Search results for: respond surface methodology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11807

Search results for: respond surface methodology

11537 Temperature and Substrate Orientation Effects on the Thermal Stability of Graphene Sheet Attached on the Si Surface

Authors: Wen-Jay Lee, Kuo-Ning Chiang

Abstract:

The graphene binding with silicon substrate has apparently Schottky barriers property, which can be used in the application of solar cell and light source. Because graphene has only one atom layer, the atomistic structure of graphene binding with the silicon surface plays an important role to affect the properties of graphene. In this work, temperature effect on the morphology of graphene sheet attached on different crystal planes of silicon substrates are investigated by Molecular dynamics (MD) (LAMMPS, developed by Sandia National Laboratories). The results show that the covered graphene sheet would cause the structural deformation of the surface Si atoms of stubtrate. To achieve a stable state in the binding process, the surface Si atoms would adjust their position and fit the honeycomb structure of graphene after the graphene attaches to the Si surface. The height contour of graphene on different plane of silicon surfaces presents different pattern, leading the local residual stress at the interface. Due to the high density of dangling bond on the Si (111)7x7 surface, the surface of Si(111)7x7 is not matching with the graphene so well in contrast with Si(100)2x1and Si(111)2x1. Si(111)7x7 is found that only partial silicon adatoms are rearranged on surface after the attachment when the temperature is lower than 200K, As the temperature gradually increases, the deformation of surface structure becomes significant, as well as the residue stress. With increasing temperature till the 815K, the graphene sheet begins to destroy and mixes with the silicon atoms. For the Si(100)2x1 and Si(111)2x1, the silicon surface structure keep its structural arrangement with a higher temperature. With increasing temperature, the residual stress gradually decrease till a critical temperatures. When the temperature is higher than the critical temperature, the residual stress gradually increases and the structural deformation is found on the surface of the Si substrates.

Keywords: molecular dynamics, graphene, silicon, Schottky barriers, interface

Procedia PDF Downloads 293
11536 Sequential Data Assimilation with High-Frequency (HF) Radar Surface Current

Authors: Lei Ren, Michael Hartnett, Stephen Nash

Abstract:

The abundant measured surface current from HF radar system in coastal area is assimilated into model to improve the modeling forecasting ability. A simple sequential data assimilation scheme, Direct Insertion (DI), is applied to update model forecast states. The influence of Direct Insertion data assimilation over time is analyzed at one reference point. Vector maps of surface current from models are compared with HF radar measurements. Root-Mean-Squared-Error (RMSE) between modeling results and HF radar measurements is calculated during the last four days with no data assimilation.

Keywords: data assimilation, CODAR, HF radar, surface current, direct insertion

Procedia PDF Downloads 541
11535 Synthesis of ZnFe₂O₄-AC/CeMOF for Improvement Photodegradation of Textile Dyes Under Visible-light: Optimization and Statistical Study

Authors: Esraa Mohamed El-Fawal

Abstract:

A facile solvothermal procedure was applied to fabricate zinc ferrite nanoparticles (ZnFe₂O₄ NPs). Activated carbon (AC) derived from peanut shells is synthesized using a microwave through the chemical activation method. The ZnFe₂O₄-AC composite is then mixed with a cerium-based metal-organic framework (CeMOF) by solid-state adding to formulate ZnFe₂O₄-AC/CeMOF composite. The synthesized photo materials were tested by scanning/transmission electron microscope (SEM/TEM), Photoluminescence (PL), (XRD) X-Ray diffraction, (FTIR) Fourier transform infrared, (UV-Vis/DRS) ultraviolet-visible/diffuse reflectance spectroscopy. The prepared ZnFe₂O₄-AC/CeMOFphotomaterial shows significantly boosted efficiency for photodegradation of methyl orange /methylene blue (MO/MB) compared with the pristine ZnFe₂O₄ and ZnFe₂O₄-AC composite under the irradiation of visible-light. The favorable ZnFe₂O₄-AC/CeMOFphotocatalyst displays the highest photocatalytic degradation efficiency of MB/MO (R: 91.5-88.6%, consecutively) compared with the other as-prepared materials after 30 min of visible-light irradiation. The apparent reaction rate K: 1.94-1.31 min-1 is also calculated. The boosted photocatalytic proficiency is ascribed to the heterojunction at the interface of prepared photo material that assists the separation of the charge carriers. To reach optimization, statistical analysis using response surface methodology was applied. The effect of independent parameters (such as A (pH), B (irradiation time), and (c) initial pollutants concentration on the response function (%)photodegradation of MB/MO dyes (as examples of azodyes) was investigated via using central composite design. At the optimum condition, the photodegradation efficiency (%) of the MB/MO is 99.8-97.8%, respectively. ZnFe2O₄-AC/CeMOF hybrid reveals good stability over four consecutive cycles.

Keywords: azo-dyes, photo-catalysis, zinc ferrite, response surface methodology

Procedia PDF Downloads 141
11534 An E-coaching Methodology for Higher Education in Saudi Arabia

Authors: Essam Almuhsin, Ben Soh, Alice Li, Azmat Ullah

Abstract:

It is widely accepted that university students must acquire new knowledge, skills, awareness, and understanding to increase opportunities for professional and personal growth. The study reveals a significant increase in users engaging in e-coaching activities and a growing need for it during the COVID-19 pandemic. The paper proposes an e-coaching methodology for higher education in Saudi Arabia to address the need for effective coaching in the current online learning environment.

Keywords: role of e-coaching, e-coaching in higher education, Saudi higher education environment, e-coaching methodology, the importance of e-coaching

Procedia PDF Downloads 75
11533 CFD Study of Free Surface Flows Resulting from a Dam-Breaking

Authors: Sonia Ben Hamza, Sabra Habli, Nejla Mahjoub Saïd, Hervé Bournot, Georges Le Palec

Abstract:

Free surface flows caused by dam breaks in channels or rivers is an attention-getting subject to the engineering practice, however, the studies are few to be reported. In this paper, a numerical investigation of unsteady free surface flows resulting from a dam-breaking in a rectangular channel is studied. Numerical computations were carried out using ANSYS Fluent which is based on the finite volume approach. The air/water interface was modeled with the volume of fluid method (VOF). Verification for a typical dam-break problem is analyzed by comparing the present results with others and very good agreement is obtained. The present approach is then used to predict the characteristics of free surface flow due to the dam breaking in channel. The characteristics of complex unsteady free surface flow in these examples are clearly explained. The numerical results show that the flow became more disturbed after impacting the vertical wall, then a recirculation zone, as well as turbulence phenomena, were created. At this instant, a cavity of air was included on the flow. The results agree well with the experimental data found in the literature.

Keywords: CFD, dam-break, free surface, turbulent flows, VOF

Procedia PDF Downloads 286
11532 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems

Authors: K. Kusakana

Abstract:

A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.

Keywords: renewable energies, hybrid systems, optimization, operation control

Procedia PDF Downloads 342
11531 Experimental Research of Corrosion Resistance Desalination Plant Pipe According to Weld Overlay Layers

Authors: Ryu Wonjin, Choi Hyeok, Park Joonhong

Abstract:

Overlay welding for improving surface properties is a method of the surface treatments which improve surface properties of material by welding materials of alloy having corrosion resistance on the basic material surface. Overlay welding affects contents of chemical components and weld hardness from different parts by dilution of the lamination layer thickness, and it determines surface properties. Therefore, overlay welding has to take into account thickness of the lamination layers with the process. As a result in this study examined contents of Fe, weldability of the base metal and monel materials, hardness and surface flatness from different parts according to each the lamination layer parameters by overlay welding monel materials with corrosion resources to the base material of carbon steel. Through this, evaluated effect by the lamination layer parameters of welding and presented decision methods of the lamination layer parameters of the overlay welding by the purpose of use.

Keywords: clad pipe, lamination layer parameters, monel, overlay welding

Procedia PDF Downloads 240
11530 Independent Control over Surface Charge and Wettability Using Polyelectrolyte Architecture

Authors: Shanshan Guo, Xiaoying Zhu, Dominik Jańczewski, Koon Gee Neoh

Abstract:

Surface charge and wettability are two prominent physical factors governing cell adhesion and have been extensively studied in the literature. However, a comparison between the two driving forces in terms of their independent and cooperative effects in affecting cell adhesion is rarely explored on a systematic and quantitative level. Herein, we formulate a protocol which allows two-dimensional and independent control over both surface charge and wettability. This protocol enables the unambiguous comparison of the effects of these two properties on cell adhesion. This strategy is implemented by controlling both the relative thickness of polyion layers in the layer-by-layer assembly and the polyion side chain chemical structures. The 2D property matrix spans surface isoelectric point ranging from 5 to 9 and water contact angle from 35º to 70º, with other interferential factors (e.g. roughness) eliminated. The interplay between these two surface variables influences 3T3 fibroblast cell adhesion. The results show that both surface charge and wettability have an effect on its adhesion. The combined effects of positive charge and hydrophilicity led to the highest cell adhesion whereas negative charge and hydrophobicity led to the lowest cell adhesion. Our design strategy can potentially form the basis for studying the distinct behaviors of electrostatic force or wettability driven interfacial phenomena and serving as a reference in future studies assessing cell adhesion to surfaces with known charge and wettability within the property range studied here.

Keywords: cell adhesion, layer-by-layer, surface charge, surface wettability

Procedia PDF Downloads 238
11529 Effect of Cooking Time, Seed-To-Water Ratio and Soaking Time on the Proximate Composition and Functional Properties of Tetracarpidium conophorum (Nigerian Walnut) Seeds

Authors: J. O. Idoko, C. N. Michael, T. O. Fasuan

Abstract:

This study investigated the effects of cooking time, seed-to-water ratio and soaking time on proximate and functional properties of African walnut seed using Box-Behnken design and Response Surface Methodology (BBD-RSM) with a view to increase its utilization in the food industry. African walnut seeds were sorted washed, soaked, cooked, dehulled, sliced, dried and milled. Proximate analysis and functional properties of the samples were evaluated using standard procedures. Data obtained were analyzed using descriptive and inferential statistics. Quadratic models were obtained to predict the proximate and functional qualities as a function of cooking time, seed-to-water ratio and soaking time. The results showed that the crude protein ranged between 11.80% and 23.50%, moisture content ranged between 1.00% and 4.66%, ash content ranged between 3.35% and 5.25%, crude fibre ranged from 0.10% to 7.25% and carbohydrate ranged from 1.22% to 29.35%. The functional properties showed that soluble protein ranged from 16.26% to 42.96%, viscosity ranged from 23.43 mPas to 57 mPas, emulsifying capacity ranged from 17.14% to 39.43% and water absorption capacity ranged from 232% to 297%. An increase in the volume of water used during cooking resulted in loss of water soluble protein through leaching, the length of soaking time and the moisture content of the dried product are inversely related, ash content is inversely related to the cooking time and amount of water used, extraction of fat is enhanced by increase in soaking time while increase in cooking and soaking times result into decrease in fibre content. The results obtained indicated that African walnut could be used in several food formulations as protein supplement and binder.

Keywords: African walnut, functional properties, proximate analysis, response surface methodology

Procedia PDF Downloads 361
11528 Dam Break Model Using Navier-Stokes Equation

Authors: Alireza Lohrasbi, Alireza Lavaei, Mohammadali M. Shahlaei

Abstract:

The liquid flow and the free surface shape during the initial stage of dam breaking are investigated. A numerical scheme is developed to predict the wave of an unsteady, incompressible viscous flow with free surface. The method involves a two dimensional finite element (2D), in a vertical plan. The Naiver-Stokes equations for conservation of momentum and mass for Newtonian fluids, continuity equation, and full nonlinear kinematic free-surface equation were used as the governing equations. The mapping developed to solve highly deformed free surface problems common in waves formed during wave propagation, transforms the run up model from the physical domain to a computational domain with Arbitrary Lagrangian Eulerian (ALE) finite element modeling technique.

Keywords: dam break, Naiver-Stokes equations, free-surface flows, Arbitrary Lagrangian-Eulerian

Procedia PDF Downloads 297
11527 Study on Robot Trajectory Planning by Robot End-Effector Using Dual Curvature Theory of the Ruled Surface

Authors: Y. S. Oh, P. Abhishesh, B. S. Ryuh

Abstract:

This paper presents the method of trajectory planning by the robot end-effector which accounts for more accurate and smooth differential geometry of the ruled surface generated by tool line fixed with end-effector based on the methods of curvature theory of ruled surface and the dual curvature theory, and focuses on the underlying relation to unite them for enhancing the efficiency for trajectory planning. Robot motion can be represented as motion properties of the ruled surface generated by trajectory of the Tool Center Point (TCP). The linear and angular properties of the six degree-of-freedom motion of end-effector are computed using the explicit formulas and functions from curvature theory and dual curvature theory. This paper explains the complete dualization of ruled surface and shows that the linear and angular motion applied using the method of dual curvature theory is more accurate and less complex.

Keywords: dual curvature theory, robot end effector, ruled surface, TCP (Tool Center Point)

Procedia PDF Downloads 335
11526 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph

Authors: Youhang Zhou, Weimin Zeng, Qi Xie

Abstract:

Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.

Keywords: guide surface, wear defects, feature extraction, data visualization

Procedia PDF Downloads 476
11525 Seamless MATLAB® to Register-Transfer Level Design Methodology Using High-Level Synthesis

Authors: Petri Solanti, Russell Klein

Abstract:

Many designers are asking for an automated path from an abstract mathematical MATLAB model to a high-quality Register-Transfer Level (RTL) hardware description. Manual transformations of MATLAB or intermediate code are needed, when the design abstraction is changed. Design conversion is problematic as it is multidimensional and it requires many different design steps to translate the mathematical representation of the desired functionality to an efficient hardware description with the same behavior and configurability. Yet, a manual model conversion is not an insurmountable task. Using currently available design tools and an appropriate design methodology, converting a MATLAB model to efficient hardware is a reasonable effort. This paper describes a simple and flexible design methodology that was developed together with several design teams.

Keywords: design methodology, high-level synthesis, MATLAB, verification

Procedia PDF Downloads 107
11524 Influence of Selected Finishing Technologies on the Roughness Parameters of Stainless Steel Manufactured by Selective Laser Melting Method

Authors: J. Hajnys, M. Pagac, J. Petru, P. Stefek, J. Mesicek, J. Kratochvil

Abstract:

The new progressive method of 3D metal printing SLM (Selective Laser Melting) is increasingly expanded into the normal operation. As a result, greater demands are placed on the surface quality of the parts produced in this way. The article deals with research of selected finishing methods (tumbling, face milling, sandblasting, shot peening and brushing) and their impact on the final surface roughness. The 20 x 20 x 7 mm produced specimens using SLM additive technology on the Renishaw AM400 were subjected to testing of these finishing methods by adjusting various parameters. Surface parameters of roughness Sa, Sz were chosen as the evaluation criteria and profile parameters Ra, Rz were used as additional measurements. Optical measurement of surface roughness was performed on Alicona Infinite Focus 5. An experiment conducted to optimize the surface roughness revealed, as expected, that the best roughness parameters were achieved through a face milling operation. Tumbling is particularly suitable for 3D printing components, as tumbling media are able to reach even complex shapes and, after changing to polishing bodies, achieve a high surface gloss. Surface quality after tumbling depends on the process time. Other methods with satisfactory results are shot peening and tumbling, which should be the focus of further research.

Keywords: additive manufacturing, selective laser melting, SLM, surface roughness, stainless steel

Procedia PDF Downloads 107
11523 Surface Thermodynamics Approach to Mycobacterium tuberculosis (M-TB) – Human Sputum Interactions

Authors: J. L. Chukwuneke, C. H. Achebe, S. N. Omenyi

Abstract:

This research work presents the surface thermodynamics approach to M-TB/HIV-Human sputum interactions. This involved the use of the Hamaker coefficient concept as a surface energetics tool in determining the interaction processes, with the surface interfacial energies explained using van der Waals concept of particle interactions. The Lifshitz derivation for van der Waals forces was applied as an alternative to the contact angle approach which has been widely used in other biological systems. The methodology involved taking sputum samples from twenty infected persons and from twenty uninfected persons for absorbance measurement using a digital Ultraviolet visible Spectrophotometer. The variables required for the computations with the Lifshitz formula were derived from the absorbance data. The Matlab software tools were used in the mathematical analysis of the data produced from the experiments (absorbance values). The Hamaker constants and the combined Hamaker coefficients were obtained using the values of the dielectric constant together with the Lifshitz equation. The absolute combined Hamaker coefficients A132abs and A131abs on both infected and uninfected sputum samples gave the values of A132abs = 0.21631x10-21Joule for M-TB infected sputum and Ã132abs = 0.18825x10-21Joule for M-TB/HIV infected sputum. The significance of this result is the positive value of the absolute combined Hamaker coefficient which suggests the existence of net positive van der waals forces demonstrating an attraction between the bacteria and the macrophage. This however, implies that infection can occur. It was also shown that in the presence of HIV, the interaction energy is reduced by 13% conforming adverse effects observed in HIV patients suffering from tuberculosis.

Keywords: absorbance, dielectric constant, hamaker coefficient, lifshitz formula, macrophage, mycobacterium tuberculosis, van der waals forces

Procedia PDF Downloads 246
11522 A Case for Q-Methodology: Teachers as Policymakers

Authors: Thiru Vandeyar

Abstract:

The present study set out to determine how Q methodology may be used as an inclusive education policy development process. Utilising Q-methodology as a strategy of inquiry, this qualitative instrumental case study set out to explore how teachers, as a crucial but often neglected human resource, may be included in developing policy. A social constructivist lens and the theoretical moorings of Proudford’s emancipatory approach to educational change anchored in teachers’ ‘writerly’ interpretation of policy text was employed. Findings suggest that Q-method is a unique research approach to include teachers’ voices in policy development. Second, that beliefs, attitudes, and professionalism of teachers to improve teaching and learning using ICT are integral to policy formulation. The study indicates that teachers have unique beliefs about what statements should constitute a school’s information and communication (ICT) policy. Teachers’ experiences are an extremely valuable resource in and should not be ignored in the policy formulation process.

Keywords: teachers, q-methodology, education policy, ICT

Procedia PDF Downloads 59
11521 Magnetite Nanoparticles Immobilized Pectinase: Preparation, Characterization and Application for the Fruit Juices Clarification

Authors: Leila Mosafa, Majid Moghadam, Mohammad Shahedi

Abstract:

In this work, pectinase was immobilized on the surface of silica-coated magnetite nanoparticles via covalent attachment. The magnetite-immobilized enzyme was characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and vibrating sample magnetometry techniques. Response surface methodology using Minitab Software was applied for statistical designing of operating conditions in order to immobilize pectinase on magnetic nanoparticles. The optimal conditions were obtained at 30°C and pH 5.5 with 42.97 µl pectinase for 2 h. The immobilization yield was 50.6% at optimized conditions. Compared to the free pectinase, the immobilized pectinase was found to exhibit enhanced enzyme activity, better tolerance to the variation of pH and temperature, and improved storage stability. Both free and immobilized samples reduced the viscosity of apple juice from 1.12 to 0.88 and 0.92 mm2s-1, respectively, after 30 min at their optimum temperature. Furthermore, the immobilized enzyme could be reused six consecutive cycles and the efficiency loss in viscosity reduction was found to be only 8.16%.

Keywords: magnetite nanoparticles, pectinase enzyme, immobilization, juice clarification, enzyme activity

Procedia PDF Downloads 383
11520 Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations

Authors: Chun-Ying Lee, Kun-Hsien Lee, Bor-Wei Wang

Abstract:

The process of post-supercritical CO2 electroplating uses the electrolyte solution after being mixed with supercritical CO2 and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO2 in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO2 bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO2 microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm2 achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO2 mixed electrolyte.

Keywords: nickel electroplating, micro-bubbles, supercritical carbon dioxide, ultrasonic agitation

Procedia PDF Downloads 254
11519 Synthesis and Properties of Sulfonate Gemini Surfactants with Amide Groups

Authors: Rui Wang, Shanfa Tang, Yuanwu Dong, Siyao Wang, Zhaowen Jiang, Di Han

Abstract:

A sulfonate Gemini surfactant sodium N,N`-bis(tetradecanoyl) propanediamine dipropyl sulfonate (GNS-14) was synthesized from 1,3-propanediamine, tetradecanoyl chloride, and1,3-propanesulfonic lactone. GNS-14 was characterized by FT-IR, 1H NMR. The surface activity, interfacial activity, and emulsification properties of GNS-14 solution were systematically studied. The critical micelle concentration (CCMC) of GNS-14 surfactant was 0.056 mmol/L, and the surface tension (γCMC) was 18.2 mN/m; at 50℃, 0.5% GNS-14 solution can reduce the oil-water interfacial tension to 6.5×10−2 mN/m. GNS-14 has excellent surface activity, interfacial activity, and emulsifying properties.

Keywords: gemini surfactants, surface tension, low interfacial tension, emulsifying properties

Procedia PDF Downloads 116
11518 The Optimum Aeration Time of Wastewater Treatment by Surface Aerators in Suan Sunandha Rajabhat University

Authors: Anat Thanpinta

Abstract:

This research aimed to study on the efficiency of wastewater treatment by comparing the different aeration times of surface aerators in Suan Sunandha Rajabhat University. In doing so, the operation of surface aerators was divided into 2 groups which included the groups of 8 hours (8-0/opened-closed) and 4 hours (2-2/opened-closed) of aeration time per day. As a result of the study, it was found that the efficiency of wastewater treatment in the forms of DO, BOD, turbidity and NO2- by 8 hours (8-0/opened-closed) and 4 hours (2-2/opened-closed) of aeration time per day of surface aerators was not statistically different [Sig. = .644, .488, .716 and .054 > α (.05)] while the efficiency in the forms of NO3- and P was significantly different at the statistical level of .01 [Sig. = .001 and .000 < α (.01)].

Keywords: aeration time, surface aerator, wastewater treatment, efficiency

Procedia PDF Downloads 276
11517 Argon/Oxygen Plasma Surface Modification of Biopolymers for Improvement of Wettability and Wear Resistance

Authors: Binnur Sagbas

Abstract:

Artificial joint replacements such as total knee and total hip prosthesis have been applied to the patients who affected by osteoarthritis. Although different material combinations are used for these joints, biopolymers are most commonly preferred materials especially for acetabular cup and tibial component of hip and knee joints respectively. The main limitation that shortens the service life of these prostheses is wear. Wear is complicated phenomena and it must be considered with friction and lubrication. In this study, micro wave (MW) induced argon+oxygen plasma surface modification were applied on ultra-high molecular weight polyethylene (UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) biopolymer surfaces to improve surface wettability and wear resistance of the surfaces. Contact angel measurement method was used for determination of wettability. Ball-on-disc wear test was applied under 25% bovine serum lubrication conditions. The results show that surface wettability and wear resistance of both material samples were increased by plasma surface modification.

Keywords: artificial joints, plasma surface modification, UHMWPE, vitamin E, wear

Procedia PDF Downloads 275
11516 A Framework for Defining Innovation Districts: A Case Study of 22@ Barcelona

Authors: Arnault Morisson

Abstract:

Innovation districts are being implemented as urban regeneration strategies in cities as diverse as Barcelona (Spain), Boston (Massachusetts), Chattanooga (Tennessee), Detroit (Michigan), Medellin (Colombia), and Montréal (Canada). Little, however, is known about the concept. This paper aims to provide a framework to define innovation districts. The research methodology is based on a qualitative approach using 22@ Barcelona as a case study. 22@ Barcelona was the first innovation district ever created and has been a model for the innovation districts of Medellin (Colombia) and Boston (Massachusetts) among others. Innovation districts based on the 22@ Barcelona’s model can be defined as top-down urban innovation ecosystems designed around four multilayered and multidimensional models of innovation: urban planning, productive, collaborative, and creative, all coordinated under strong leadership, with the ultimate objectives to accelerate the innovation process and competitiveness of a locality. Innovation districts aim to respond to a new economic paradigm in which economic production flows back to cities.

Keywords: innovation ecosystem, governance, technology park, urban planning, urban policy, urban regeneration

Procedia PDF Downloads 334
11515 Experimental and Numerical Investigation of “Machining Induced Residual Stresses” during Orthogonal Machining of Alloy Steel AISI 4340

Authors: Theena Thayalan, K. N. Ramesh Babu

Abstract:

Machining induced residual stress (RS) is one of the most important surface integrity parameters that characterize the near surface layer of a mechanical component, which plays a crucial role in controlling the performance, especially its fatigue life. Since experimental determination of RS is expensive and time consuming, it would be of great benefit if they could be predicted. In such case, it would be possible to select the cutting parameters required to produce a favorable RS profile. In the present study, an effort has been made to develop a 'two dimensional finite element model (FEM)' to simulate orthogonal cutting process and to predict surface and sub-surface RS using the commercial FEA software DEFORM-2D. The developed finite element model has been validated through experimental investigation of RS. In the experimentation, the orthogonal cutting tests were carried out on AISI 4340 by varying the cutting speed (VC) and uncut chip thickness (f) at three levels and the surface & sub-surface RS has been measured using XRD and Electro polishing techniques. The comparison showed that the RS obtained using developed numerical model is in reasonable agreement with that of experimental data.

Keywords: FEM, machining, residual stress, XRF

Procedia PDF Downloads 315
11514 Pleated Surfaces: Experimentation and Examples

Authors: Maritza Granados Manjarrés

Abstract:

This paper makes part of an investigation project which experiments with flat surfaces in order to pleat them using tessellations and flat origami conditions. The aim of the investigation is to eventually propose not only a methodology on how to pleat those surfaces but also to find an structural system to make them work as building skins. This stage of the investigation emphasizes on the experimentation with flat surfaces and different kinds of folding patterns and shows the many examples that can be made from this experimentation.

Keywords: flat origami, fold, space, surface

Procedia PDF Downloads 268
11513 Influence of Surface Preparation Effects on the Electrochemical Behavior of 2098-T351 Al–Cu–Li Alloy

Authors: Rejane Maria P. da Silva, Mariana X. Milagre, João Victor de S. Araujo, Leandro A. de Oliveira, Renato A. Antunes, Isolda Costa

Abstract:

The Al-Cu-Li alloys are advanced materials for aerospace application because of their interesting mechanical properties and low density when compared with conventional Al-alloys. However, Al-Cu-Li alloys are susceptible to localized corrosion. The near-surface deformed layer (NSDL) induced by the rolling process during the production of the alloy and its removal by polishing can influence on the corrosion susceptibility of these alloys. In this work, the influence of surface preparation effects on the electrochemical activity of AA2098-T351 (Al–Cu–Li alloy) was investigated using a correlation between surface chemistry, microstructure, and electrochemical activity. Two conditions were investigated, polished and as-received surfaces of the alloy. The morphology of the two types of surfaces was investigated using confocal laser scanning microscopy (CLSM) and optical microscopy. The surface chemistry was analyzed by X-ray Photoelectron Spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). Global electrochemical techniques (potentiodynamic polarization and EIS technique) and a local electrochemical technique (Localized Electrochemical Impedance Spectroscopy-LEIS) were used to examine the electrochemical activity of the surfaces. The results obtained in this study showed that in the as-received surface, the near-surface deformed layer (NSDL), which is composed of Mg-rich bands, influenced the electrochemical behavior of the alloy. The results showed higher electrochemical activity to the polished surface condition compared to the as-received one.

Keywords: Al-Cu-Li alloys, surface preparation effects, electrochemical techniques, localized corrosion

Procedia PDF Downloads 119
11512 [Keynote Talk]: Determination of the Quality of the Machined Surface Using Fuzzy Logic

Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović

Abstract:

This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.

Keywords: fuzzy logic, metal machining, process modeling, surface roughness

Procedia PDF Downloads 134
11511 Valorisation of Mango Seed: Response Surface Methodology Based Optimization of Starch Extraction from Mango Seeds

Authors: Tamrat Tesfaye, Bruce Sithole

Abstract:

Box-Behnken Response surface methodology was used to determine the optimum processing conditions that give maximum extraction yield and whiteness index from mango seed. The steeping time ranges from 2 to 12 hours and slurring of the steeped seed in sodium metabisulphite solution (0.1 to 0.5 w/v) was carried out. Experiments were designed according to Box-Behnken Design with these three factors and a total of 15 runs experimental variables of were analyzed. At linear level, the concentration of sodium metabisulphite had significant positive influence on percentage yield and whiteness index at p<0.05. At quadratic level, sodium metabisulphite concentration and sodium metabisulphite concentration2 had a significant negative influence on starch yield; sodium metabisulphite concentration and steeping time*temperature had significant (p<0.05) positive influence on whiteness index. The adjusted R2 above 0.8 for starch yield (0.906465) and whiteness index (0.909268) showed a good fit of the model with the experimental data. The optimum sodium metabisulphite concentration, steeping hours, and temperature for starch isolation with maximum starch yield (66.428%) and whiteness index (85%) as set goals for optimization with the desirability of 0.91939 was 0.255w/v concentration, 2hrs and 50 °C respectively. The determined experimental value of each response based on optimal condition was statistically in accordance with predicted levels at p<0.05. The Mango seeds are the by-products obtained during mango processing and possess disposal problem if not handled properly. The substitution of food based sizing agents with mango seed starch can contribute as pertinent resource deployment for value-added product manufacturing and waste utilization which might play significance role of food security in Ethiopia.

Keywords: mango, synthetic sizing agent, starch, extraction, textile, sizing

Procedia PDF Downloads 203
11510 Fabrication Methodologies for Anti-Microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-Microbial Agents

Authors: Saleh Alkarri, Dimple Sharma, Teresa M. Bergholz, Muhammad Rabnawaz

Abstract:

Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper, (II) chloride dihydrate (CuCl₂·₂H₂O) and (ii) non-leachable magnesium hydroxide (Mg(OH)₂) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·₂H₂O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)₂ particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl₂·2H₂O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)₂ imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates.

Keywords: anti-microbial activity, E. coli K-12 MG1655, copper (II) chloride dihydrate, magnesium hydroxide, leachable, non-leachable, compounding, thermal embossing

Procedia PDF Downloads 52
11509 Fabrication Methodologies for Anti-microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-microbial Agents

Authors: Saleh Alkarri, Dimple Sharma, Teresa M. Bergholz, Muhammad Rabnawa

Abstract:

Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper (II) chloride dihydrate (CuCl2·2H2O) and (ii) non-leachable magnesium hydroxide (Mg(OH)2) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·2H2O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)2 particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl2·2H2O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)2 imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates.

Keywords: anti-microbial activity, E. coli K-12 MG1655, copper (II) chloride dihydrate, magnesium hydroxide, leachable, non-leachable, compounding, thermal embossing

Procedia PDF Downloads 52
11508 Risk Assessment on New Bio-Composite Materials Made from Water Resource Recovery

Authors: Arianna Nativio, Zoran Kapelan, Jan Peter van der Hoek

Abstract:

Bio-composite materials are becoming increasingly popular in various applications, such as the automotive industry. Usually, bio-composite materials are made from natural resources recovered from plants, now, a new type of bio-composite material has begun to be produced in the Netherlands. This material is made from resources recovered from drinking water treatments (calcite), wastewater treatment (cellulose), and material from surface water management (aquatic plants). Surface water, raw drinking water, and wastewater can be contaminated with pathogens and chemical compounds. Therefore, it would be valuable to develop a framework to assess, monitor, and control the potential risks. Indeed, the goal is to define the major risks in terms of human health, quality of materials, and environment associated with the production and application of these new materials. This study describes the general risk assessment framework, starting with a qualitative risk assessment. The qualitative risk analysis was carried out by using the HAZOP methodology for the hazard identification phase. The HAZOP methodology is logical and structured and able to identify the hazards in the first stage of the design when hazards and associated risks are not well known. The identified hazards were analyzed to define the potential associated risks, and then these were evaluated by using the qualitative Event Tree Analysis. ETA is a logical methodology used to define the consequences for a specific hazardous incidents, evaluating the failure modes of safety barriers and dangerous intermediate events that lead to the final scenario (risk). This paper shows the effectiveness of combining of HAZOP and qualitative ETA methodologies for hazard identification and risk mapping. Then, key risks were identified, and a quantitative framework was developed based on the type of risks identified, such as QMRA and QCRA. These two models were applied to assess human health risks due to the presence of pathogens and chemical compounds such as heavy metals into the bio-composite materials. Thus, due to these contaminations, the bio-composite product, during its application, might release toxic substances into the environment leading to a negative environmental impact. Therefore, leaching tests are going to be planned to simulate the application of these materials into the environment and evaluate the potential leaching of inorganic substances, assessing environmental risk.

Keywords: bio-composite, risk assessment, water reuse, resource recovery

Procedia PDF Downloads 73