed employing Density Functional Theory. Electronic charge transfer, electron density, binding energy as well as thermodynamic properties like enthalpy, entropy, Gibbs free energy etc. has been predicted. The electronic and thermodynamic properties, governed by the AgNPs-Cp interactions, indicate that the formation of AgNPs-Cp system is exothermic i.e. thermodynamically favorable process. The binding energy and charge transfer analysis implies the optimum stability of the AgNPs-Cp system. Thus, the synthesized Cp-Ag nanoparticles can be effectively used for biological purposes due to its environmentally benign routes of synthesis procedures, which is clean, biocompatible, non-toxic, safe, cost-effective, sustainable and eco-friendly. The Cp-AgNPs as biomaterials can be successfully used for drug delivery procedures due to slow release of drug from nanoparticles over a considerable period of time. The kinetics of the drug release show that this drug-nanoparticle assembly can be effectively used as potential tools for therapeutic applications. The ease of synthetic procedure, lack of possible chemical toxicity and their biological activity along with excellent application as drug delivery agent will open up vista of using nanoparticles as effective and successful drug delivery agent to be used in modern days.

Keywords: silver nanoparticles, ciprofloxacin, density functional theory, drug delivery

Procedia PDF Downloads 358
79 Non-Steroidal Microtubule Disrupting Analogues Induce Programmed Cell Death in Breast and Lung Cancer Cell Lines

Authors: Marcel Verwey, Anna M. Joubert, Elsie M. Nolte, Wolfgang Dohle, Barry V. L. Potter, Anne E. Theron

Abstract:

A tetrahydroisoquinolinone (THIQ) core can be used to mimic the A,B-ring of colchicine site-binding microtubule disruptors such as 2-methoxyestradiol in the design of anti-cancer agents. Steroidomimeric microtubule disruptors were synthesized by introducing C'2 and C'3 of the steroidal A-ring to C'6 and C'7 of the THIQ core and by introducing a decorated hydrogen bond acceptor motif projecting from the steroidal D-ring to N'2. For this in vitro study, four non-steroidal THIQ-based analogues were investigated and comparative studies were done between the non-sulphamoylated compound STX 3450 and the sulphamoylated compounds STX 2895, STX 3329 and STX 3451. The objective of this study was to investigate the modes of cell death induced by these four THIQ-based analogues in A549 lung carcinoma epithelial cells and metastatic breast adenocarcinoma MDA-MB-231 cells. Cytotoxicity studies to determine the half maximal growth inhibitory concentrations were done using spectrophotometric quantification via crystal violet staining and lactate dehydrogenase (LDH) assays. Microtubule integrity and morphologic changes of exposed cells were investigated using polarization-optical transmitted light differential interference contrast microscopy, transmission electron microscopy and confocal microscopy. Flow cytometric quantification was used to determine apoptosis induction and the effect that THIQ-based analogues have on cell cycle progression. Signal transduction pathways were elucidated by quantification of the mitochondrial membrane integrity, cytochrome c release and caspase 3, -6 and -8 activation. Induction of autophagic cell death by the THIQ-based analogues was investigated by morphological assessment of fluorescent monodansylcadaverine (MDC) staining of acidic vacuoles and by quantifying aggresome formation via flow cytometry. Results revealed that these non-steroidal microtubule disrupting analogues inhibited 50% of cell growth at nanomolar concentrations. Immunofluorescence microscopy indicated microtubule depolarization and the resultant mitotic arrest was further confirmed through cell cycle analysis. Apoptosis induction via the intrinsic pathway was observed due to depolarization of the mitochondrial membrane, induction of cytochrome c release as well as, caspase 3 activation. Potential involvement of programmed cell death type II was observed due to the presence of acidic vacuoles and aggresome formation. Necrotic cell death did not contribute significantly, indicated by stable LDH levels. This in vitro study revealed the induction of the intrinsic apoptotic pathway as well as possible involvement of autophagy after exposure to these THIQ-based analogues in both MDA-MB-231- and A549 cells. Further investigation of this series of anticancer drugs still needs to be conducted to elucidate the temporal, mechanistic and functional crosstalk mechanisms between the two observed programmed cell deaths pathways.

Keywords: apoptosis, autophagy, cancer, microtubule disruptor

Procedia PDF Downloads 224
78 Barriers to Tuberculosis Detection in Portuguese Prisons

Authors: M. F. Abreu, A. I. Aguiar, R. Gaio, R. Duarte

Abstract:

Background: Prison establishments constitute high-risk environments for the transmission and spread of tuberculosis (TB), given their epidemiological context and the difficulty of implementing preventive and control measures. Guidelines for control and prevention of tuberculosis in prisons have been described as incomplete and heterogeneous internationally, due to several identified obstacles, for example scarcity of human resources and funding of prisoner health services. In Portugal, a protocol was created in 2014 with the aim to define and standardize procedures of detection and prevention of tuberculosis within prisons. Objective: The main objective of this study was to identify and describe barriers to tuberculosis detection in prisons of Porto and Lisbon districts in Portugal. Methods: A cross-sectional study was conducted from 2ⁿᵈ January 2018 till 30ᵗʰ June 2018. Semi-structured questionnaires were applied to health care professionals working in the prisons of the districts of Porto (n=6) and Lisbon (n=8). As inclusion criteria we considered having work experience in the area of tuberculosis (either in diagnosis, treatment, or follow up). The questionnaires were self-administered, in paper format. Descriptive analyses of the questionnaire variables were made using frequencies and median. Afterwards, a hierarchical agglomerative clusters analysis was performed. After obtaining the clusters, the chi-square test was applied to study the association between the variables collected and the clusters. The level of significance considered was 0.05. Results: From the total of 186 health professionals, 139 met the criteria of inclusion and 82 health professionals were interviewed (62,2% of participation). Most were female, nurses, with a median age of 34 years, with term employment contract. From the cluster analysis, two groups were identified with different characteristics and behaviors for the procedures of this protocol. Statistically significant results were found in: elements of cluster 1 (78% of the total participants) work in prisons for a longer time (p=0.003), 45,3% work > 4 years while 50% of the elements of cluster 2 work for less than a year, and more frequently answered they know and apply the procedures of the protocol (p=0.000). Both clusters answered frequently the need of having theoretical-practical training for TB (p=0.000), especially in the areas of diagnosis, treatment and prevention and that there is scarcity of funding to prisoner health services (p=0.000). Regarding procedures for TB screening (periodic and contact screening) and procedures for transferring a prisoner with this disease, cluster 1 also answered more frequently to perform them (p=0.000). They also referred that the material/equipment for TB screening is accessible and available (p=0.000). From this clusters we identified as barriers scarcity of human resources, the need to theoretical-practical training for tuberculosis, inexperience in working in health services prisons and limited knowledge of protocol procedures. Conclusions: The barriers found in this study are the same described internationally. This protocol is mostly being applied in portuguese prisons. The study also showed the need to invest in human and material resources. This investigation bridged gaps in knowledge that could help prison health services optimize the care provided for early detection and adherence of prisoners to treatment of tuberculosis.

Keywords: barriers, health care professionals, prisons, protocol, tuberculosis

Procedia PDF Downloads 114
77 Activation of Apoptosis in the Midgut Epithelium of Spodoptera exigua Hübner (Lepidoptera: Noctuidae) Exposed to Various Cadmium Concentration

Authors: Magdalena Maria Rost-Roszkowska, Alina Chachulska-Żymełka, Monika Tarnawska, Maria Augustyniak, Alina Kafel, Agnieszka Babczyńska

Abstract:

The digestive system of insects is composed of three distinct regions: fore-, mid- and hingut. The middle region (the midgut) is treated as one of the barriers which protects the organism against any stressors which originate from external environment, e.g. toxic metals. Such factors can activate the cell death in epithelial cells to preserve the entire tissue/organs against the degeneration. Different mechanisms involved in homeostasis maintenance have been described, but the studies of animals under field conditions do not give the opportunity to conclude about potential ability of subsequent generation to inherit the tolerance mechanisms. It is possible only by a multigenerational strain of an animal led under laboratory conditions, exposed to a selected toxic factor, present also in polluted ecosystems. The main purpose of the project was to check if changes, which appear in the midgut epithelium after Cd treatment, can be fixed during the following generations of insects with the special emphasis on apoptosis. As the animal for these studies we chose 5th larval stage of the beet armyworm Spodoptera exigua Hübner (Lepidoptera: Noctuidae), which is one of pest of many vegetable crops. Animals were divided into some experimental groups: K, Cd, KCd, Cd1, Cd2, Cd3. A control group (K) fed a standard diet, and was conducted for XX generations, a cadmium group (Cd), fed on standard diet supplemented with cadmium (44 mg Cd per kg of dry weight of food) for XXX generations. A reference Cd group (KCd) has been initiated: control insects were fed with Cd supplemented diet (44 mg Cd per kg of dry weight of food). Experimental groups Cd1, Cd2, Cd3 developed from the control one: 5 mg Cd per kg of dry weight of food, 10 mg Cd per kg of dry weight of food, 20 mg Cd per kg of dry weight of food. We were interested in the activation of apoptosis during following generations in all experimental groups. Therefore, during the 1st year of the experiment, the measurements were done for 6 generations in all experimental group. The intensity and the course of apoptosis have been examined using transmission electron microscope (TEM), confocal microscope and flow cytometry. During apoptosis the cell started to shrink, extracellular spaces appeared between digestive and neighboring cells, the nucleus achieved a lobular shape. Eventually, the apoptotic cells was discharged into the midgut lumen. A quantitative analysis revealed that the number of apoptotic cells depends significantly on the generation, tissue and cadmium concentration in the insect rearing medium. In the following 6 generations, we observed that the percentage of apoptotic cells in the midguts from cadmium-exposed groups decreased gradually according to the following order of strains: Cd1, Cd2, Cd3 and KCd. At the same time, it was still higher than the percentage of apoptotic cells in the same tissues of the insects from the control and multigenerational cadmium strain. The results of our studies suggest that changes caused by cadmium treatment were preserved during 6-generational development of lepidopteran larvae. The study has been financed by the National Science Centre Poland, grant no 2016/21/B/NZ8/00831.

Keywords: cadmium, cell death, digestive system, ultrastructure

Procedia PDF Downloads 191
76 Sonication as a Versatile Tool for Photocatalysts’ Synthesis and Intensification of Flow Photocatalytic Processes Within the Lignocellulose Valorization Concept

Authors: J. C. Colmenares, M. Paszkiewicz-Gawron, D. Lomot, S. R. Pradhan, A. Qayyum

Abstract:

This work is a report of recent selected experiments of photocatalysis intensification using flow microphotoreactors (fabricated by an ultrasound-based technique) for photocatalytic selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) (in the frame of the concept of lignin valorization), and the proof of concept of intensifying a flow selective photocatalytic oxidation process by acoustic cavitation. The synthesized photocatalysts were characterized by using different techniques such as UV-Vis diffuse reflectance spectroscopy, X-ray diffraction, nitrogen sorption, thermal gravimetric analysis, and transmission electron microscopy. More specifically, the work will be on: a Design and development of metal-containing TiO₂ coated microflow reactor for photocatalytic partial oxidation of benzyl alcohol: The current work introduces an efficient ultrasound-based metal (Fe, Cu, Co)-containing TiO₂ deposition on the inner walls of a perfluoroalkoxy alkanes (PFA) microtube under mild conditions. The experiments were carried out using commercial TiO₂ and sol-gel synthesized TiO₂. The rough surface formed during sonication is the site for the deposition of these nanoparticles in the inner walls of the microtube. The photocatalytic activities of these semiconductor coated fluoropolymer based microreactors were evaluated for the selective oxidation of BnOH to PhCHO in the liquid flow phase. The analysis of the results showed that various features/parameters are crucial, and by tuning them, it is feasible to improve the conversion of benzyl alcohol and benzaldehyde selectivity. Among all the metal-containing TiO₂ samples, the 0.5 at% Fe/TiO₂ (both, iron and titanium, as cheap, safe, and abundant metals) photocatalyst exhibited the highest BnOH conversion under visible light (515 nm) in a microflow system. This could be explained by the higher crystallite size, high porosity, and flake-like morphology. b. Designing/fabricating photocatalysts by a sonochemical approach and testing them in the appropriate flow sonophotoreactor towards sustainable selective oxidation of key organic model compounds of lignin: Ultrasonication (US)-assitedprecipitaion and US-assitedhydrosolvothermal methods were used for the synthesis of metal-oxide-based and metal-free-carbon-based photocatalysts, respectively. Additionally, we report selected experiments of intensification of a flow photocatalytic selective oxidation through the use of ultrasonic waves. The effort of our research is focused on the utilization of flow sonophotocatalysis for the selective transformation of lignin-based model molecules by nanostructured metal oxides (e.g., TiO₂), and metal-free carbocatalysts. A plethora of parameters that affects the acoustic cavitation phenomena, and as a result the potential of sonication were investigated (e.g. ultrasound frequency and power). Various important photocatalytic parameters such as the wavelength and intensity of the irradiated light, photocatalyst loading, type of solvent, mixture of solvents, and solution pH were also optimized.

Keywords: heterogeneous photo-catalysis, metal-free carbonaceous materials, selective redox flow sonophotocatalysis, titanium dioxide

Procedia PDF Downloads 68
75 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth

Abstract:

Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.

Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR

Procedia PDF Downloads 148
74 One Species into Five: Nucleo-Mito Barcoding Reveals Cryptic Species in 'Frankliniella Schultzei Complex': Vector for Tospoviruses

Authors: Vikas Kumar, Kailash Chandra, Kaomud Tyagi

Abstract:

The insect order Thysanoptera includes small insects commonly called thrips. As insect vectors, only thrips are capable of Tospoviruses transmission (genus Tospovirus, family Bunyaviridae) affecting various crops. Currently, fifteen species of subfamily Thripinae (Thripidae) have been reported as vectors for tospoviruses. Frankliniella schultzei, which is reported as act as a vector for at least five tospovirses, have been suspected to be a species complex with more than one species. It is one of the historical unresolved issues where, two species namely, F. schultzei Trybom and F. sulphurea Schmutz were erected from South Africa and Srilanaka respectively. These two species were considered to be valid until 1968 when sulphurea was treated as colour morph (pale form) and synonymised under schultzei (dark form) However, these two have been considered as valid species by some of the thrips workers. Parallel studies have indicated that brown form of schultzei is a vector for tospoviruses while yellow form is a non-vector. However, recent studies have shown that yellow populations have also been documented as vectors. In view of all these facts, it is highly important to have a clear understanding whether these colour forms represent true species or merely different populations with different vector carrying capacities and whether there is some hidden diversity in 'Frankliniella schultzei species complex'. In this study, we aim to study the 'Frankliniella schultzei species complex' with molecular spectacles with DNA data from India and Australia and Africa. A total of fifty-five specimens was collected from diverse locations in India and Australia. We generated molecular data using partial fragments of mitochondrial cytochrome c oxidase I gene (mtCOI) and 28S rRNA gene. For COI dataset, there were seventy-four sequences, out of which data on fifty-five was generated in the current study and others were retrieved from NCBI. All the four different tree construction methods: neighbor-joining, maximum parsimony, maximum likelihood and Bayesian analysis, yielded the same tree topology and produced five cryptic species with high genetic divergence. For, rDNA, there were forty-five sequences, out of which data on thirty-nine was generated in the current study and others were retrieved from NCBI. The four tree building methods yielded four cryptic species with high bootstrap support value/posterior probability. Here we could not retrieve one cryptic species from South Africa as we could not generate data on rDNA from South Africa and sequence for rDNA from African region were not available in the database. The results of multiple species delimitation methods (barcode index numbers, automatic barcode gap discovery, general mixed Yule-coalescent, and Poisson-tree-processes) also supported the phylogenetic data and produced 5 and 4 Molecular Operational Taxonomic Units (MOTUs) for mtCOI and 28S dataset respectively. These results of our study indicate the likelihood that F. sulphurea may be a valid species, however, more morphological and molecular data is required on specimens from type localities of these two species and comparison with type specimens.

Keywords: DNA barcoding, species complex, thrips, species delimitation

Procedia PDF Downloads 109
73 Inferring Influenza Epidemics in the Presence of Stratified Immunity

Authors: Hsiang-Yu Yuan, Marc Baguelin, Kin O. Kwok, Nimalan Arinaminpathy, Edwin Leeuwen, Steven Riley

Abstract:

Traditional syndromic surveillance for influenza has substantial public health value in characterizing epidemics. Because the relationship between syndromic incidence and the true infection events can vary from one population to another and from one year to another, recent studies rely on combining serological test results with syndromic data from traditional surveillance into epidemic models to make inference on epidemiological processes of influenza. However, despite the widespread availability of serological data, epidemic models have thus far not explicitly represented antibody titre levels and their correspondence with immunity. Most studies use dichotomized data with a threshold (Typically, a titre of 1:40 was used) to define individuals as likely recently infected and likely immune and further estimate the cumulative incidence. Underestimation of Influenza attack rate could be resulted from the dichotomized data. In order to improve the use of serosurveillance data, here, a refinement of the concept of the stratified immunity within an epidemic model for influenza transmission was proposed, such that all individual antibody titre levels were enumerated explicitly and mapped onto a variable scale of susceptibility in different age groups. Haemagglutination inhibition titres from 523 individuals and 465 individuals during pre- and post-pandemic phase of the 2009 pandemic in Hong Kong were collected. The model was fitted to serological data in age-structured population using Bayesian framework and was able to reproduce key features of the epidemics. The effects of age-specific antibody boosting and protection were explored in greater detail. RB was defined to be the effective reproductive number in the presence of stratified immunity and its temporal dynamics was compared to the traditional epidemic model using use dichotomized seropositivity data. Deviance Information Criterion (DIC) was used to measure the fitness of the model to serological data with different mechanisms of the serological response. The results demonstrated that the differential antibody response with age was present (ΔDIC = -7.0). The age-specific mixing patterns with children specific transmissibility, rather than pre-existing immunity, was most likely to explain the high serological attack rates in children and low serological attack rates in elderly (ΔDIC = -38.5). Our results suggested that the disease dynamics and herd immunity of a population could be described more accurately for influenza when the distribution of immunity was explicitly represented, rather than relying only on the dichotomous states 'susceptible' and 'immune' defined by the threshold titre (1:40) (ΔDIC = -11.5). During the outbreak, RB declined slowly from 1.22[1.16-1.28] in the first four months after 1st May. RB dropped rapidly below to 1 during September and October, which was consistent to the observed epidemic peak time in the late September. One of the most important challenges for infectious disease control is to monitor disease transmissibility in real time with statistics such as the effective reproduction number. Once early estimates of antibody boosting and protection are obtained, disease dynamics can be reconstructed, which are valuable for infectious disease prevention and control.

Keywords: effective reproductive number, epidemic model, influenza epidemic dynamics, stratified immunity

Procedia PDF Downloads 229
72 Gastroprotective Effect of Copper Complex On Indomethacin-Induced Gastric Ulcer In Rats. Histological and Immunohistochemical Study

Authors: Heba M. Saad Eldien, Ola Abdel-Tawab Hussein, Ahmed Yassein Nassar

Abstract:

Background: Indomethacin is a non-steroidal anti inflammatory drug. Indomethacin induces an injury to gastrointestinal mucosa in experimental animals and humans and their use is associated with a significant risk of hemorrhage, erosions and perforation of both gastric and intestinal ulcers. The anti-inflammatory action of copper complexes is an important activity of their anti-ulcer effect achieved by their intermediary role as a transport form of copper that allow activation of the several copper-dependent enzymes. Therefore, several copper complexes were synthesized and investigated as promising alternative anti-ulcer therapy. Aim of the work: The purpose of this study was to evaluate a copper chelating complex consisting of egg albumin and copper as one of the copper peptides that can be used as anti-inflammatory agent and effective in ameliorates the hazards of the indomethacin on the histological structure of the fundus of the stomach that could be added to raise the efficacy of the currently used simple and cheap gastric anti-inflammatory drug mucogel. Material &methods: This study was carried out on 40 adult male albino rats,divided equally into 4 groups;Group I(control group) received distilled water,Group II(indomethacin treated group) received (25 mg/kg body weight, oral intubation) once, Group III (mucogel treated group)2 mL/rat once daily, oral incubation, Group IV(copper complex group) 1 mL /rat of 30 gm of copper albumin complex was mixed uniformly with mucogel to 100 mL. Treatment has been started six hour after Induction of Ulcers and continued till the 3rd day. The animals sacrificed and was processed for light, transmission electron microscopy(TEM) and immunostaining for inducible nitric oxide synthase(iNOS). Results: Fundic mucosa of group II, showed exfoliation of epithelial cells lining the gland, discontinuity of surface epithelial cells (ulcer formation), vacuolation and detachment of cells, eosinophilic infiltration and congestion of blood vessels in the lamina propria and submucosa. There was thickening and disarrangement of mucosa, weak positive reaction for PAS and marked increase in the collagen fibers lamina propria and the submucosa of the fundus. TEM revealed degeneration of cheif and parietal cells.Marked increase positive reactive of iNOS in all cells of the fundic gland. Group III showed reconstruction of gastric gland with cystic dilatation and vacuolation, moderate decrease of collagen fibers, reduced the intensity of iNOS while in Group IV healthy mucosa with normal surface lining epithelium and fundic glands, strong positive reaction for PAS, marked decrease of collagen fibers and positive reaction for iNOS. TEM revealed regeneration of cheif and parietal cells. Conclusion: Co treatment of copper-albumin complex seems to be useful for gastric ulcer treatment and ameliorates most of hazards of indomethacin.

Keywords: copper complex, gastric ulcer, indomethacin, rat

Procedia PDF Downloads 312
71 Antimicrobial Nanocompositions Made of Amino Acid Based Biodegradable Polymers

Authors: Nino Kupatadze, Mzevinar Bedinashvili, Tamar Memanishvili, Manana Gurielidze, David Tugushi, Ramaz Katsarava

Abstract:

Bacteria easily colonize the surfaces of tissues, surgical devices (implants, orthopedics, catheters, etc.), and instruments causing surgical device related infections. Therefore, the battle against bacteria and the prevention of surgical devices from biofilm formation is one of the main challenges of biomedicine today. Our strategy to the solution of this problem consists in using antimicrobial polymeric coatings as effective “shields” to protect surfaces from bacteria’s colonization and biofilm formation. As one of the most promising approaches look be the use of antimicrobial bioerodible polymeric nanocomposites containing silver nanoparticles (AgNPs). We assume that the combination of an erodible polymer with a strong bactericide should put obstacles to bacteria to occupy the surface and to form biofilm. It has to be noted that this kind of nanocomposites are also promising as wound dressing materials to treat infected superficial wounds. Various synthetic and natural polymers were used for creating biocomposites containing AgNPs as both particles' stabilizers and matrices forming elastic films at surfaces. One of the most effective systems to fabricate AgNPs is an ethanol solution of polyvinylpyrrolidone(PVP) with dissolved AgNO3–ethanol serves as a AgNO3 reductant and PVP as AgNPs stabilizer (through the interaction of nanoparticles with nitrogen atom of the amide group). Though PVP is biocompatible and film-forming polymer, it is not a good candidate to design either "biofilm shield" or wound dressing material because of a high solubility in water – though the solubility of PVP provides the desirable release of AgNPs from the matrix, but the coating is easily washable away from the surfaces. More promising as matrices look water insoluble but bioerodible polymers that can provide the release of AgNPs and form long-lasting coatings at the surfaces. For creating bioerodible water-insoluble antimicrobial coatings containing AgNPs, we selected amino acid based biodegradable polymers(AABBPs)–poly(ester amide)s, poly(ester urea)s, their copolymers containing amide and related groups capable to stabilize AgNPs. Among a huge variety of AABBPs reported we selected the polymers soluble in ethanol. For preparing AgNPs containing nanocompositions AABBPs and AgNO3 were dissolved in ethanol and subjected to photochemical reduction using daylight-irradiation. The formation of AgNPs was observed visually by coloring the solutions in brownish-red. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscopy(TEM), and dynamic light scattering(DLS). According to the UV and TEM data, the photochemical reduction resulted presumably in spherical AgNPs with rather high contribution of the particles below 10 nm that are known as responsible for the antimicrobial activity. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within 50 nm. The in vitro antimicrobial activity study of the new nanocomposite material is in progress now.

Keywords: nanocomposites, silver nanoparticles, polymer, biodegradable

Procedia PDF Downloads 375
70 Monitoring of Formaldehyde over Punjab Pakistan Using Car Max-Doas and Satellite Observation

Authors: Waqas Ahmed Khan, Faheem Khokhaar

Abstract:

Air pollution is one of the main perpetrators of climate change. GHGs cause melting of glaciers and cause change in temperature and heavy rain fall many gasses like Formaldehyde is not direct precursor that damage ozone like CO2 or Methane but Formaldehyde (HCHO) form glyoxal (CHOCHO) that has effect on ozone. Countries around the globe have unique air quality monitoring protocols to describe local air pollution. Formaldehyde is a colorless, flammable, strong-smelling chemical that is used in building materials and to produce many household products and medical preservatives. Formaldehyde also occurs naturally in the environment. It is produced in small amounts by most living organisms as part of normal metabolic processes. Pakistan lacks the monitoring facilities on larger scale to measure the atmospheric gasses on regular bases. Formaldehyde is formed from Glyoxal and effect mountain biodiversity and livelihood. So its monitoring is necessary in order to maintain and preserve biodiversity. Objective: Present study is aimed to measure atmospheric HCHO vertical column densities (VCDs) obtained from ground-base and compute HCHO data in Punjab and elevated areas (Rawalpindi & Islamabad) by satellite observation during the time period of 2014-2015. Methodology: In order to explore the spatial distributing of H2CO, various fields campaigns including international scientist by using car Max-Doas. Major focus was on the cities along national highways and industrial region of Punjab Pakistan. Level 2 data product of satellite instruments OMI retrieved by differential optical absorption spectroscopy (DOAS) technique are used. Spatio-temporal distribution of HCHO column densities over main cities and region of Pakistan has been discussed. Results: Results show the High HCHO column densities exceeding permissible limit over the main cities of Pakistan particularly the areas with rapid urbanization and enhanced economic growth. The VCDs value over elevated areas of Pakistan like Islamabad, Rawalpindi is around 1.0×1016 to 34.01×1016 Molecules’/cm2. While Punjab has values revolving around the figure 34.01×1016. Similarly areas with major industrial activity showed high amount of HCHO concentrations. Tropospheric glyoxal VCDs were found to be 4.75 × 1015 molecules/cm2. Conclusion: Results shows that monitoring site surrounded by Margalla hills (Islamabad) have higher concentrations of Formaldehyde. Wind data shows that industrial areas and areas having high economic growth have high values as they provide pathways for transmission of HCHO. Results obtained from this study would help EPA, WHO and air protection departments in order to monitor air quality and further preservation and restoration of mountain biodiversity.

Keywords: air quality, formaldehyde, Max-Doas, vertical column densities (VCDs), satellite instrument, climate change

Procedia PDF Downloads 190
69 Development and Evaluation of Surgical Sutures Coated with Antibiotic Loaded Gold Nanoparticles

Authors: Sunitha Sampathi, Pankaj Kumar Tiriya, Sonia Gera, Sravanthi Reddy Pailla, V. Likhitha, A. J. Maruthi

Abstract:

Surgical site infections (SSIs) are the most common nosocomial infections localized at the incision site. With an estimated 27 million surgical procedures each year in USA, approximately 2-5% rate of SSIs are predicted to occur annually. SSIs are treated with antibiotic medication. Current trend suggest that the direct drug delivery from the suture to the scared tissue can improve patient comfort and wound recovery. For that reason coating the surface of the medical device such as suture and catguts with broad spectrum antibiotics can prevent the formation of bactierial colonies with out comprimising the mechanical properties of the sutures.Hence, the present study was aimed to develop and evaluate a surgical suture coated with an antibiotic Ciprofloxacin hydrochloride loaded on gold nanoparticles. Gold nanoparticles were synthesized by chemical reduction method and conjugated with ciprofloxacin using Polyvinylpyrolidone as stabilizer and gold as carrier. Ciprofloxacin conjugated gold nanoparticles were coated over an absorbable surgical suture made of Polyglactan using sodium alginate as an immobilising agent by slurry dipping technique. The average particle size and Polydispersity Index of drug conjugated gold NPs were found to be 129±2.35 nm and 0.243±0.36 respectively. Gold nanoparticles are characterized by UV-Vis absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Scanning electron microscopy and Transmission electron microscopy. FT-IR revealed that there is no chemical interaction between drug and polymer. Antimicrobial activity for coated sutures was evaluated by disc diffusion method on culture plates of both gram negative (E-coli) and gram positive bacteria (Staphylococcus aureus) and results found to be satisfactory. In vivo studies for coated sutures was performed on Swiss albino mice and histological evaluation of intestinal wound healing parameters such as wound edges in mucosa, muscularis, presence of necrosis, exudates, granulation tissue, granulocytes, macrophages, restoration, and repair of mucosal epithelium and muscularis propria on day 7 after surgery were studied. The control animal group, sutured with plain suture (uncoated suture) showed signs of restoration and repair, but presence of necrosis, heamorraghic infiltration and granulation tissue was still noticed. Whereas the animal group treated with ciprofloxacin and ciprofloxacin gold nanoparticle coated sutures has shown promising decrease in terms of haemorraghic infiltration, granulation tissue, necrosis and better repaired muscularis layers on comparision with plain coated sutures indicating faster rate of repair and less chance of sepsis. Hence coating of sutures with broad spectrum antibiotics can be an alternate technique to reduce SSIs.

Keywords: ciprofloxacin hydrochloride, gold nanoparticles, surgical site infections, sutures

Procedia PDF Downloads 232
68 The Effect of Ionic Liquid Anion Type on the Properties of TiO2 Particles

Authors: Marta Paszkiewicz, Justyna Łuczak, Martyna Marchelek, Adriana Zaleska-Medynska

Abstract:

In recent years, photocatalytical processes have been intensively investigated for destruction of pollutants, hydrogen evolution, disinfection of water, air and surfaces, for the construction of self-cleaning materials (tiles, glass, fibres, etc.). Titanium dioxide (TiO2) is the most popular material used in heterogeneous photocatalysis due to its excellent properties, such as high stability, chemical inertness, non-toxicity and low cost. It is well known that morphology and microstructure of TiO2 significantly influence the photocatalytic activity. This characteristics as well as other physical and structural properties of photocatalysts, i.e., specific surface area or density of crystalline defects, could be controlled by preparation route. In this regard, TiO2 particles can be obtained by sol-gel, hydrothermal, sonochemical methods, chemical vapour deposition and alternatively, by ionothermal synthesis using ionic liquids (ILs). In the TiO2 particles synthesis ILs may play a role of a solvent, soft template, reagent, agent promoting reduction of the precursor or particles stabilizer during synthesis of inorganic materials. In this work, the effect of the ILs anion type on morphology and photoactivity of TiO2 is presented. The preparation of TiO2 microparticles with spherical structure was successfully achieved by solvothermal method, using tetra-tert-butyl orthotitatane (TBOT) as the precursor. The reaction process was assisted by an ionic liquids 1-butyl-3-methylimidazolium bromide [BMIM][Br], 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] and 1-butyl-3-methylimidazolium haxafluorophosphate [BMIM][PF6]. Various molar ratios of all ILs to TBOT (IL:TBOT) were chosen. For comparison, reference TiO2 was prepared using the same method without IL addition. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brenauer-Emmett-Teller surface area (BET), NCHS analysis, and FTIR spectroscopy were used to characterize the surface properties of the samples. The photocatalytic activity was investigated by means of phenol photodegradation in the aqueous phase as a model pollutant, as well as formation of hydroxyl radicals based on detection of fluorescent product of coumarine hydroxylation. The analysis results showed that the TiO2 microspheres had spherical structure with the diameters ranging from 1 to 6 µm. The TEM micrographs gave a bright observation of the samples in which the particles were comprised of inter-aggregated crystals. It could be also observed that the IL-assisted TiO2 microspheres are not hollow, which provides additional information about possible formation mechanism. Application of the ILs results in rise of the photocatalytic activity as well as BET surface area of TiO2 as compared to pure TiO2. The results of the formation of 7-hydroxycoumarin indicated that the increased amount of ·OH produced at the surface of excited TiO2 for samples TiO2_ILs well correlated with more efficient degradation of phenol. NCHS analysis showed that ionic liquids remained on the TiO2 surface confirming structure directing role of that compounds.

Keywords: heterogeneous photocatalysis, IL-assisted synthesis, ionic liquids, TiO2

Procedia PDF Downloads 245
67 Immobilization of Superoxide Dismutase Enzyme on Layered Double Hydroxide Nanoparticles

Authors: Istvan Szilagyi, Marko Pavlovic, Paul Rouster

Abstract:

Antioxidant enzymes are the most efficient defense systems against reactive oxygen species, which cause severe damage in living organisms and industrial products. However, their supplementation is problematic due to their high sensitivity to the environmental conditions. Immobilization on carrier nanoparticles is a promising research direction towards the improvement of their functional and colloidal stability. In that way, their applications in biomedical treatments and manufacturing processes in the food, textile and cosmetic industry can be extended. The main goal of the present research was to prepare and formulate antioxidant bionanocomposites composed of superoxide dismutase (SOD) enzyme, anionic clay (layered double hydroxide, LDH) nanoparticle and heparin (HEP) polyelectrolyte. To characterize the structure and the colloidal stability of the obtained compounds in suspension and solid state, electrophoresis, dynamic light scattering, transmission electron microscopy, spectrophotometry, thermogravimetry, X-ray diffraction, infrared and fluorescence spectroscopy were used as experimental techniques. LDH-SOD composite was synthesized by enzyme immobilization on the clay particles via electrostatic and hydrophobic interactions, which resulted in a strong adsorption of the SOD on the LDH surface, i.e., no enzyme leakage was observed once the material was suspended in aqueous solutions. However, the LDH-SOD showed only limited resistance against salt-induced aggregation and large irregularly shaped clusters formed during short term interval even at lower ionic strengths. Since sufficiently high colloidal stability is a key requirement in most of the applications mentioned above, the nanocomposite was coated with HEP polyelectrolyte to develop highly stable suspensions of primary LDH-SOD-HEP particles. HEP is a natural anticoagulant with one of the highest negative line charge density among the known macromolecules. The experimental results indicated that it strongly adsorbed on the oppositely charged LDH-SOD surface leading to charge inversion and to the formation of negatively charged LDH-SOD-HEP. The obtained hybrid materials formed stable suspension even under extreme conditions, where classical colloid chemistry theories predict rapid aggregation of the particles and unstable suspensions. Such a stabilization effect originated from electrostatic repulsion between the particles of the same sign of charge as well as from steric repulsion due to the osmotic pressure raised during the overlap of the polyelectrolyte chains adsorbed on the surface. In addition, the SOD enzyme kept its structural and functional integrity during the immobilization and coating processes and hence, the LDH-SOD-HEP bionanocomposite possessed excellent activity in decomposition of superoxide radical anions, as revealed in biochemical test reactions. In conclusion, due to the improved colloidal stability and the good efficiency in scavenging superoxide radical ions, the developed enzymatic system is a promising antioxidant candidate for biomedical or other manufacturing processes, wherever the aim is to decompose reactive oxygen species in suspensions.

Keywords: clay, enzyme, polyelectrolyte, formulation

Procedia PDF Downloads 241
66 Changes of Mitochondrial Potential in the Midgut Epithelium of Lithobius forficatus (Myriapoda, Chilopoda) Exposed to Cadmium Concentrated in Soil

Authors: Magdalena Rost-Roszkowska, Izabela Poprawa, Alina Chachulska-Zymelka, Lukasz Chajec, Grazyna Wilczek, Piotr Wilczek, Malgorzata Lesniewska

Abstract:

Lithobius forficatus, commonly known as the brown centipede, is a widespread European species, which lives in the upper layers of soil, under stones, litter, rocks, and leaves. As the soil organism, it is exposed to numerous stressors such as xenobiotics, including heavy metals, temperature, starvation, pathogens, etc. Heavy metals are treated as the environmental pollutants of the soil because of their toxic effects on plants, animals and human being. One of the heavy metals which is xenobiotic and can be taken up by plants or animals from the soil is cadmium. The digestive system of centipedes is composed of three distinct regions: fore-, mid- and hindgut. The salivary glands of centipedes are the organs which belong to the anterior region of the digestive system and take part in the synthesis, accumulation, and secretion of many substances. The middle region having contact with the food masses is treated as one of the barriers which protect the organism against any stressors which originate from the external environment, e.g., toxic metals. As the material for our studies, we chose two organs of the digestive system in brown centipede, the organs which take part in homeostasis maintenance: the salivary glands and the midgut. The main purpose of the project was to investigate the relationship between the percentage of depolarized mitochondria, mitophagy and ATP level in cells of mentioned above organs. The animals were divided into experimental groups: K – the control group, the animals cultured in a laboratory conditions in a horticultural soil and fed with Acheta domesticus larvae; Cd1 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2, fed with A. domesticus larvae maintained in tap water, 12 days – short-term exposure; Cd2 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2, fed with A. domesticus larvae maintained in tap water, 45 days – long-term exposure. The studies were conducted using transmission electron microscopy (TEM), flow cytometry and confocal microscopy. Quantitative analysis revealed that regardless of the organ, a progressive increase in the percentage of cells with depolarized mitochondria was registered, but only in the salivary glands. These were statistically significant changes from the control. In both organs, there were no differences in the level of the analyzed parameter depending on the duration of exposure of individuals to cadmium. Changes in the ultrastructure of mitochondria have been observed. With the extension of the body's exposure time to metal, an increase in the ADP/ATP index was recorded. However, changes statistically significant to the control were demonstrated in the intestine and salivary glands. The size of this intestinal index and salivary glands in the Cd2 group was about thirty and twenty times higher, respectively than in control. Acknowledgment: The study has been financed by the National Science Centre, Poland, grant no 2017/25/B/NZ4/00420.

Keywords: cadmium, digestive system, ultrastructure, centipede

Procedia PDF Downloads 110
65 Ordered Mesoporous Carbons of Different Morphology for Loading and Controlled Release of Active Pharmaceutical Ingredients

Authors: Aleksander Ejsmont, Aleksandra Galarda, Joanna Goscianska

Abstract:

Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, chemical, and thermal stability, mesoporous carbons can be considered as modern carriers for active pharmaceutical ingredients (APIs) whose effectiveness needs frequent dosing algorithms. Such an API-carrier system, if programmed precisely, may stabilize the pharmaceutical and increase its dissolution leading to enhanced bioavailability. The substance conjugated with the material, through its prior adsorption, can later be successfully applied internally to the organism, as well as externally if the API release is feasible under these conditions. In the present study, ordered mesoporous carbons of different morphologies and structures, prepared by hard template method, were applied as carriers in the adsorption and controlled release of active pharmaceutical ingredients. In the first stage, the carbon materials were synthesized and functionalized with carboxylic groups by chemical oxidation using ammonium persulfate solution and then with amine groups. Materials obtained were thoroughly characterized with respect to morphology (scanning electron microscopy), structure (X-ray diffraction, transmission electron microscopy), characteristic functional groups (FT-IR spectroscopy), acid-base nature of surface groups (Boehm titration), parameters of the porous structure (low-temperature nitrogen adsorption) and thermal stability (TG analysis). This was followed by a series of tests of adsorption and release of paracetamol, benzocaine, and losartan potassium. Drug release experiments were performed in the simulated gastric fluid of pH 1.2 and phosphate buffer of pH 7.2 or 6.8 at 37.0 °C. The XRD patterns in the small-angle range and TEM images revealed that functionalization of mesoporous carbons with carboxylic or amine groups leads to the decreased ordering of their structure. Moreover, the modification caused a considerable reduction of the carbon-specific surface area and pore volume, but it simultaneously resulted in changing their acid-base properties. Mesoporous carbon materials exhibit different morphologies, which affect the host-guest interactions during the adsorption process of active pharmaceutical ingredients. All mesoporous carbons show high adsorption capacity towards drugs. The sorption capacity of materials is mainly affected by BET surface area and the structure/size matching between adsorbent and adsorbate. Selected APIs are linked to the surface of carbon materials mainly by hydrogen bonds, van der Waals forces, and electrostatic interactions. The release behavior of API is highly dependent on the physicochemical properties of mesoporous carbons. The release rate of APIs could be regulated by the introduction of functional groups and by changing the pH of the receptor medium. Acknowledgments—This research was supported by the National Science Centre, Poland (project SONATA-12 no: 2016/23/D/NZ7/01347).

Keywords: ordered mesoporous carbons, sorption capacity, drug delivery, carbon nanocarriers

Procedia PDF Downloads 151
64 Sharing and Developing Cultural Heritage Values through a Co-Creative Approach

Authors: Anna Marie Fisker, Daniele Sepe, Mette Bøgh Jensen, Daniela Rimei

Abstract:

In the space of just a few years, the European policy framework on cultural heritage has been completely overhauled, moving towards a people-centred and holistic approach, and eliminating the divisions between the tangible, intangible and digital dimensions. The European Union regards cultural heritage as a potential shared resource, highlighting that all stakeholders share responsibility for its transmission to future generations. This new framework will potentially change the way in which cultural institutions manage, protect and provide access to their heritage. It will change the way in which citizens and communities engage with their cultural heritage and naturally influence the way that professionals deal with it. Participating in the creation of cultural heritage awareness can lead to an increased perception of its value, be it economic, social, environmental or cultural. It can also strengthen our personal identity, sense of belonging and community citizenship. Open Atelier, a Creative Europe project, is based on this foundation, with the goal through co-creation to develop the use, understanding and engagement with our cultural heritage. The project aim to transform selected parts of the heritage into an “experience lab” – an interactive, co-creative, dynamic and participatory space, where cultural heritage is the point of departure for new interactions and experiences between the audience and the museum and its professionals. Through a workshop-based approach built on interdisciplinary collaboration and co-creative processes, Open Atelier has started to design, develop, test, and evaluate a set of Experiences. The first collaborative initiative was set out in the discourse and knowledge of a highly creative period in Denmark where a specific group of Scandinavian artists, the Skagen Painters, gathered in the village of Skagen, the northernmost part of Denmark from the late 1870s until the turn of the century. The Art Museums of Skagen have a large collection of photos from the period, that has never been the subject of more thorough research. The photos display a variation of many different subjects: community, family photos, reproductions of art works, costume parties, family gatherings etc., and carry with them the energies of those peoples’ work and life and evoke instances of communication with the past. This paper is about how we in Open Atelier connect these special stories, this legacy, with another place, in another time, in another context and with another audience. The first Open Atelier Experience – the performance “Around the Lighthouse” – was an initiative resulted from the collaboration between AMAT, an Italian creative organisation, and the Art Museums of Skagen. A group of Italian artists developed a co-creative investigation and reinterpretation of a selection of these historical photos. A poetic journey through videos and voices, aimed at exploring new perspectives on the museum and its heritage. An experiment on how to create new ways to actively engage audiences in the way cultural heritage is explored, interpreted, mediated, presented, and used to examine contemporary issues. This article is about this experiment and its findings, and how different views and methodologies can be adopted to discuss the cultural heritage in museums around Europe and their connection to the community.

Keywords: cultural heritage, community, innovation, museums

Procedia PDF Downloads 50
63 Development of a Bead Based Fully Automated Mutiplex Tool to Simultaneously Diagnose FIV, FeLV and FIP/FCoV

Authors: Andreas Latz, Daniela Heinz, Fatima Hashemi, Melek Baygül

Abstract:

Introduction: Feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and feline coronavirus (FCoV) are serious infectious diseases affecting cats worldwide. Transmission of these viruses occurs primarily through close contact with infected cats (via saliva, nasal secretions, faeces, etc.). FeLV, FIV, and FCoV infections can occur in combination and are expressed in similar clinical symptoms. Diagnosis can therefore be challenging: Symptoms are variable and often non-specific. Sick cats show very similar clinical symptoms: apathy, anorexia, fever, immunodeficiency syndrome, anemia, etc. Sample volume for small companion animals for diagnostic purposes can be challenging to collect. In addition, multiplex diagnosis of diseases can contribute to an easier, cheaper, and faster workflow in the lab as well as to the better differential diagnosis of diseases. For this reason, we wanted to develop a new diagnostic tool that utilizes less sample volume, reagents, and consumables than multiplesingleplex ELISA assays Methods: The Multiplier from Dynextechonogies (USA) has been used as platform to develop a Multiplex diagnostic tool for the detection of antibodies against FIV and FCoV/FIP and antigens for FeLV. Multiplex diagnostics. The Dynex®Multiplier®is a fully automated chemiluminescence immunoassay analyzer that significantly simplifies laboratory workflow. The Multiplier®ease-of-use reduces pre-analytical steps by combining the power of efficiently multiplexing multiple assays with the simplicity of automated microplate processing. Plastic beads have been coated with antigens for FIV and FCoV/FIP, as well as antibodies for FeLV. Feline blood samples are incubated with the beads. Read out of results is performed via chemiluminescence Results: Bead coating was optimized for each individual antigen or capture antibody and then combined in the multiplex diagnostic tool. HRP: Antibody conjugates for FIV and FCoV antibodies, as well as detection antibodies for FeLV antigen, have been adjusted and mixed. 3 individual prototyple batches of the assay have been produced. We analyzed for each disease 50 well defined positive and negative samples. Results show an excellent diagnostic performance of the simultaneous detection of antibodies or antigens against these feline diseases in a fully automated system. A 100% concordance with singleplex methods like ELISA or IFA can be observed. Intra- and Inter-Assays showed a high precision of the test with CV values below 10% for each individual bead. Accelerated stability testing indicate a shelf life of at least 1 year. Conclusion: The new tool can be used for multiplex diagnostics of the most important feline infectious diseases. Only a very small sample volume is required. Fully automation results in a very convenient and fast method for diagnosing animal diseases.With its large specimen capacity to process over 576 samples per 8-hours shift and provide up to 3,456 results, very high laboratory productivity and reagent savings can be achieved.

Keywords: Multiplex, FIV, FeLV, FCoV, FIP

Procedia PDF Downloads 75
62 Intervention To Prevent Infections And Reinfections With Intestinal Parasites In People Living With Human Immunodeficiency Virus In Some Parts Of Eastern Cape, South Africa

Authors: Ifeoma Anozie, Teka Apalata, Dominic Abaver

Abstract:

Introduction: Despite use of Anti-retroviral therapy to reduce the incidence of opportunistic infections among HIV/AIDS patients, rapid episodes of re-infection after deworming are still common occurrences because pharmaceutical intervention alone does not prevent reinfection. Unsafe water and inadequate personal hygiene and parasitic infections are widely expected to accelerate the progression of HIV infection. This is because the chronic immunosuppression of HIV infection encourages susceptibility to opportunistic (including parasitic) infections which is linked to CD4+ cell count of <200 cells/μl. Intestinal parasites such as G. intestinalis and Entamoeba spp are ubiquitous protozoa that remain infectious over a long time in an environment and show resistance to standard disinfection. To control re-infection, the social factors that underpin the prevention need to be controlled. This study aims at prevention of intestinal parasites in people living with HIV/AIDS by using a treatment, hygiene education and sanitation (THEdS) bundle approach. Methods: This study was conducted in four clinics (Ngangelizwe health centre, Tsolo gateway clinic, Idutywa health centre and Nqamakwe health centre) across the seven districts in Eastern cape, South Africa. The four clinics were divided in two: experimental and control, for the purpose of intervention. Data was collected from March 2019 to February 2020. Six hundred participants were screened for intestinal parasitic infections. Stool samples were collected and analysed twice: before (Pre-test infection screening) and after (Post-test re-infection) THEdS bundle intervention. The experimental clinics received full intervention package, which include therapeutic treatment, health education on personal hygiene and sanitation training, while the control clinics received only therapeutic treatment for those found with intestinal parasitic infections. Results: Baseline prevalence of Intestinal Parasites isolated shows 12 intestinal parasites with overall frequency of 65, with Ascaris lumbricoides having most frequency (44.6%). The intervention had a cure rate of 60%, with odd ratio of 1.42, which indicates that the intervention group is 1.42 times more likely of parasite clearing as compared to the control group. The relative risk ratio of 1.17 signifies that there is 1.17 times more likelihood to clear intestinal parasite if there no intervention. Discussion and conclusion: Infection with multiple parasites can cause health defects, especially among HIV/AIDS patients. Efficiency of some HIV vaccines in HIV/AIDS patients is affected because treatment of re-infection amplifies drug resistance, affects the efficacy of the front-line drugs, and still permits transmission. In South Africa, treatment of intestinal parasites is usually offered to clinic attending HIV/AIDS patients upon suspicion but not as a mandate for patients being initiated into Antiretroviral (ART) program. The effectiveness of THEdS bundle advocates for inclusiveness of mandatory screening for intestinal parasitic infections among attendees of HIV/Aids clinics on regular basis.

Keywords: cure rate, , HIV/AIDS patients, intestinal parasites, intervention studies, reinfection rate

Procedia PDF Downloads 46
61 A Case Study of Wildlife Crime in Bangladesh

Authors: M. Golam Rabbi

Abstract:

Theme of wildlife crime is unique in Bangladesh. In earlier of 2010, wildlife crime was not designated as a crime, unlike other offenses. Forest Department and other enforcement agencies were not in full swing to find out the organized crime scene at that time and recorded few cases along with forest crime. However, after the establishment of Wildlife Crime Control Unitin 2012a, total of 374 offenses have been detected with 566 offenders and 37,039 wildlife and trophies were seized till November 2016. Most offenses seem to be committed outside the forests where the presence of the forest staff is minimal. Total detection percentage of offenses is not known, but offenders are not identified in 60% of detected cases (UDOR). Only 20% cases are decided by the courts even after eight years, conviction rate of the total disposal is 70.65%. Mostly six months imprisonment and BDT 5000 fine seems to be the modal penalty. The monetary value of wildlife crime in the country is approximate $0.72M per year and the maximum value counted for reptiles around $0.45M especially for high-level trafficking of geckos and turtles. The most common seizures of wildlife are birds (mynas, munias, parakeets, lorikeets, water birds, etc.) which have domestic demand for pet. Some other wildlife like turtles, lizards and small mammals are also on the list. Venison and migratory waterbirds often seized which has a large quantity demand for consuming at aristocratic level.Due to porous border and weak enforcement in border region poachers use the way for trafficking of geckos, turtles, and tortoises, snakes, venom, tiger and body parts, spotted deerskin, pangolinetc. Those have very high demand in East Asian countries for so-called medicinal purposes. The recent survey also demonstrates new route for illegal trade and trafficking for instance, after poaching of tiger and deer from the Sundarbans, the largest mangrove track of the planet to Thailand through the Bay of Bengal, sharks fins and ray fish through Chittagong seaport and directly by sea routes to Myanmar and Thailand. However, a good number of records of offense demonstrate the transition route from India to South and South East Asian countries. Star tortoises and Hamilton’s turtles are smuggled in from India which mostly seized at Benapole border of Jessore and Hazrat Shah Jajal International Airport of Dhaka, in very large numbers for transmission to East Asian countries. Most of the cases of wildlife trade routes leading to China, Thailand, Malaysia, and Myanmar. Most surprisingly African ivory was seized in Bangladesh recently, which was meant to be trafficked to the South-East Asia. However; forest department is working to fight against wildlife poaching, illegal trade and trafficking in collaboration with other law enforcement agencies. The department needs a clear mandate and to build technical capabilities for identifying, seizing and holding specimens. The department also needs to step out of the forests and must develop the capacity to surveillance and patrol all sensitive locations across the country.

Keywords: Bangladesh forest department, Sundarban, tiger, wildlife crime, wildlife trafficking

Procedia PDF Downloads 272
60 Harnessing Nature's Fury: Hyptis Suaveolens Loaded Bioactive Liposome for Photothermal Therapy of Lung Cancer

Authors: Sajmina Khatun, Monika Pebam, Aravind Kumar Rengan

Abstract:

Photothermal therapy, a subset of nanomedicine, takes advantage of light-absorbing agents to generate localized heat, selectively eradicating cancer cells. This innovative approach minimizes damage to healthy tissues and offers a promising avenue for targeted cancer treatment. Unlike conventional therapies, photothermal therapy harnesses the power of light to combat malignancies precisely and effectively, showcasing its potential to revolutionize cancer treatment paradigms. The combined strengths of nanomedicine and photothermal therapy signify a transformative shift toward more effective, targeted, and tolerable cancer treatments in the medical landscape. Utilizing natural products becomes instrumental in formulating diverse bioactive medications owing to their various pharmacological properties attributed to the existence of phenolic structures, triterpenoids, and similar compounds. Hyptis suaveolens, commonly known as pignut, stands as an aromatic herb within the Lamiaceae family and represents a valuable therapeutic plant. Flourishing in swamps and alongside tropical and subtropical roadsides, these noxious weeds impede the development of adjacent plants. Hyptis suaveolens ranks among the most globally distributed alien invasive species. The present investigation revealed that a versatile, biodegradable liposome nanosystem (HIL NPs), incorporating bioactive molecules from Hyptis suaveolens, exhibits effective bioavailability to cancer cells, enabling tumor ablation upon near-infrared (NIR) laser exposure. The components within the nanosystem, specifically the bioactive molecules from Hyptis, function as anticancer agents, aiding in the photothermal ablation of highly metastatic lung cancer cells. Despite being a prolific weed impeding neighboring plant growth, Hyptis suaveolens showcases therapeutic benefits through its bioactive compounds. The obtained HIL NPs, characterized as a photothermally active liposome nanosystem, demonstrate a pronounced fluorescence absorption peak in the NIR range and achieve a high photothermal conversion efficiency under NIR laser irradiation. Transmission electron microscopy (TEM) and particle size analysis reveal that HIL NPs possess a spherical shape with a size of 141 ± 30 nm. Moreover, in vitro assessments of HIL NPs against lung cancer cell lines (A549) indicate effective anticancer activity through a combined cytotoxic effect and hyperthermia. Tumor ablation is facilitated by apoptosis induced by the overexpression of ɣ-H2AX, arresting cancer cell proliferation. Consequently, the multifunctional and biodegradable nanosystem (HIL NPs), incorporating bioactive compounds from Hyptis, provides valuable perspectives for developing an innovative therapeutic strategy originating from a challenging weed. This approach holds promise for potential applications in both bioimaging and the combined use of phyto-photothermal therapy for cancer treatment.

Keywords: bioactive liposome, hyptis suaveolens, photothermal therapy, lung cancer

Procedia PDF Downloads 56
59 Presence, Distribution and Form of Calcium Oxalate Crystals in Relation to Age of Actinidia Deliciosa Leaves and Petioles

Authors: Muccifora S., Rinallo C., Bellani L.

Abstract:

Calcium (Ca²+) is an element essential to the plant being involved in plant growth and development. At high concentrations, it is toxic and can influence every stage, process and cellular activity of plant life. Given its toxicity, cells implement mechanisms to compartmentalize calcium in a vacuole, endoplasmic reticulum, mitochondria, plastids and cell wall. One of the most effective mechanisms to reduce the excess of calcium, thus avoiding cellular damage, is its complexation with oxalic acid to form calcium oxalate crystals that are no longer osmotically or physiologically active. However, the sequestered calcium can be mobilized when the plant needs it. Calcium crystals can be accumulated in the vacuole of specialized sink-cells called idioblasts, with different crystalline forms (druse, raphyde and styloid) of diverse physiological meanings. Actinidia deliciosa cv. Hayward presents raphydes and styloid localized in idioblasts in cells of photosynthetic and non-photosynthetic tissues. The purpose of this work was to understand if there is a relationship between the age of Actinidia leaves and the presence, distribution, dimension and shape of oxalate crystals by means of light, fluorescent, polarized and transmission electron microscopy. Three vines from female plants were chosen at the beginning of the season and used throughout the study. The leaves with petioles were collected at various stages of development from the bottom to the shoot of the plants monthly from April to July. The samples were taken in corresponding areas of the central and lateral parts of the leaves and of the basal portion of the petiole. The results showed that in the leaves, the number of raphyde idioblasts decreased with the progress of the growing season, while the styloid idioblasts increased progressively, becoming very numerous in the upper nodes of July. In June and in July samples, in the vacuoles of the highest nodes, a portion regular in shape strongly stained with rubeanic acid was present. Moreover, the chlortetracycline (CTC) staining for localization of free calcium marked the wall of the idioblasts and the wall of the cells near vascular bundles. In April petiole samples, moving towards the youngest nodes, the raphydes idioblast decreased in number and in the length of the single raphydes. Besides, crystals stained with rubeanic acid appeared in the vacuoles of some cells. In June samples, numerous raphyde idioblasts oriented parallel to vascular bundles were evident. Under the electron microscope, numerous idioblasts presented not homogeneous electrondense aggregates of material, in which a few crystals (styloids) in the form of regular holes were scattered. In July samples, an increase in the number of styloid idioblasts in the youngest nodes and little masses stained with CTC near styloids were observed. Peculiar cells stained with rubeanic acid were detected and hypothesized to be involved in the formation of the idioblasts. In conclusion, in Actinidia leaves and petioles, it seems to confirm the hypothesis that the formation of styloid idioblasts can be correlated to increasing calcium levels in growing tissues.

Keywords: calcium oxalate crystals, actinidia deliciosa, light and electron microscopy, idioblasts

Procedia PDF Downloads 56