Search results for: scale invariant feature
7515 Change Detection Method Based on Scale-Invariant Feature Transformation Keypoints and Segmentation for Synthetic Aperture Radar Image
Authors: Lan Du, Yan Wang, Hui Dai
Abstract:
Synthetic aperture radar (SAR) image change detection has recently become a challenging problem owing to the existence of speckle noises. In this paper, an unsupervised distribution-free change detection for SAR image based on scale-invariant feature transform (SIFT) keypoints and segmentation is proposed. Firstly, the noise-robust SIFT keypoints which reveal the blob-like structures in an image are extracted in the log-ratio image to reduce the detection range. Then, different from the traditional change detection which directly obtains the change-detection map from the difference image, segmentation is made around the extracted keypoints in the two original multitemporal SAR images to obtain accurate changed region. At last, the change-detection map is generated by comparing the two segmentations. Experimental results on the real SAR image dataset demonstrate the effectiveness of the proposed method.Keywords: change detection, Synthetic Aperture Radar (SAR), Scale-Invariant Feature Transformation (SIFT), segmentation
Procedia PDF Downloads 3857514 Face Sketch Recognition in Forensic Application Using Scale Invariant Feature Transform and Multiscale Local Binary Patterns Fusion
Authors: Gargi Phadke, Mugdha Joshi, Shamal Salunkhe
Abstract:
Facial sketches are used as a crucial clue by criminal investigators for identification of suspects when the description of eyewitness or victims are only available as evidence. A forensic artist develops a sketch as per the verbal description is given by an eyewitness that shows the facial look of the culprit. In this paper, the fusion of Scale Invariant Feature Transform (SIFT) and multiscale local binary patterns (MLBP) are proposed as a feature to recognize a forensic face sketch images from a gallery of mugshot photos. This work focuses on comparative analysis of proposed scheme with existing algorithms in different challenges like illumination change and rotation condition. Experimental results show that proposed scheme can lead to better performance for the defined problem.Keywords: SIFT feature, MLBP, PCA, face sketch
Procedia PDF Downloads 3357513 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm
Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim
Abstract:
All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features
Procedia PDF Downloads 2347512 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features
Authors: Rabab M. Ramadan, Elaraby A. Elgallad
Abstract:
With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.Keywords: iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, the Scale Invariant Feature Transform (SIFT)
Procedia PDF Downloads 2347511 Using Scale Invariant Feature Transform Features to Recognize Characters in Natural Scene Images
Authors: Belaynesh Chekol, Numan Çelebi
Abstract:
The main purpose of this work is to recognize individual characters extracted from natural scene images using scale invariant feature transform (SIFT) features as an input to K-nearest neighbor (KNN); a classification learner algorithm. For this task, 1,068 and 78 images of English alphabet characters taken from Chars74k data set is used to train and test the classifier respectively. For each character image, We have generated describing features by using SIFT algorithm. This set of features is fed to the learner so that it can recognize and label new images of English characters. Two types of KNN (fine KNN and weighted KNN) were trained and the resulted classification accuracy is 56.9% and 56.5% respectively. The training time taken was the same for both fine and weighted KNN.Keywords: character recognition, KNN, natural scene image, SIFT
Procedia PDF Downloads 2817510 Pyramid Binary Pattern for Age Invariant Face Verification
Authors: Saroj Bijarnia, Preety Singh
Abstract:
We propose a simple and effective biometrics system based on face verification across aging using a new variant of texture feature, Pyramid Binary Pattern. This employs Local Binary Pattern along with its hierarchical information. Dimension reduction of generated texture feature vector is done using Principal Component Analysis. Support Vector Machine is used for classification. Our proposed method achieves an accuracy of 92:24% and can be used in an automated age-invariant face verification system.Keywords: biometrics, age invariant, verification, support vector machine
Procedia PDF Downloads 3497509 A Robust Digital Image Watermarking Against Geometrical Attack Based on Hybrid Scheme
Authors: M. Samadzadeh Mahabadi, J. Shanbehzadeh
Abstract:
This paper presents a hybrid digital image-watermarking scheme, which is robust against varieties of attacks and geometric distortions. The image content is represented by important feature points obtained by an image-texture-based adaptive Harris corner detector. These feature points are extracted from LL2 of 2-D discrete wavelet transform which are obtained by using the Harris-Laplacian detector. We calculate the Fourier transform of circular regions around these points. The amplitude of this transform is rotation invariant. The experimental results demonstrate the robustness of the proposed method against the geometric distortions and various common image processing operations such as JPEG compression, colour reduction, Gaussian filtering, median filtering, and rotation.Keywords: digital watermarking, geometric distortions, geometrical attack, Harris Laplace, important feature points, rotation, scale invariant feature
Procedia PDF Downloads 5007508 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information
Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung
Abstract:
The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.Keywords: color moments, visual thing recognition system, SIFT, color SIFT
Procedia PDF Downloads 4667507 SIFT and Perceptual Zoning Applied to CBIR Systems
Authors: Simone B. K. Aires, Cinthia O. de A. Freitas, Luiz E. S. Oliveira
Abstract:
This paper contributes to the CBIR systems applied to trademark retrieval. The proposed model includes aspects from visual perception of the shapes, by means of feature extractor associated to a non-symmetrical perceptual zoning mechanism based on the Principles of Gestalt. Thus, the feature set were performed using Scale Invariant Feature Transform (SIFT). We carried out experiments using four different zonings strategies (Z = 4, 5H, 5V, 7) for matching and retrieval tasks. Our proposal method achieved the normalized recall (Rn) equal to 0.84. Experiments show that the non-symmetrical zoning could be considered as a tool to build more reliable trademark retrieval systems.Keywords: CBIR, Gestalt, matching, non-symmetrical zoning, SIFT
Procedia PDF Downloads 3127506 Detailed Observations on Numerically Invariant Signatures
Authors: Reza Aghayan
Abstract:
Numerically invariant signatures were introduced as a new paradigm of the invariant recognition for visual objects modulo a certain group of transformations. This paper shows that the current formulation suffers from noise and indeterminacy in the resulting joint group-signatures and applies the n-difference technique and the m-mean signature method to minimize their effects. In our experimental results of applying the proposed numerical scheme to generate joint group-invariant signatures, the sensitivity of some parameters such as regularity and mesh resolution used in the algorithm will also be examined. Finally, several interesting observations are made.Keywords: Euclidean and affine geometry, differential invariant G-signature curves, numerically invariant joint G-signatures, object recognition, noise, indeterminacy
Procedia PDF Downloads 3977505 New Ways of Vocabulary Enlargement
Authors: S. Pesina, T. Solonchak
Abstract:
Lexical invariants, being a sort of stereotypes within the frames of ordinary consciousness, are created by the members of a language community as a result of uniform division of reality. The invariant meaning is formed in person’s mind gradually in the course of different actualizations of secondary meanings in various contexts. We understand lexical the invariant as abstract language essence containing a set of semantic components. In one of its configurations it is the basis or all or a number of the meanings making up the semantic structure of the word.Keywords: lexical invariant, invariant theories, polysemantic word, cognitive linguistics
Procedia PDF Downloads 3227504 Frobenius Manifolds Pairing and Invariant Theory
Authors: Zainab Al-Maamari, Yassir Dinar
Abstract:
The orbit space of an irreducible representation of a finite group is a variety with the ring of invariant polynomials as a coordinate ring. The invariant ring is a polynomial ring if and only if the representation is a reflection representation. Boris Dubrovin shows that the orbits spaces of irreducible real reflection representations acquire the structure of polynomial Frobenius manifolds. Dubrovin's method was also used to construct different examples of Frobenius manifolds on certain reflection representations. By successfully applying Dubrovin’s method on non-polynomial invariant rings of linear representations of dicyclic groups, it gives some results that magnify the relation between invariant theory and Frobenius manifolds.Keywords: invariant ring, Frobenius manifold, inversion, representation theory
Procedia PDF Downloads 987503 Biases in Numerically Invariant Joint Signatures
Authors: Reza Aghayan
Abstract:
This paper illustrates that numerically invariant joint signatures suffer biases in the resulting signatures. Next, we classify the arising biases as Bias Type 1 and Bias Type 2 and show how they can be removed.Keywords: Euclidean and affine geometries, differential invariant signature curves, numerically invariant joint signatures, numerical analysis, numerical bias, curve analysis
Procedia PDF Downloads 5957502 Classifications of Images for the Recognition of People’s Behaviors by SIFT and SVM
Authors: Henni Sid Ahmed, Belbachir Mohamed Faouzi, Jean Caelen
Abstract:
Behavior recognition has been studied for realizing drivers assisting system and automated navigation and is an important studied field in the intelligent Building. In this paper, a recognition method of behavior recognition separated from a real image was studied. Images were divided into several categories according to the actual weather, distance and angle of view etc. SIFT was firstly used to detect key points and describe them because the SIFT (Scale Invariant Feature Transform) features were invariant to image scale and rotation and were robust to changes in the viewpoint and illumination. My goal is to develop a robust and reliable system which is composed of two fixed cameras in every room of intelligent building which are connected to a computer for acquisition of video sequences, with a program using these video sequences as inputs, we use SIFT represented different images of video sequences, and SVM (support vector machine) Lights as a programming tool for classification of images in order to classify people’s behaviors in the intelligent building in order to give maximum comfort with optimized energy consumption.Keywords: video analysis, people behavior, intelligent building, classification
Procedia PDF Downloads 3777501 A Local Invariant Generalized Hough Transform Method for Integrated Circuit Visual Positioning
Authors: Wei Feilong
Abstract:
In this study, an local invariant generalized Houghtransform (LI-GHT) method is proposed for integrated circuit (IC) visual positioning. The original generalized Hough transform (GHT) is robust to external noise; however, it is not suitable for visual positioning of IC chips due to the four-dimensionality (4D) of parameter space which leads to the substantial storage requirement and high computational complexity. The proposed LI-GHT method can reduce the dimensionality of parameter space to 2D thanks to the rotational invariance of local invariant geometric feature and it can estimate the accuracy position and rotation angle of IC chips in real-time under noise and blur influence. The experiment results show that the proposed LI-GHT can estimate position and rotation angle of IC chips with high accuracy and fast speed. The proposed LI-GHT algorithm was implemented in IC visual positioning system of radio frequency identification (RFID) packaging equipment.Keywords: Integrated Circuit Visual Positioning, Generalized Hough Transform, Local invariant Generalized Hough Transform, ICpacking equipment
Procedia PDF Downloads 2637500 The Effect of Feature Selection on Pattern Classification
Authors: Chih-Fong Tsai, Ya-Han Hu
Abstract:
The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.Keywords: data mining, feature selection, pattern classification, dimensionality reduction
Procedia PDF Downloads 6687499 Recognition of Grocery Products in Images Captured by Cellular Phones
Authors: Farshideh Einsele, Hassan Foroosh
Abstract:
In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using wellknown geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.Keywords: camera-based OCR, feature extraction, document, image processing, grocery products
Procedia PDF Downloads 4057498 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism
Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li
Abstract:
Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.Keywords: keypoint detection, feature fusion, attention, semantic segmentation
Procedia PDF Downloads 1177497 Words Spotting in the Images Handwritten Historical Documents
Authors: Issam Ben Jami
Abstract:
Information retrieval in digital libraries is very important because most famous historical documents occupy a significant value. The word spotting in historical documents is a very difficult notion, because automatic recognition of such documents is naturally cursive, it represents a wide variability in the level scale and translation words in the same documents. We first present a system for the automatic recognition, based on the extraction of interest points words from the image model. The extraction phase of the key points is chosen from the representation of the image as a synthetic description of the shape recognition in a multidimensional space. As a result, we use advanced methods that can find and describe interesting points invariant to scale, rotation and lighting which are linked to local configurations of pixels. We test this approach on documents of the 15th century. Our experiments give important results.Keywords: feature matching, historical documents, pattern recognition, word spotting
Procedia PDF Downloads 2747496 Non−zero θ_13 and δ_CP phase with A_4 Flavor Symmetry and Deviations to Tri−Bi−Maximal mixing via Z_2 × Z_2 invariant perturbations in the Neutrino sector.
Authors: Gayatri Ghosh
Abstract:
In this work, a flavour theory of a neutrino mass model based on A_4 symmetry is considered to explain the phenomenology of neutrino mixing. The spontaneous symmetry breaking of A_4 symmetry in this model leads to tribimaximal mixing in the neutrino sector at a leading order. We consider the effect of Z_2 × Z_2 invariant perturbations in neutrino sector and find the allowed region of correction terms in the perturbation matrix that is consistent with 3σ ranges of the experimental values of the mixing angles. We study the entanglement of this formalism on the other phenomenological observables, such as δ_CP phase, the neutrino oscillation probability P(νµ → νe), the effective Majorana mass |mee| and |meff νe |. A Z_2 × Z_2 invariant perturbations in this model is introduced in the neutrino sector which leads to testable predictions of θ_13 and CP violation. By changing the magnitudes of perturbations in neutrino sector, one can generate viable values of δ_CP and neutrino oscillation parameters. Next we investigate the feasibility of charged lepton flavour violation in type-I seesaw models with leptonic flavour symmetries at high energy that leads to tribimaximal neutrino mixing. We consider an effective theory with an A_4 × Z_2 × Z_2 symmetry, which after spontaneous symmetry breaking at high scale which is much higher than the electroweak scale leads to charged lepton flavour violation processes once the heavy Majorana neutrino mass degeneracy is lifted either by renormalization group effects or by a soft breaking of the A_4 symmetry. In this context the implications for charged lepton flavour violation processes like µ → eγ, τ → eγ, τ → µγ are discussed.Keywords: Z2 × Z2 invariant perturbations, CLFV, delta CP phase, tribimaximal neutrino mixing
Procedia PDF Downloads 797495 Airy Wave Packet for a Particle in a Time-Dependant Linear Potential
Authors: M. Berrehail, F. Benamira
Abstract:
We study the quantum motion of a particle in the presence of a time- dependent linear potential using an operator invariant that is quadratic in p and linear in q within the framework of the Lewis-Riesenfeld invariant, The special invariant operator proposed in this work is demonstrated to be an Hermitian operator which has an Airy wave packet as its EigenfunctionKeywords: airy wave packet, ivariant, time-dependent linear potential, unitary transformation
Procedia PDF Downloads 4917494 OILU Tag: A Projective Invariant Fiducial System
Authors: Youssef Chahir, Messaoud Mostefai, Salah Khodja
Abstract:
This paper presents the development of a 2D visual marker, derived from a recent patented work in the field of numbering systems. The proposed fiducial uses a group of projective invariant straight-line patterns, easily detectable and remotely recognizable. Based on an efficient data coding scheme, the developed marker enables producing a large panel of unique real time identifiers with highly distinguishable patterns. The proposed marker Incorporates simultaneously decimal and binary information, making it readable by both humans and machines. This important feature opens up new opportunities for the development of efficient visual human-machine communication and monitoring protocols. Extensive experiment tests validate the robustness of the marker against acquisition and geometric distortions.Keywords: visual markers, projective invariants, distance map, level sets
Procedia PDF Downloads 1627493 An Improved Tracking Approach Using Particle Filter and Background Subtraction
Authors: Amir Mukhtar, Dr. Likun Xia
Abstract:
An improved, robust and efficient visual target tracking algorithm using particle filtering is proposed. Particle filtering has been proven very successful in estimating non-Gaussian and non-linear problems. In this paper, the particle filter is used with color feature to estimate the target state with time. Color distributions are applied as this feature is scale and rotational invariant, shows robustness to partial occlusion and computationally efficient. The performance is made more robust by choosing the different (YIQ) color scheme. Tracking is performed by comparison of chrominance histograms of target and candidate positions (particles). Color based particle filter tracking often leads to inaccurate results when light intensity changes during a video stream. Furthermore, background subtraction technique is used for size estimation of the target. The qualitative evaluation of proposed algorithm is performed on several real-world videos. The experimental results demonstrate that the improved algorithm can track the moving objects very well under illumination changes, occlusion and moving background.Keywords: tracking, particle filter, histogram, corner points, occlusion, illumination
Procedia PDF Downloads 3787492 The Convolution Recurrent Network of Using Residual LSTM to Process the Output of the Downsampling for Monaural Speech Enhancement
Authors: Shibo Wei, Ting Jiang
Abstract:
Convolutional-recurrent neural networks (CRN) have achieved much success recently in the speech enhancement field. The common processing method is to use the convolution layer to compress the feature space by multiple upsampling and then model the compressed features with the LSTM layer. At last, the enhanced speech is obtained by deconvolution operation to integrate the global information of the speech sequence. However, the feature space compression process may cause the loss of information, so we propose to model the upsampling result of each step with the residual LSTM layer, then join it with the output of the deconvolution layer and input them to the next deconvolution layer, by this way, we want to integrate the global information of speech sequence better. The experimental results show the network model (RES-CRN) we introduce can achieve better performance than LSTM without residual and overlaying LSTM simply in the original CRN in terms of scale-invariant signal-to-distortion ratio (SI-SNR), speech quality (PESQ), and intelligibility (STOI).Keywords: convolutional-recurrent neural networks, speech enhancement, residual LSTM, SI-SNR
Procedia PDF Downloads 1987491 Relativistic Energy Analysis for Some q Deformed Shape Invariant Potentials in D Dimensions Using SUSYQM Approach
Authors: A. Suparmi, C. Cari, M. Yunianto, B. N. Pratiwi
Abstract:
D-dimensional Dirac equations of q-deformed shape invariant potentials were solved using supersymmetric quantum mechanics (SUSY QM) in the case of exact spin symmetry. The D dimensional radial Dirac equation for shape invariant potential reduces to one-dimensional Schrodinger type equation by an appropriate variable and parameter change. The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial D dimensional Dirac equation that have reduced to one dimensional Schrodinger type equation. The SUSY operator was used to generate the D dimensional relativistic radial wave functions, the relativistic energy equation reduced to the non-relativistic energy in the non-relativistic limit.Keywords: D-dimensional dirac equation, non-central potential, SUSY QM, radial wave function
Procedia PDF Downloads 3447490 View Synthesis of Kinetic Depth Imagery for 3D Security X-Ray Imaging
Authors: O. Abusaeeda, J. P. O. Evans, D. Downes
Abstract:
We demonstrate the synthesis of intermediary views within a sequence of X-ray images that exhibit depth from motion or kinetic depth effect in a visual display. Each synthetic image replaces the requirement for a linear X-ray detector array during the image acquisition process. Scale invariant feature transform, SIFT, in combination with epipolar morphing is employed to produce synthetic imagery. Comparison between synthetic and ground truth images is reported to quantify the performance of the approach. Our work is a key aspect in the development of a 3D imaging modality for the screening of luggage at airport checkpoints. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.Keywords: X-ray, kinetic depth, KDE, view synthesis
Procedia PDF Downloads 2647489 Implementation of Integer Sub-Decomposition Method on Elliptic Curves with J-Invariant 1728
Authors: Siti Noor Farwina Anwar, Hailiza Kamarulhaili
Abstract:
In this paper, we present the idea of implementing the Integer Sub-Decomposition (ISD) method on elliptic curves with j-invariant 1728. The ISD method was proposed in 2013 to compute scalar multiplication in elliptic curves, which remains to be the most expensive operation in Elliptic Curve Cryptography (ECC). However, the original ISD method only works on integer number field and solve integer scalar multiplication. By extending the method into the complex quadratic field, we are able to solve complex multiplication and implement the ISD method on elliptic curves with j-invariant 1728. The curve with j-invariant 1728 has a unique discriminant of the imaginary quadratic field. This unique discriminant of quadratic field yields a unique efficiently computable endomorphism, which later able to speed up the computations on this curve. However, the ISD method needs three endomorphisms to be accomplished. Hence, we choose all three endomorphisms to be from the same imaginary quadratic field as the curve itself, where the first endomorphism is the unique endomorphism yield from the discriminant of the imaginary quadratic field.Keywords: efficiently computable endomorphism, elliptic scalar multiplication, j-invariant 1728, quadratic field
Procedia PDF Downloads 1977488 Singular Perturbed Vector Field Method Applied to the Problem of Thermal Explosion of Polydisperse Fuel Spray
Authors: Ophir Nave
Abstract:
In our research, we present the concept of singularly perturbed vector field (SPVF) method, and its application to thermal explosion of diesel spray combustion. Given a system of governing equations, which consist of hidden Multi-scale variables, the SPVF method transfer and decompose such system to fast and slow singularly perturbed subsystems (SPS). The SPVF method enables us to understand the complex system, and simplify the calculations. Later powerful analytical, numerical and asymptotic methods (e.g method of integral (invariant) manifold (MIM), the homotopy analysis method (HAM) etc.) can be applied to each subsystem. We compare the results obtained by the methods of integral invariant manifold and SPVF apply to spray droplets combustion model. The research deals with the development of an innovative method for extracting fast and slow variables in physical mathematical models. The method that we developed called singular perturbed vector field. This method based on a numerical algorithm applied to global quasi linearization applied to given physical model. The SPVF method applied successfully to combustion processes. Our results were compared to experimentally results. The SPVF is a general numerical and asymptotical method that reveals the hierarchy (multi-scale system) of a given system.Keywords: polydisperse spray, model reduction, asymptotic analysis, multi-scale systems
Procedia PDF Downloads 2177487 Face Recognition Using Discrete Orthogonal Hahn Moments
Authors: Fatima Akhmedova, Simon Liao
Abstract:
One of the most critical decision points in the design of a face recognition system is the choice of an appropriate face representation. Effective feature descriptors are expected to convey sufficient, invariant and non-redundant facial information. In this work, we propose a set of Hahn moments as a new approach for feature description. Hahn moments have been widely used in image analysis due to their invariance, non-redundancy and the ability to extract features either globally and locally. To assess the applicability of Hahn moments to Face Recognition we conduct two experiments on the Olivetti Research Laboratory (ORL) database and University of Notre-Dame (UND) X1 biometric collection. Fusion of the global features along with the features from local facial regions are used as an input for the conventional k-NN classifier. The method reaches an accuracy of 93% of correctly recognized subjects for the ORL database and 94% for the UND database.Keywords: face recognition, Hahn moments, recognition-by-parts, time-lapse
Procedia PDF Downloads 3747486 On the Relation between λ-Symmetries and μ-Symmetries of Partial Differential Equations
Authors: Teoman Ozer, Ozlem Orhan
Abstract:
This study deals with symmetry group properties and conservation laws of partial differential equations. We give a geometrical interpretation of notion of μ-prolongations of vector fields and of the related concept of μ-symmetry for partial differential equations. We show that these are in providing symmetry reduction of partial differential equations and systems and invariant solutions.Keywords: λ-symmetry, μ-symmetry, classification, invariant solution
Procedia PDF Downloads 318