Search results for: residual vibration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1466

Search results for: residual vibration

1286 Passive Vibration Isolation Analysis and Optimization for Mechanical Systems

Authors: Ozan Yavuz Baytemir, Ender Cigeroglu, Gokhan Osman Ozgen

Abstract:

Vibration is an important issue in the design of various components of aerospace, marine and vehicular applications. In order not to lose the components’ function and operational performance, vibration isolation design involving the optimum isolator properties selection and isolator positioning processes appear to be a critical study. Knowing the growing need for the vibration isolation system design, this paper aims to present two types of software capable of implementing modal analysis, response analysis for both random and harmonic types of excitations, static deflection analysis, Monte Carlo simulations in addition to study of parameter and location optimization for different types of isolation problem scenarios. Investigating the literature, there is no such study developing a software-based tool that is capable of implementing all those analysis, simulation and optimization studies in one platform simultaneously. In this paper, the theoretical system model is generated for a 6-DOF rigid body. The vibration isolation system of any mechanical structure is able to be optimized using hybrid method involving both global search and gradient-based methods. Defining the optimization design variables, different types of optimization scenarios are listed in detail. Being aware of the need for a user friendly vibration isolation problem solver, two types of graphical user interfaces (GUIs) are prepared and verified using a commercial finite element analysis program, Ansys Workbench 14.0. Using the analysis and optimization capabilities of those GUIs, a real application used in an air-platform is also presented as a case study at the end of the paper.

Keywords: hybrid optimization, Monte Carlo simulation, multi-degree-of-freedom system, parameter optimization, location optimization, passive vibration isolation analysis

Procedia PDF Downloads 540
1285 Free Vibration Analysis of Symmetric Sandwich Beams

Authors: Ibnorachid Zakaria, El Bikri Khalid, Benamar Rhali, Farah Abdoun

Abstract:

The aim of the present work is to study the linear free symmetric vibration of three-layer sandwich beam using the energy method. The zigzag model is used to describe the displacement field. The theoretical model is based on the top and bottom layers behave like Euler-Bernoulli beams while the core layer like a Timoshenko beam. Based on Hamilton’s principle, the governing equation of motion sandwich beam is obtained in order to calculate the linear frequency parameters for a clamped-clamped and simple supported-simple-supported beams. The effects of material properties and geometric parameters on the natural frequencies are also investigated.

Keywords: linear vibration, sandwich, shear deformation, Timoshenko zig-zag model

Procedia PDF Downloads 445
1284 Detect Cable Force of Cable Stayed Bridge from Accelerometer Data of SHM as Real Time

Authors: Nguyen Lan, Le Tan Kien, Nguyen Pham Gia Bao

Abstract:

The cable-stayed bridge belongs to the combined system, in which the cables is a major strutual element. Cable-stayed bridges with large spans are often arranged with structural health monitoring systems to collect data for bridge health diagnosis. Cables tension monitoring is a structural monitoring content. It is common to measure cable tension by a direct force sensor or cable vibration accelerometer sensor, thereby inferring the indirect cable tension through the cable vibration frequency. To translate cable-stayed vibration acceleration data to real-time tension requires some necessary calculations and programming. This paper introduces the algorithm, labview program that converts cable-stayed vibration acceleration data to real-time tension. The research results are applied to the monitoring system of Tran Thi Ly cable-stayed bridge and Song Hieu cable-stayed bridge in Vietnam.

Keywords: cable-stayed bridge, cable fore, structural heath monitoring (SHM), fast fourie transformed (FFT), real time, vibrations

Procedia PDF Downloads 26
1283 Reliability Based Optimal Design of Laterally Loaded Pile with Limited Residual Strain Energy Capacity

Authors: M. Movahedi Rad

Abstract:

In this study, a general approach to the reliability based limit analysis of laterally loaded piles is presented. In engineering practice, the uncertainties play a very important role. The aim of this study is to evaluate the lateral load capacity of free head and fixed-head long pile when the plastic limit analysis is considered. In addition to the plastic limit analysis to control the plastic behaviour of the structure, uncertain bound on the complementary strain energy of the residual forces is also applied. This bound has a significant effect for the load parameter. The solution to reliability-based problems is obtained by a computer program which is governed by the reliability index calculation.

Keywords: reliability, laterally loaded pile, residual strain energy, probability, limit analysis

Procedia PDF Downloads 320
1282 Computation of Thermal Stress Intensity Factor for Bonded Composite Repairs in Aircraft Structures

Authors: Fayçal Benyahia, Abdelmohsen Albedah, Bel Abbes Bachir Bouiadjra

Abstract:

In this study the Finite element method is used to analyse the effect of the thermal residual stresses resulting from adhesive curing on the performances of the bonded composite repair in aircraft structures. The stress intensity factor at the crack tip is chosen as fracture criterion in order to estimate the repair performances. The obtained results show that the presence of the thermal residual stresses reduces considerably the repair performances and consequently decreases the fatigue life of cracked structures. The effects of the curing temperature, the adhesive properties and the adhesive thickness on the Stress Intensity Factor (SIF) variation with thermal stresses are also analysed.

Keywords: bonded composite repair, residual stress, adhesion, stress transfer, finite element analysis

Procedia PDF Downloads 382
1281 Preventive Maintenance of Rotating Machinery Based on Vibration Diagnosis of Rolling Bearing

Authors: T. Bensana, S. Mekhilef

Abstract:

The methodology of vibration based condition monitoring technology has been developing at a rapid stage in the recent years suiting to the maintenance of sophisticated and complicated machines. The ability of wavelet analysis to efficiently detect non-stationary, non-periodic, transient features of the vibration signal makes it a demanding tool for condition monitoring. This paper presents a methodology for fault diagnosis of rolling element bearings based on wavelet envelope power spectrum technique is analysed in both the time and frequency domains. In the time domain the auto-correlation of the wavelet de-noised signal is applied to evaluate the period of the fault pulses. However, in the frequency domain the wavelet envelope power spectrum has been used to identify the fault frequencies with the single sided complex Laplace wavelet as the mother wavelet function. Results show the superiority of the proposed method and its effectiveness in extracting fault features from the raw vibration signal.

Keywords: preventive maintenance, fault diagnostics, rolling element bearings, wavelet de-noising

Procedia PDF Downloads 346
1280 Geometrically Linear Symmetric Free Vibration Analysis of Sandwich Beam

Authors: Ibnorachid Zakaria, El Bikri Khalid, Benamar Rhali, Farah Abdoun

Abstract:

The aim of the present work is to study the linear free symmetric vibration of three-layer sandwich beam using the energy method. The zigzag model is used to describe the displacement field. The theoretical model is based on the top and bottom layers behave like Euler-Bernoulli beams while the core layer like a Timoshenko beam. Based on Hamilton’s principle, the governing equation of motion sandwich beam is obtained in order to calculate the linear frequency parameters for a clamped-clamped and simple supported-simple-supported beams. The effects of material properties and geometric parameters on the natural frequencies are also investigated.

Keywords: linear vibration, sandwich, shear deformation, Timoshenko zig-zag model

Procedia PDF Downloads 443
1279 Ergonomical Study of Hand-Arm Vibrational Exposure in a Gear Manufacturing Plant in India

Authors: Santosh Kumar, M. Muralidhar

Abstract:

The term ‘ergonomics’ is derived from two Greek words: ‘ergon’, meaning work and ‘nomoi’, meaning natural laws. Ergonomics is the study of how working conditions, machines and equipment can be arranged in order that people can work with them more efficiently. In this research communication an attempt has been made to study the effect of hand-arm vibrational exposure on the workers of a gear manufacturing plant by comparison of potential Carpal Tunnel Syndrome (CTS) symptoms and effect of different exposure levels of vibration on occurrence of CTS in actual industrial environment. Chi square test and correlation analysis have been considered for statistical analysis. From Chi square test, it has been found that the potential CTS symptoms occurrence is significantly dependent on the level of vibrational exposure. Data analysis indicates that 40.51% workers having potential CTS symptoms are exposed to vibration. Correlation analysis reveals that potential CTS symptoms are significantly correlated with exposure to level of vibration from handheld tools and to repetitive wrist movements.

Keywords: CTS symptoms, hand-arm vibration, ergonomics, physical tests

Procedia PDF Downloads 344
1278 Primary Resonance in Vortex-Induced Vibration of a Pipeline Close to a Plane Boundary

Authors: Yiming Jin, Ping Dong

Abstract:

The primary resonance of a pipeline close to a plane boundary is investigated in this paper. Based on classic Van der Pol equation and added a nonlinear item, a new wake oscillator model is proposed to predict the vortex-induced vibration (VIV) of a circular cylinder close to a plane boundary. Then, with the multi-scale method, the approximate solution for the case of the primary resonance is obtained. Besides, to study the characteristic of the primary resonance, the effects of the mass ration, frequency, damp ratio and gap ratio on the frequency-response curves of the pipeline are analysed. On the whole, the trend of the numerical results match up with that of the experimental data well and the mass ration, frequency, damp ratio and gap ratio play an important role in the vortex-induced vibration (VIV) of a circular cylinder close to a plane boundary, especially, the smaller is the mass ratio, the larger impact the gap ratio has on the frequency-response curves of the primary resonance.

Keywords: primary resonance, gap ratio, vortex-induced vibration, multi-scale method

Procedia PDF Downloads 342
1277 Vibration of Nonhomogeneous Timoshenko Nanobeam Resting on Winkler-Pasternak Foundation

Authors: Somnath Karmakar, S. Chakraverty

Abstract:

This work investigates the vibration of nonhomogeneous Timoshenko nanobeam resting on the Winkler-Pasternak foundation. Eringen’s nonlocal theory has been used to investigate small-scale effects. The Differential Quadrature method is used to obtain the frequency parameters with various classical boundary conditions. The nonhomogeneous beam model has been considered, where Young’s modulus and density of the beam material vary linearly and quadratically. Convergence of frequency parameters is also discussed. The influence of mechanical properties and scaling parameters on vibration frequencies are investigated for different boundary conditions.

Keywords: Timoshenko beam, Eringen's nonlocal theory, differential quadrature method, nonhomogeneous nanobeam

Procedia PDF Downloads 93
1276 Application of Local Mean Decomposition for Rolling Bearing Fault Diagnosis Based On Vibration Signals

Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine

Abstract:

Vibration analysis has been frequently applied in the condition monitoring and fault diagnosis of rolling element bearings. Unfortunately, the vibration signals collected from a faulty bearing are generally non stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, condition monitoring, local mean decomposition, rolling element bearing, vibration analysis

Procedia PDF Downloads 362
1275 Active Linear Quadratic Gaussian Secondary Suspension Control of Flexible Bodied Railway Vehicle

Authors: Kaushalendra K. Khadanga, Lee Hee Hyol

Abstract:

Passenger comfort has been paramount in the design of suspension systems of high speed cars. To analyze the effect of vibration on vehicle ride quality, a vertical model of a six degree of freedom railway passenger vehicle, with front and rear suspension, is built. It includes car body flexible effects and vertical rigid modes. A second order linear shaping filter is constructed to model Gaussian white noise into random rail excitation. The temporal correlation between the front and rear wheels is given by a second order Pade approximation. The complete track and the vehicle model are then designed. An active secondary suspension system based on a Linear Quadratic Gaussian (LQG) optimal control method is designed. The results show that the LQG control method reduces the vertical acceleration, pitching acceleration and vertical bending vibration of the car body as compared to the passive system.

Keywords: active suspension, bending vibration, railway vehicle, vibration control

Procedia PDF Downloads 237
1274 Motor Gear Fault Diagnosis by Measurement of Current, Noise and Vibration on AC Machine

Authors: Sun-Ki Hong, Ki-Seok Kim, Yong-Ho Jo

Abstract:

Lots of motors have been being used in industry. Therefore many researchers have studied about the failure diagnosis of motors. In this paper, the effect of measuring environment for diagnosis of gear fault connected to a motor shaft is studied. The fault diagnosis is executed through the comparison of normal gear and abnormal gear. The measured FFT data are compared with the normal data and analyzed for q-axis current, noise and vibration. For bad and good environment, the diagnosis results are compared. From these, it is shown that the bad measuring environment may not be able to detect exactly the motor gear fault. Therefore it is emphasized that the measuring environment should be carefully prepared.

Keywords: motor fault, diagnosis, FFT, vibration, noise, q-axis current, measuring environment

Procedia PDF Downloads 526
1273 Finite Element Modeling of Ultrasonic Shot Peening Process using Multiple Pin Impacts

Authors: Chao-xun Liu, Shi-hong Lu

Abstract:

In spite of its importance to the aerospace and automobile industries, little or no attention has been devoted to the accurate modeling of the ultrasonic shot peening (USP) process. It is therefore the purpose of this study to conduct finite element analysis of the process using a realistic multiple pin impacts model with the explicit solver of ABAQUS. In this paper, we research the effect of several key parameters on the residual stress distribution within the target, including impact velocity, incident angle, friction coefficient between pins and target and impact number of times were investigated. The results reveal that the impact velocity and impact number of times have obvious effect and impacting vertically could produce the most perfect residual stress distribution. Then we compare the results with the date in USP experiment and verify the exactness of the model. The analysis of the multiple pin impacts date reveal the relationships between peening process parameters and peening quality, which are useful for identifying the parameters which need to be controlled and regulated in order to produce a more beneficial compressive residual stress distribution within the target.

Keywords: ultrasonic shot peening, finite element, multiple pins, residual stress, numerical simulation

Procedia PDF Downloads 424
1272 [Keynote Speech]: Bridge Damage Detection Using Frequency Response Function

Authors: Ahmed Noor Al-Qayyim

Abstract:

During the past decades, the bridge structures are considered very important portions of transportation networks, due to the fast urban sprawling. With the failure of bridges that under operating conditions lead to focus on updating the default bridge inspection methodology. The structures health monitoring (SHM) using the vibration response appeared as a promising method to evaluate the condition of structures. The rapid development in the sensors technology and the condition assessment techniques based on the vibration-based damage detection made the SHM an efficient and economical ways to assess the bridges. SHM is set to assess state and expects probable failures of designated bridges. In this paper, a presentation for Frequency Response function method that uses the captured vibration test information of structures to evaluate the structure condition. Furthermore, the main steps of the assessment of bridge using the vibration information are presented. The Frequency Response function method is applied to the experimental data of a full-scale bridge.

Keywords: bridge assessment, health monitoring, damage detection, frequency response function (FRF), signal processing, structure identification

Procedia PDF Downloads 320
1271 Effect of Fiber Orientation on Dynamic Properties of Carbon-Epoxy Composite Laminate under Flexural Vibration

Authors: Bahlouli Ahmed, Bentalab Nourdin, Nigrou Mourad

Abstract:

This study was aimed at investigating the effect of orientation fiber reinforced on dynamic properties of laminate composite FRP. An experimental investigation is implemented using an impulse technique. The various specimens are excited in free vibration by the use of bi-channel Analyzer. The experimental results are compared by model of finite element analysis using ANSYS. The results studies (natural frequencies measurements, vibration mode, dynamic modulus and damping ratio) show that the effects of significant parameters such as lay-up and stacking sequence, boundary conditions and excitation place of accelerometer. These results are critically examined and discussed. The accuracy of these results is demonstrated by comparing results with those available in the literature.

Keywords: natural frequency, damping ratio, laminate composite, dynamic modulus

Procedia PDF Downloads 324
1270 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling

Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger

Abstract:

Fused deposition modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using the 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics, which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results, it was observed that increasing the chamber temperature from 25°C to 75°C lead to a decrease of 1.5% residual stress, while decreasing bed temperature from 100°C to 60°C, resulted in a 33% increase in residual stress and a significant rise of 138% in warpage. The simulated warpage data is validated by comparing it with the measured warpage values of the samples using 3D scanning.

Keywords: finite element analysis, fused deposition modelling, residual stress, warpage

Procedia PDF Downloads 156
1269 Investigation of Vortex Induced Vibration and Galloping Characteristic for Various Shape Slender Bridge Hanger

Authors: Matza Gusto Andika, Syariefatunnisa

Abstract:

Hanger at the arch bridges is an important part to transfer load on the bridge deck onto the arch. Bridges are subjected to several types of loadings, such as dead load, temperature load, wind load, moving loads etc. Usually the hanger bridge has a typical bluff body shape such as circle, square, H beam, etc. When flow past bluff body, the flow separates from the body surface generating an unsteady broad wake. These vortices are shed to the wake periodically with some frequency that is related to the undisturbed wind speed and the size of the cross-section body by the well-known Strouhal relationship. The dynamic characteristic and hanger shape are crucial for the evaluation of vortex induced vibrations and structural vibrations. The effect of vortex induced vibration is not catastrophic as a flutter phenomenon, but it can make fatigue failure to the structure. Wind tunnel tests are conducted to investigate the VIV and galloping effect at circle, hexagonal, and H beam bluff body for hanger bridge. From this research, the hanger bridge with hexagonal shape has a minimum vibration amplitude due to VIV phenomenon compared to circle and H beam. However, when the wind bruises the acute angle of hexagon shape, the vibration amplitude of bridge hanger with hexagonal shape is higher than the other bluff body.

Keywords: vortex induced vibration, hanger bridge, wind tunnel, galloping

Procedia PDF Downloads 242
1268 Design of In-House Test Method for Assuring Packing Quality of Bottled Spirits

Authors: S. Ananthakrishnan, U. H. Acharya

Abstract:

Whether shopping in a retail location or via the internet, consumers expect to receive their products intact. When products arrive damaged or over-packaged, the result can be customer dissatisfaction and increased cost for retailers and manufacturers. The packaging performance depends on both the transport situation and the packaging design. During transportation, the packaged products are subjected to the variation in vibration levels from transport vehicles that vary in frequency and acceleration while moving to their destinations. Spirits manufactured by this Company were being transported to various parts of the country by road. There were instances of package breaking and customer complaints. The vibration experienced on a straight road at some speed may not be same as the vibration experienced by the same vehicle on a curve at the same speed. This vibration may negatively affect the product or packing. Hence, it was necessary to conduct a physical road test to understand the effect of vibration in the packaged products. The field transit trial has to be done before the transportations, which results in high investment. The company management was interested in developing an in-house test environment which would adequately represent the transit conditions. With the objective to develop an in-house test condition that can accurately simulate the mechanical loading scenario prevailing during the storage, handling and transportation of the products a brainstorming was done with the concerned people to identify the critical factors affecting vibration rate. Position of corrugated box, the position of bottle and speed of vehicle were identified as factors affecting the vibration rate. Several packing scenarios were identified by Design of Experiment methodology and simulated in the in-house test facility. Each condition was observed for 30 minutes, which was equivalent to 1000 km. The achieved vibration level was considered as the response. The average achieved in the simulated experiments was near to the third quartile (Q3) of the actual data. Thus, we were able to address around three-fourth of the actual phenomenon. Most of the cases in transit could be reproduced. The recommended test condition could generate a vibration level ranging from 9g to 15g as against a maximum of only 7g that was being generated earlier. Thus, the Company was able to test the packaged cartons satisfactorily in the house itself before transporting to the destinations, assuring itself that the breakages of the bottles will not happen.

Keywords: ANOVA, Corrugated box, DOE, Quartile

Procedia PDF Downloads 94
1267 Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction

Authors: Po-Jen Su, Huann-Ming Chou

Abstract:

In this article we uses the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time.

Keywords: maximum principle, non-Fourier heat conduction, residual correction method, thermo-elastic response

Procedia PDF Downloads 397
1266 Investigation of Cavitation in a Centrifugal Pump Using Synchronized Pump Head Measurements, Vibration Measurements and High-Speed Image Recording

Authors: Simon Caba, Raja Abou Ackl, Svend Rasmussen, Nicholas E. Pedersen

Abstract:

It is a challenge to directly monitor cavitation in a pump application during operation because of a lack of visual access to validate the presence of cavitation and its form of appearance. In this work, experimental investigations are carried out in an inline single-stage centrifugal pump with optical access. Hence, it gives the opportunity to enhance the value of CFD tools and standard cavitation measurements. Experiments are conducted using two impellers running in the same volute at 3000 rpm and the same flow rate. One of the impellers used is optimized for lower NPSH₃% by its blade design, whereas the other one is manufactured using a standard casting method. The cavitation is detected by pump performance measurements, vibration measurements and high-speed image recordings. The head drop and the pump casing vibration caused by cavitation are correlated with the visual appearance of the cavitation. The vibration data is recorded in an axial direction of the impeller using accelerometers recording at a sample rate of 131 kHz. The vibration frequency domain data (up to 20 kHz) and the time domain data are analyzed as well as the root mean square values. The high-speed recordings, focusing on the impeller suction side, are taken at 10,240 fps to provide insight into the flow patterns and the cavitation behavior in the rotating impeller. The videos are synchronized with the vibration time signals by a trigger signal. A clear correlation between cloud collapses and abrupt peaks in the vibration signal can be observed. The vibration peaks clearly indicate cavitation, especially at higher NPSHA values where the hydraulic performance is not affected. It is also observed that below a certain NPSHA value, the cavitation started in the inlet bend of the pump. Above this value, cavitation occurs exclusively on the impeller blades. The impeller optimized for NPSH₃% does show a lower NPSH₃% than the standard impeller, but the head drop starts at a higher NPSHA value and is more gradual. Instabilities in the head drop curve of the optimized impeller were observed in addition to a higher vibration level. Furthermore, the cavitation clouds on the suction side appear more unsteady when using the optimized impeller. The shape and location of the cavitation are compared to 3D fluid flow simulations. The simulation results are in good agreement with the experimental investigations. In conclusion, these investigations attempt to give a more holistic view on the appearance of cavitation by comparing the head drop, vibration spectral data, vibration time signals, image recordings and simulation results. Data indicates that a criterion for cavitation detection could be derived from the vibration time-domain measurements, which requires further investigation. Usually, spectral data is used to analyze cavitation, but these investigations indicate that the time domain could be more appropriate for some applications.

Keywords: cavitation, centrifugal pump, head drop, high-speed image recordings, pump vibration

Procedia PDF Downloads 151
1265 An Experimental Study of Downstream Structures on the Flow-Induced Vibrations Energy Harvester Performances

Authors: Pakorn Uttayopas, Chawalit Kittichaikarn

Abstract:

This paper presents an experimental investigation for the characteristics of an energy harvesting device exploiting flow-induced vibration in a wind tunnel. A stationary bluff body is connected with a downstream tip body via an aluminium cantilever beam. Various lengths of aluminium cantilever beam and different shapes of downstream tip body are considered. The results show that the characteristics of the energy harvester’s vibration depend on both the length of the aluminium cantilever beam and the shape of the downstream tip body. The highest ratio between vibration amplitude and bluff body diameter was found to be 1.39 for an energy harvester with a symmetrical triangular tip body and L/D1 = 5 at 9.8 m/s of flow speed (Re = 20077). Using this configuration, the electrical energy was extracted with a polyvinylidene fluoride (PVDF) piezoelectric beam with different load resistances, of which the optimal value could be found on each Reynolds number. The highest power output was found to be 3.19 µW, at 9.8 m/s of flow speed (Re = 20077) and 27 MΩ of load resistance.

Keywords: downstream structures, energy harvesting, flow-induced vibration, piezoelectric material, wind tunnel

Procedia PDF Downloads 209
1264 The Lateral and Torsional Vibration Analysis of a Rotor-Bearing System Using Transfer Matrix Method

Authors: Mohammad Hadi Jalali, Mostafa Ghayour, Saeed Ziaei-Rad, Behrooz Shahriari

Abstract:

The vibration problems that can be occurred in the operational conditions of rotating machines may cause damage to the machine or even failure of the machine completely. Therefore, dynamic analysis of rotors is vital in the design and development stages of the rotating machines. In this study, the uncoupled torsional and lateral vibration analysis of a rotor-bearing system is carried out using transfer matrix method. The Campbell diagram, critical speed and the mode shape corresponding to the critical speed are obtained in order to evaluate the dynamic behavior of the rotor.

Keywords: transfer matrix method, rotor-bearing system, campbell diagram, critical speed

Procedia PDF Downloads 466
1263 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method

Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis

Abstract:

Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.

Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses

Procedia PDF Downloads 106
1262 Research Developments in Vibration Control of Structure Using Tuned Liquid Column Dampers: A State-of-the-Art Review

Authors: Jay Gohel, Anant Parghi

Abstract:

A tuned liquid column damper (TLCD) is a modified passive system of tuned mass damper, where a liquid is used in place of mass in the structure. A TLCD consists of U-shaped tube with an orifice that produces damping against the liquid motion in the tube. This paper provides a state-of-the-art review on the vibration control of wind and earthquake excited structures using liquid dampers. Further, the paper will also discuss the theoretical background of TCLD, history of liquid dampers and existing literature on experimental, numerical, and analytical study. The review will also include different configuration of TLCD viz single TLCD, multi tuned liquid column damper (MTLCD), TLCD-Interior (TLCDI), tuned liquid column ball damper (TLCBD), tuned liquid column ball gas damper (TLCBGD), and pendulum liquid column damper (PLCD). The dynamic characteristics of the different configurate TLCD system and their effectiveness in reducing the vibration of structure will be discussed. The effectiveness of semi-active TLCD will be also discussed with reference to experimental and analytical results. In addition, the review will also provide the numerous examples of implemented TLCD to control the vibration in real structures. Based on the comprehensive review of literature, some important conclusions will be made and the need for future research will be identified for vibration control of structures using TLCD.

Keywords: earthquake, wind, tuned liquid column damper, passive response control, structures

Procedia PDF Downloads 176
1261 High Rise Building Vibration Control Using Tuned Mass Damper

Authors: T. Vikneshvaran, A. Aminudin, U. Alyaa Hashim, Waziralilah N. Fathiah, D. Shakirah Shukor

Abstract:

This paper presents the experimental study conducted on a structure of three-floor height building model. Most vibrations are undesirable and can cause damages to the buildings, machines and people all around us. The vibration wave from earthquakes, construction and winds have high potential to bring damage to the buildings. Excessive vibrations can result in structural and machinery failures. This failure is related to the human life and environment around it. The effect of vibration which causes failure and damage to the high rise buildings can be controlled in real life by implementing tuned mass damper (TMD) into the structure of the buildings. This research aims to study the effect and performance improvement achieved by applying TMD into the building structure. A structure model of three degrees of freedom (3DOF) is designed to demonstrate the performance of TMD to the designed model. The model designed is the physical representation of actual building structure in real life. It is constructed at a reduced scale and will be used for the experiment. Thus, the result obtained will be more accurate to compared with the real life effect. Based on the result from experimental study, by applying TMD to the structure model, the forces of vibration and the displacement mode of the building reduced. Thus, the reduced in vibration of the building helps to maintain the good condition of the building.

Keywords: degrees-of-freedom, displacement mode, natural frequency, tuned mass damper

Procedia PDF Downloads 308
1260 Multiscale Process Modeling Analysis for the Prediction of Composite Strength Allowables

Authors: Marianna Maiaru, Gregory M. Odegard

Abstract:

During the processing of high-performance thermoset polymer matrix composites, chemical reactions occur during elevated pressure and temperature cycles, causing the constituent monomers to crosslink and form a molecular network that gradually can sustain stress. As the crosslinking process progresses, the material naturally experiences a gradual shrinkage due to the increase in covalent bonds in the network. Once the cured composite completes the cure cycle and is brought to room temperature, the thermal expansion mismatch of the fibers and matrix cause additional residual stresses to form. These compounded residual stresses can compromise the reliability of the composite material and affect the composite strength. Composite process modeling is greatly complicated by the multiscale nature of the composite architecture. At the molecular level, the degree of cure controls the local shrinkage and thermal-mechanical properties of the thermoset. At the microscopic level, the local fiber architecture and packing affect the magnitudes and locations of residual stress concentrations. At the macroscopic level, the layup sequence controls the nature of crack initiation and propagation due to residual stresses. The goal of this research is use molecular dynamics (MD) and finite element analysis (FEA) to predict the residual stresses in composite laminates and the corresponding effect on composite failure. MD is used to predict the polymer shrinkage and thermomechanical properties as a function of degree of cure. This information is used as input into FEA to predict the residual stresses on the microscopic level resulting from the complete cure process. Virtual testing is subsequently conducted to predict strength allowables. Experimental characterization is used to validate the modeling.

Keywords: molecular dynamics, finite element analysis, processing modeling, multiscale modeling

Procedia PDF Downloads 69
1259 Development of Low-Cost Vibro-Acoustic, and Fire-Resistant, Insulation Material from Natural and Sustainable Sources

Authors: K. Nasir, S. Ahmad, A. Khan, H. Benkreira

Abstract:

The topic of the research is to develop sustainable fire-resistant materials for vibration and acoustic damping of structure and airborne noises from sustainable recycled materials and biodegradable binders. The paper reports, methods and techniques of enhancing fire resistive, vibration and acoustic properties of building insulation materials made from natural resources like wood and recycled materials like rubber and textile waste. The structures are designed to optimize the number, size and stratification of closed (heat insulating) and open (noise insulating) pores. The samples produced are tested for their heat and noise insulating properties, including vibration damping and their structural properties (airflow resistivity, porosity, tortuosity and elastic modulus). The structural properties are then used in theoretical models to check the acoustic insulation measurements. Initial data indicate that one layer of such material can yield as much as 18 times more damping, increasing the loss factor by 18%.

Keywords: fire resistant, vibration damping, acoustic material, vibro-acoustic, thermal insulation, sustainable material, low cost materials, recycled materials, construction material

Procedia PDF Downloads 107
1258 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force

Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh

Abstract:

This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.

Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection

Procedia PDF Downloads 354
1257 Failure Analysis of Recoiler Mandrel Shaft Used for Coiling of Rolled Steel Sheet

Authors: Sachin Pawar, Suman Patra, Goutam Mukhopadhyay

Abstract:

The primary function of a shaft is to transfer power. The shaft can be cast or forged and then machined to the final shape. Manufacturing of ~5 m length and 0.6 m diameter shaft is very critical. More difficult is to maintain its straightness during heat treatment and machining operations, which involve thermal and mechanical loads, respectively. During the machining operation of a such forged mandrel shaft, a deflection of 3-4mm was observed. To remove this deflection shaft was pressed at both ends which led to the development of cracks in it. To investigate the root cause of the deflection and cracking, the sample was cut from the failed shaft. Possible causes were identified with the help of a cause and effect diagram. Chemical composition analysis, microstructural analysis, and hardness measurement were done to confirm whether the shaft meets the required specifications or not. Chemical composition analysis confirmed that the material grade was 42CrMo4. Microstructural analysis revealed the presence of untempered martensite, indicating improper heat treatment. Due to this, ductility and impact toughness values were considerably lower than the specification of the mentioned grade. Residual stress measurement of one more bent shaft manufactured by a similar route was done by portable X-ray diffraction(XRD) technique. For better understanding, measurements were done at twelve different locations along the length of the shaft. The occurrence of a high amount of undesirable tensile residual stresses close to the Ultimate Tensile Strength(UTS) of the material was observed. Untempered martensitic structure, lower ductility, lower impact strength, and presence of a high amount of residual stresses all confirmed the improper tempering heat treatment of the shaft. Tempering relieves the residual stresses. Based on the findings of this study, stress-relieving heat treatment was done to remove the residual stresses and deflection in the shaft successfully.

Keywords: residual stress, mandrel shaft, untempered martensite, portable XRD

Procedia PDF Downloads 85