Search results for: pressure coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5884

Search results for: pressure coefficient

5794 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model

Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes

Abstract:

In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.

Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity

Procedia PDF Downloads 291
5793 Flow Boiling Heat Transfer at Low Mass and Heat Fluxes: Heat Transfer Coefficient, Flow Pattern Analysis and Correlation Assessment

Authors: Ernest Gyan Bediako, Petra Dancova, Tomas Vit

Abstract:

Flow boiling heat transfer remains an important area of research due to its relevance in thermal management systems and other applications. Despite the enormous work done in the field of flow boiling heat transfer over the years to understand how flow parameters such as mass flux, heat flux, saturation conditions and tube geometries influence the characteristics of flow boiling heat transfer, there are still many contradictions and lack of agreement on the actual mechanisms controlling heat transfer and how flow parameters impact the heat transfer. This work thus seeks to experimentally investigate the heat transfer characteristics and flow patterns at low mass fluxes, low heat fluxes and low saturation pressure conditions which are of less attention in literature but prevalent in refrigeration, air-conditioning and heat pump applications. In this study, flow boiling experiment was conducted for R134a working fluid in a 5 mm internal diameter stainless steel horizontal smooth tube with mass flux ranging from 80- 100 kg/m2 s, heat fluxes ranging from 3.55kW/m2 - 25.23 kW/m2 and saturation pressure of 460 kPa. Vapor quality ranged from 0 to 1. A well-known flow pattern map created by Wojtan et al. was used to predict the flow patterns noticed during the study. The experimental results were correlated with well-known flow boiling heat transfer correlations in literature. The findings show that, heat transfer coefficient was influenced by both mass flux and heat fluxes. However, for an increasing heat flux, nucleate boiling was observed to be the dominant mechanism controlling the heat transfer especially at low vapor quality region. For an increasing mass flux, convective boiling was the dominant mechanism controlling the heat transfer especially in the high vapor quality region. Also, the study observed an unusual high heat transfer coefficient at low vapor qualities which could be due to periodic wetting of the walls of the tube due to slug flow pattern and stratified wavy flow patterns. The flow patterns predicted by Wojtan et al. flow pattern map were mixture of slug and stratified wavy, purely stratified wavy and dry out. Statistical assessment of the experimental data with various well-known correlations from literature showed that, none of the correlations reported in literature could predicted the experimental data with enough accuracy.

Keywords: flow boiling, heat transfer coefficient, mass flux, heat flux.

Procedia PDF Downloads 84
5792 Induced Thermo-Osmotic Convection for Heat and Mass Transfer

Authors: Francisco J. Arias

Abstract:

Consideration is given to a mechanism of heat and mass transport in solutions similar than that of natural convection but with one important difference. Here the mechanism is not promoted by density differences in the fluid occurring due to temperature gradients (coefficient of thermal expansion) but rather by solubility differences due to the thermal dependence of the solubility (coefficient of thermal solubility). Utilizing a simplified physical model, it is shown that by the proper choice of the concentration of a given solution, convection might be induced by the alternating precipitation of the solute -when the solution becomes supersaturated, and its posterior recombination when changes in temperature occurs. The spontaneous change in the Gibbs free energy during the mixing is the driven force for the mechanism. The maximum extractable energy from this new type of thermal convection was derived. Experimental data from a closed-loop circuit was obtained demonstrating the feasibility for continuous separation and recombination of the solution. This type of heat and mass transport -which doesn’t depend on gravity, might potentially be interesting for heat and mass transport downwards (as in solar-roof collectors to inside homes), horizontal (e.g., microelectronic applications), and in microgravity (space technology). Also, because the coefficient of thermal solubility could be positive or negative, the investigated thermo-osmosis convection can be used either for heating or cooling.

Keywords: natural convection, thermal gradient, solubility, osmotic pressure

Procedia PDF Downloads 266
5791 The Effects of “Never Pressure Injury” on the Incidence of Pressure Injuries in Critically Ill Patients

Authors: Nuchjaree Kidjawan, Orapan Thosingha, Pawinee Vaipatama, Prakrankiat Youngkong, Sirinapha Malangputhong, Kitti Thamrongaphichartkul, Phatcharaporn Phetcharat

Abstract:

NPI uses technology sensorization of things and processed by AI system. The main features are an individual interface pressure sensor system in contact with the mattress and a position management system where the sensor detects the determined pressure with automatic pressure reduction and distribution. The role of NPI is to monitor, identify the risk and manage the interface pressure automatically when the determined pressure is detected. This study aims to evaluate the effects of “Never Pressure Injury (NPI),” an innovative mattress, on the incidence of pressure injuries in critically ill patients. An observational case-control study was employed to compare the incidence of pressure injury between the case and the control group. The control group comprised 80 critically ill patients admitted to a critical care unit of Phyathai3 Hospital, receiving standard care with the use of memory foam according to intensive care unit guidelines. The case group comprised 80 critically ill patients receiving standard care and with the use of the Never Pressure Injury (NPI) innovation mattress. The patients who were over 20 years old and showed scores of less than 18 on the Risk Assessment Pressure Ulcer Scale – ICU and stayed in ICU for more than 24 hours were selected for the study. The patients’ skin was assessed for the occurrence of pressure injury once a day for five consecutive days or until the patients were discharged from ICU. The sample comprised 160 patients with ages ranging from 30-102 (mean = 70.1 years), and the Body Mass Index ranged from 13.69- 49.01 (mean = 24.63). The case and the control group were not different in their sex, age, Body Mass Index, Pressure Ulcer Risk Scores, and length of ICU stay. Twenty-two patients (27.5%) in the control group had pressure injuries, while no pressure injury was found in the case group.

Keywords: pressure injury, never pressure injury, innovation mattress, critically ill patients, prevent pressure injury

Procedia PDF Downloads 85
5790 Cross Ventilation Potential in an Array of Building Blocks: The Case Study of Alexandria

Authors: Bakr Gomaa

Abstract:

Wind driven Cross ventilation is achieved when air moves indoors due to the pressure difference on the building envelope. This is especially important in breezy moderate to humid settings in which fast air flow can promote thermal comfort. Studies have shown that the use of simple building forms or ignoring the urban context when studying natural ventilation can lead to inaccurate results. In this paper, the impact of the urban form of a regular array of buildings is investigated to define the impact of this urban setting on cross ventilation potential. The objective of this paper is to provide the necessary tools to achieve natural ventilation for cooling purposes in an array of building blocks context. The array urban form has been studied before for natural ventilation purposes yet to the best of our knowledge no study has considered the relationship between the urban form and the pressure patterns that develop on the buildings envelope for cross ventilation. For this we use detailed weather data for a case study city of Alexandria (Egypt), as well as a validated CFD simulations to investigate the cross ventilation potential in terms of pressure patterns in waterfront as well as in-city wind flows perpendicular to the buildings array. it was found that for both waterfront and in-city wind speeds the windows needed for cross ventilation in rear raws of the array are significantly larger than those needed for front raw.

Keywords: Alexandria, CFD, cross ventilation, pressure coefficient

Procedia PDF Downloads 363
5789 Effect of Hypertension Exercise and Slow Deep Breathing Combination to Blood Pressure: A Mini Research in Elderly Community

Authors: Prima Khairunisa, Febriana Tri Kusumawati, Endah Luthfiana

Abstract:

Background: Hypertension in elderly, caused by cardiovascular system cannot work normally, because the valves thickened and inelastic blood vessels. It causes vasoconstriction of the blood vessels. Hypertension exercise, increase cardiovascular function and the elasticity of the blood vessels. While slow deep breathing helps the body and mind feel relax. Combination both of them will decrease the blood pressure. Objective: To know the effect of hypertension exercise and slow deep breathing combination to blood pressure in elderly. Method: The study conducted with one group pre-post test experimental design. The samples were 10 elderly both male and female in a Village in Semarang, Central Java, Indonesia. The tool was manual sphygmomanometer to measure blood pressure. Result: Based on paired t-test between hypertension exercise and slow deep breathing with systole blood pressure showed sig (2-tailed) was 0.045, while paired t-test between hypertension exercise hypertension exercise and slow deep breathing with diastole blood pressure showed sig (2-tailed) was 0,343. The changes of systole blood pressure were 127.5 mmHg, and diastole blood pressure was 80 mmHg. Systole blood pressure decreases significantly because the average of systole blood pressure before implementation was 135-160 mmHg. While diastole blood pressure was not decreased significantly. It was influenced by the average of diastole blood pressure before implementation of hypertension exercise was not too high. It was between 80- 90 mmHg. Conclusion: There was an effect of hypertension exercise and slow deep breathing combination to the blood pressure in elderly after 6 times implementations.

Keywords: hypertension exercise, slow deep breathing, elderly, blood pressure

Procedia PDF Downloads 315
5788 Estimation of Pressure Profile and Boundary Layer Characteristics over NACA 4412 Airfoil

Authors: Anwar Ul Haque, Waqar Asrar, Erwin Sulaeman, Jaffar S. M. Ali

Abstract:

Pressure distribution data of the standard airfoils is usually used for the calibration purposes in subsonic wind tunnels. Results of such experiments are quite old and obtained by using the model in the spanwise direction. In this manuscript, pressure distribution over NACA 4412 airfoil model was presented by placing the 3D model in the lateral direction. The model is made of metal with pressure ports distributed longitudinally as well as in the lateral direction. The pressure model was attached to the floor of the tunnel with the help of the base plate to give the specified angle of attack to the model. Before the start of the experiments, the pressure tubes of the respective ports of the 128 ports pressure scanner are checked for leakage, and the losses due to the length of the pipes were also incorporated in the results for the specified pressure range. Growth rate maps of the boundary layer thickness were also plotted. It was found that with the increase in the velocity, the dynamic pressure distribution was also increased for the alpha seep. Plots of pressure distribution so obtained were overlapped with those obtained by using XFLR software, a low fidelity tool. It was found that at moderate and high angles of attack, the distribution of the pressure coefficients obtained from the experiments is high when compared with the XFLR ® results obtained along with the span of the wing. This under-prediction by XFLR ® is more obvious on the windward than on the leeward side.

Keywords: subsonic flow, boundary layer, wind tunnel, pressure testing

Procedia PDF Downloads 297
5787 Influence of Pressure from Compression Textile Bands: Their Using in the Treatment of Venous Human Leg Ulcers

Authors: Bachir Chemani, Rachid Halfaoui

Abstract:

The aim of study was to evaluate pressure distribution characteristics of the elastic textile bandages using two instrumental techniques: a prototype Instrument and a load Transference. The prototype instrument which simulates shape of real leg has pressure sensors which measure bandage pressure. Using this instrument, the results show that elastic textile bandages presents different pressure distribution characteristics and none produces a uniform distribution around lower limb. The load transference test procedure is used to determine whether a relationship exists between elastic textile bandage structure and pressure distribution characteristics. The test procedure assesses degree of load, directly transferred through a textile when loads series are applied to bandaging surface. A range of weave fabrics was produced using needle weaving machine and a sewing technique. A textile bandage was developed with optimal characteristics far superior pressure distribution than other bandages. From results, we find that theoretical pressure is not consistent exactly with practical pressure. It is important in this study to make a practical application for specialized nurses in order to verify the results and draw useful conclusions for predicting the use of this type of elastic band.

Keywords: textile, cotton, pressure, venous ulcers, elastic

Procedia PDF Downloads 336
5786 Body Mass Index, Components of Metabolic Syndrome and Hyperuricemia among Women in Postmenopausal Period

Authors: Vladyslav Povoroznyuk, Galina Dubetska, Roksolana Povoroznyuk

Abstract:

In recent years, the problem of hyperuricemia is getting a particular importance due to its increased incidence in the world population. The aim of this study was to determine uriс acid level in blood serum, incidence of hyperuricemia among women in postmenopausal period and their association with body mass index and some components of metabolic syndrome (triglyceride, cholesterol, systolic and diastolic pressure). We examined 412 women in postmenopausal period. They were divided in to the following groups: I group (BMI = 18,5-24,9), II group (BMI = 25,0-29,9), III group (BMI = 30,0-34,9), IV group (BMI > 35). We determined uric acid level among women during postmenopausal period depending on their body mass index. The higher level of uric acid was found in patients with the maximal body mass index (BMI > 35). In the I group it was 277,52 ± 8,40; in the II group – 286,81 ± 7,79; in the III group – 291,81 ± 7,56; in the IV group – 327,17 ± 12,17. Incidence of hyperuricemia among women in the I group was 10,2%, in the II group – 15,9%; in the III group – 21,2%, in the IV group – 34,2%. We found an interdependence between an uric acid level and BMI in the examined women (r = 0,21, p < 0,05). We determined that the highest level of triglyceride (F = 18,62, p < 0,05), cholesterol (F = 3,64, p < 0,05), atherogenic coefficient (F = 22,64, p < 0,05), systolic (F = 10,5, p < 0,05) and diastolic pressure (F = 4,30, p < 0,05) was among women with hyperuricemia. It was an interdependence between an uric acid level and triglyceride (r = 0,26, p < 0,05), atherogenic coefficient (r = 0,24, p < 0,05) among women in postmenopausal period.

Keywords: hyperuricemia, uric acid, body mass index, women

Procedia PDF Downloads 109
5785 Estimation of Longitudinal Dispersion Coefficient Using Tracer Data

Authors: K. Ebrahimi, Sh. Shahid, M. Mohammadi Ghaleni, M. H. Omid

Abstract:

The longitudinal dispersion coefficient is a crucial parameter for 1-D water quality analysis of riverine flows. So far, different types of empirical equations for estimation of the coefficient have been developed, based on various case studies. The main objective of this paper is to develop an empirical equation for estimation of the coefficient for a riverine flow. For this purpose, a set of tracer experiments was conducted, involving salt tracer, at three sections located in downstream of a lengthy canal. Tracer data were measured in three mixing lengths along the canal including; 45, 75 and 100m. According to the results, the obtained coefficients from new developed empirical equation gave an encouraging level of agreement with the theoretical values.

Keywords: coefficients, dispersion, river, tracer, water quality

Procedia PDF Downloads 363
5784 Statistical Optimization of Distribution Coefficient for Reactive Extraction of Lactic Acid Using Tri-n-octyl Amine in Oleyl Alcohol and n-Hexane

Authors: Avinash Thakur, Parmjit S. Panesar, Manohar Singh

Abstract:

The distribution coefficient, KD for the reactive extraction of lactic acid from aqueous solutions of lactic acid using 10-30% (v/v) tri-n-octyl amine (extractant) dissolved in n-hexane (inert diluent) and 20% (v/v) oleyl alcohol (modifier) was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined interactive effect of seven independent variables, viz lactic acid concentration (cl), pH, TOA concentration in organic phase (ψ), treat ratio (φ), temperature (T), agitation speed (ω) and batch agitation time (τ) on distribution coefficient of lactic acid. The regression analysis recommended that the quadratic model is significant (R2 and adjusted R2 are 98.72 % and 98.69 % respectively) for analysis. A numerical optimization had resulted in maximum lactic acid distribution coefficient (KD) of 3.16 at the optimized values for test variables, cl, pH, ψ, φ, T, ω and τ as 0.15 [M], 3.0, 22.75% (v/v), 1.0 (v/v), 26°C, 145 rpm and 23 min respectively. A good agreement between the predicted and experimentally obtained values for distribution coefficient using the optimized conditions was exhibited.

Keywords: Distribution coefficient, tri-n-octylamine, lactic acid, response surface methodology

Procedia PDF Downloads 417
5783 Blood Pressure and Anthropometric Measurements: A Correlational Study

Authors: Abdul-Monim Batiha, Manar AlAzzam, Mohammed ALBashtawy, Loai Tawalbeh, Ahmad Tubaishat, Fadwa N. Alhalaiqa

Abstract:

Background: Obesity is the major modifiable risk factor for many chronic illnesses especially high blood pressure. Objectives: To evaluate the relationship between anthropometric indices and high blood pressure, and which one was most strongly correlated with high blood pressure in Jordanian population. Methods: A cross-sectional study was conducted with a total 622 students and workers from three Jordanian universities. Results: Nearly half of the participant are overweight (34.7%) and obese (15.4%) and hypertension was detected among 138 (22.2%) of the participants. Linear correlation was significant (p<0.01) between both systolic blood pressure and diastolic blood pressure for all anthropometric indices, except for A body shape index and diastolic blood pressure was significant at p< 0.05. Stepwise multiple linear regression analysis was used to assess the influence of age and anthropometric measurements. Conclusions: The waist circumference was the only independent predictor of hypertension, showing that this simple measurement may be an importance marker of high blood pressure in Jordanian population.

Keywords: anthropometric indices, Jordan, blood pressure, cross-sectional study, obesity, hypertension, waist circumference

Procedia PDF Downloads 264
5782 Mathematical Modeling of Skin Condensers for Domestic Refrigerator

Authors: Nitin Ghule, S. G. Taji

Abstract:

A mathematical model of hot-wall condensers used in refrigerators is presented. The model predicts the heat transfer characteristics of condenser and the effects of various design and operating parameters on condenser tube length and capacity. A finite element approach was used to model the condenser. The condenser tube is divided into elemental units, with each element consisting of adhesive tape, refrigerant tube and outer metal sheet. The heat transfer characteristics of each section are then analyzed by considering the heat transfer through the tube wall, tape and the outer sheet. Variations in inner heat transfer coefficient and pressure drop are considered depending on temperature, fluid phase, type of flow and orientation of tube. Variation in outer heat transfer coefficient is also taken into account. Various materials were analysed for the tube, tape and outer sheet.

Keywords: condenser, domestic refrigerator, heat transfer, mathematical model

Procedia PDF Downloads 435
5781 Cavitating Flow through a Venturi Using Computational Fluid Dynamics

Authors: Imane Benghalia, Mohammed Zamoum, Rachid Boucetta

Abstract:

Hydrodynamic cavitation is a complex physical phenomenon that appears in hydraulic systems (pumps, turbines, valves, Venturi tubes, etc.) when the fluid pressure decreases below the saturated vapor pressure. The works carried out in this study aimed to get a better understanding of the cavitating flow phenomena. For this, we have numerically studied a cavitating bubbly flow through a Venturi nozzle. The cavitation model is selected and solved using a commercial computational fluid dynamics (CFD) code. The obtained results show the effect of the inlet pressure (10, 7, 5, and 2 bars) of the Venturi on pressure, the velocity of the fluid flow, and the vapor fraction. We found that the inlet pressure of the Venturi strongly affects the evolution of the pressure, velocity, and vapor fraction formation in the cavitating flow.

Keywords: cavitating flow, CFD, phase change, venturi

Procedia PDF Downloads 52
5780 The Evaluation of the Safety Coefficient of Soil Slope Stability by Group Pile

Authors: Seyed Abolhassan Naeini, Hamed Yekehdehghan

Abstract:

One of the factors that affect the constructions adjacent to a slope is stability. There are various methods for the stability of the slopes, one of which is the use of concrete group piles. This study, using FLAC3D software, has tried to investigate the changes in safety coefficient because of the use of concrete group piles. In this research, furthermore, the optimal position of the piles has been investigated and the results show that the group pile does not affect the toe of the slope. In addition, the effect of the piles' burial depth on the slope has been studied. Results show that by increasing the piles burial depth on a slope, the level of stability and as a result the safety coefficient increases. In the investigation of reducing the distance between the piles and increasing the depth of underground water, it was observed that the obtained safety coefficient increased. Finally, the effect of the resistance of the lower stabilizing layer of the slope on stabilization was investigated by the pile group. The results showed that due to the behavior of the pile as a deep foundation, the stronger the soil layers are in the stable part of a stronger slope (in terms of resistance parameters), the more influential the piles are in enhancing the coefficient of safety.

Keywords: safety coefficient, group pile, slope, stability, FLAC3D software

Procedia PDF Downloads 67
5779 Dynamic Foot Pressure Measurement System Using Optical Sensors

Authors: Tanapon Keatsamarn, Chuchart Pintavirooj

Abstract:

Foot pressure measurement provides necessary information for diagnosis diseases, foot insole design, disorder prevention and other application. In this paper, dynamic foot pressure measurement is presented for pressure measuring with high resolution and accuracy. The dynamic foot pressure measurement system consists of hardware and software system. The hardware system uses a transparent acrylic plate and uses steel as the base. The glossy white paper is placed on the top of the transparent acrylic plate and covering with a black acrylic on the system to block external light. Lighting from LED strip entering around the transparent acrylic plate. The optical sensors, the digital cameras, are underneath the acrylic plate facing upwards. They have connected with software system to process and record foot pressure video in avi file. Visual Studio 2017 is used for software system using OpenCV library.

Keywords: foot, foot pressure, image processing, optical sensors

Procedia PDF Downloads 221
5778 Verification of the Supercavitation Phenomena: Investigation of the Cavity Parameters and Drag Coefficients for Different Types of Cavitator

Authors: Sezer Kefeli, Sertaç Arslan

Abstract:

Supercavitation is a pressure dependent process which gives opportunity to eliminate the wetted surface effects on the underwater vehicle due to the differences of viscosity and velocity effects between liquid (freestream) and gas phase. Cavitation process occurs depending on rapid pressure drop or temperature rising in liquid phase. In this paper, pressure based cavitation is investigated due to the fact that is encountered in the underwater world, generally. Basically, this vapor-filled pressure based cavities are unstable and harmful for any underwater vehicle because these cavities (bubbles or voids) lead to intense shock waves while collapsing. On the other hand, supercavitation is a desired and stabilized phenomena than general pressure based cavitation. Supercavitation phenomena offers the idea of minimizing form drag, and thus supercavitating vehicles are revived. When proper circumstances are set up, which are either increasing the operating speed of the underwater vehicle or decreasing the pressure difference between free stream and artificial pressure, the continuity of the supercavitation is obtainable. There are 2 types of supercavitation to obtain stable and continuous supercavitation, and these are called as natural and artificial supercavitation. In order to generate natural supercavitation, various mechanical structures are discovered, which are called as cavitators. In literature, a lot of cavitator types are studied either experimentally or numerically on a CFD platforms with intent to observe natural supercavitation since the 1900s. In this paper, firstly, experimental results are obtained, and trend lines are generated based on supercavitation parameters in terms of cavitation number (), form drag coefficientC_D, dimensionless cavity diameter (d_m/d_c), and length (L_c/d_c). After that, natural cavitation verification studies are carried out for disk and cone shape cavitators. In addition, supercavitation parameters are numerically analyzed at different operating conditions, and CFD results are fitted into trend lines of experimental results. The aims of this paper are to generate one generally accepted drag coefficient equation for disk and cone cavitators at different cavitator half angle and investigation of the supercavitation parameters with respect to cavitation number. Moreover, 165 CFD analysis are performed at different cavitation numbers on FLUENT version 21R2. Five different cavitator types are modeled on SCDM with respect tocavitator’s half angles. After that, CFD database is generated depending on numerical results, and new trend lines are generated based on supercavitation parameters. These trend lines are compared with experimental results. Finally, the generally accepted drag coefficient equation and equations of supercavitation parameters are generated.

Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavitating flows, supercavitation parameters, drag reduction, viscous force elimination, natural cavitation verification

Procedia PDF Downloads 108
5777 Laboratory Calibration of Soil Pressure Transducer for a Specified Field Application

Authors: Mohammad Zahidul Islam Bhuiyan, Shanyong Wang, Scott William Sloan, Daichao Sheng

Abstract:

Nowadays soil pressure transducers are widely used to measure the soil stress states in laboratory and field experiments. The soil pressure transducers, investigated here, are traditional diaphragm-type earth pressure cells (DEPC) based on strain gauge principle. It is found that the output of these sensors varies with the soil conditions as well as the position of a sensor. Therefore, it is highly recommended to calibrate the pressure sensors based on the similar conditions of their intended applications. The factory calibration coefficients of the EPCs are not reliable to use since they are normally calibrated by applying fluid (a special type of oil) pressure only over load sensing zone, which does not represent the actual field conditions. Thus, the calibration of these sensors is utmost important, and they play a pivotal role for assessing earth pressures precisely. In the present study, TML soil pressure sensor is used to compare its sensitivity under different calibration systems, for example, fluid calibration, and static load calibration with or without soil. The results report that the sensor provides higher sensitivity (more accurate results) under soil calibration system.

Keywords: calibration, soil pressure, earth pressure cell, sensitivity

Procedia PDF Downloads 210
5776 Flame Spread along Fuel Cylinders in High Pressures

Authors: Yanli Zhao, Jian Chen, Shouxiang Lu

Abstract:

Flame spread over solid fuels in high pressure situations such as nuclear containment shells and hyperbaric oxygen chamber has potential to result in catastrophic disaster, thus requiring best knowledge. This paper reveals experimentally the flame spread behaviors over fuel cylinders in high pressures. The fuel used in this study is polyethylene and polymethyl methacrylate cylinders with 4mm diameter. Ambient gas is fixed as air and total pressures are varied from naturally normal pressure (100kPa) to elevated pressure (400kPa). Flame appearance, burning rate and flame spread were investigated experimentally and theoretically. Results show that high pressure significantly affects the flame appearance, which is as the pressure increases, flame color changes from luminous yellow to orange and the orange part extends down towards the base of flame. Besides, the average flame width and height, and the burning rate are proved to increase with increasing pressure. What is more, flame spread rates become higher as pressure increases due to the enhancement of heat transfer from flame to solid surface in elevated pressure by performing a simplified heat balance analysis.

Keywords: cylinder fuel, flame spread, heat transfer, high pressure

Procedia PDF Downloads 351
5775 An Improvement of Flow Forming Process for Pressure Vessels by Four Rollers Machine

Authors: P. Sawitri, S. Cdr. Sittha, T. Kritsana

Abstract:

Flow forming is widely used in many industries, especially in defence technology industries. Pressure vessels requirements are high precision, light weight, seamless and optimum strength. For large pressure vessels, flow forming by 3 rollers machine were used. In case of long range rocket motor case flow forming and welding of pressure vessels have been used for manufacturing. Due to complication of welding process, researchers had developed 4 meters length pressure vessels without weldment by 4 rollers flow forming machine. Design and preparation of preform work pieces are performed. The optimization of flow forming parameter such as feed rate, spindle speed and depth of cut will be discussed. The experimental result shown relation of flow forming parameters to quality of flow formed tube and prototype pressure vessels have been made.

Keywords: flow forming, pressure vessel, four rollers, feed rate, spindle speed, cold work

Procedia PDF Downloads 300
5774 Wave-Assisted Flapping Foil Propulsion: Flow Physics and Scaling Laws From Fluid-Structure Interaction Simulations

Authors: Rajat Mittal, Harshal Raut, Jung Hee Seo

Abstract:

Wave-assisted propulsion (WAP) systems convert wave energy into thrust using elastically mounted hydrofoils. We employ sharp-interface immersed boundary simulations to examine the effect of two key parameters on the flow physics, the fluid-structure interaction, as well as thrust performance of these systems - the stiffness of the torsional spring and the location of the rotational center. The variation in spring stiffness leads to different amplitude of pitch motion, phase difference with respect to heaving motion and thrust coefficient and we show the utility of ‘maps’ of energy exchange between the flow and the hydrofoil system, as a way to understand and predict this behavior. The Force Partitioning Method (FPM) is used to decompose the pressure forces into individual components and understand the mechanism behind increase in thrust. Next, a scaling law is presented for the thrust coefficient generated by heaving and pitching foil. The parameters within the scaling law are calculated based on direct-numerical simulations based parametric study utilized to generate the energy maps. The predictions of the proposed scaling law are then compared with those of a similar model from the literature, showing a noticeable improvement in the prediction of the thrust coefficient.

Keywords: propulsion, flapping foils, hydrodynamics, wave power

Procedia PDF Downloads 27
5773 Numerical Investigation of Pressure and Velocity Field Contours of Dynamics of Drop Formation

Authors: Pardeep Bishnoi, Mayank Srivastava, Mrityunjay Kumar Sinha

Abstract:

This article represents the numerical investigation of the pressure and velocity field variation of the dynamics of pendant drop formation through a capillary tube. Numerical simulations are executed using volume of fluid (VOF) method in the computational fluid dynamics (CFD). In this problem, Non Newtonian fluid is considered as dispersed fluid whereas air is considered as a continuous fluid. Pressure contours at various time steps expose that pressure varies nearly hydrostatically at each step of the dynamics of drop formation. A result also shows the pressure variation of the liquid droplet during free fall in the computational domain. The evacuation of the fluid from the necking region is also shown by the contour of the velocity field. The role of surface tension in the Pressure contour of the dynamics of drop formation is also studied.

Keywords: pressure contour, surface tension, volume of fluid, velocity field

Procedia PDF Downloads 375
5772 Validation of the Formula for Air Attenuation Coefficient for Acoustic Scale Models

Authors: Katarzyna Baruch, Agata Szelag, Aleksandra Majchrzak, Tadeusz Kamisinski

Abstract:

Methodology of measurement of sound absorption coefficient in scaled models is based on the ISO 354 standard. The measurement is realised indirectly - the coefficient is calculated from the reverberation time of an empty chamber as well as a chamber with an inserted sample. It is crucial to maintain the atmospheric conditions stable during both measurements. Possible differences may be amended basing on the formulas for atmospheric attenuation coefficient α given in ISO 9613-1. Model studies require scaling particular factors in compliance with specified characteristic numbers. For absorption coefficient measurement, these are for example: frequency range or the value of attenuation coefficient m. Thanks to the possibilities of modern electroacoustic transducers, it is no longer a problem to scale the frequencies which have to be proportionally higher. However, it may be problematic to reduce values of the attenuation coefficient. It is practically obtained by drying the air down to a defined relative humidity. Despite the change of frequency range and relative humidity of the air, ISO 9613-1 standard still allows the calculation of the amendment for little differences of the atmospheric conditions in the chamber during measurements. The paper discusses a number of theoretical analyses and experimental measurements performed in order to obtain consistency between the values of attenuation coefficient calculated from the formulas given in the standard and by measurement. The authors performed measurements of reverberation time in a chamber made in a 1/8 scale in a corresponding frequency range, i.e. 800 Hz - 40 kHz and in different values of the relative air humidity (40% 5%). Based on the measurements, empirical values of attenuation coefficient were calculated and compared with theoretical ones. In general, the values correspond with each other, but for high frequencies and low values of relative air humidity the differences are significant. Those discrepancies may directly influence the values of measured sound absorption coefficient and cause errors. Therefore, the authors made an effort to determine an amendment minimizing described inaccuracy.

Keywords: air absorption correction, attenuation coefficient, dimensional analysis, model study, scaled modelling

Procedia PDF Downloads 394
5771 Application of Strength Criteria for Cellular Pressure Vessels

Authors: Antanas Žiliukas, Mindaugas Kukis

Abstract:

The work deals with cellular pressure vessels subjected to internal pressure. Their cellular insert can be used for placing liquids or gases, which is necessary to carry out technological processes, and the vessel itself has a good bearing capacity. Numerical calculations of the three core structures, which measure the influence of the inner cylinder thickness on maximum bearing capacity are presented. The calculations are compared using strength criteria and they show the different strength safety level.

Keywords: pressure, strength criterion, sandwich plate, cellular vessel

Procedia PDF Downloads 282
5770 Study on Moisture-Induced-Damage of Semi-Rigid Base under Hydrodynamic Pressure

Authors: Baofeng Pan, Heng Liu

Abstract:

Because of the high strength and large carrying capacity, the semi-rigid base is widely used in modern road engineering. However, hydrodynamic pressure, which is one of the main factors to cause early damage of semi-rigid base, cannot be avoided in the nature environment when pavement is subjected to some loadings such as the passing vehicles. In order to investigating how moisture-induced-damage of semi-rigid base influenced by hydrodynamic pressure, a new and effective experimental research method is provided in this paper. The results show that: (a) The washing action of high hydrodynamic pressure is the direct cause of strength reducing of road semi-rigid base. (b) The damage of high hydrodynamic pressure mainly occurs at the beginning of the scoring test and with the increasing of testing time the influence reduces. (c) Under the same hydrodynamic pressure, the longer the specimen health age, the stronger ability to resist moisture induced damage.

Keywords: semi-rigid base, hydrodynamic pressure, moisture-induced-damage, experimental research

Procedia PDF Downloads 296
5769 Study of Cavitation Erosion of Pump-Storage Hydro Power Plant Prototype

Authors: Tine Cencič, Marko Hočevar, Brane Širok

Abstract:

An experimental investigation has been made to detect cavitation in pump–storage hydro power plant prototype suffering from cavitation in pump mode. Vibrations and acoustic emission on the housing of turbine bearing and pressure fluctuations in the draft tube were measured and the corresponding signals have been recorded and analyzed. The analysis was based on the analysis of high-frequency content of measured variables. The pump-storage hydro power plant prototype has been operated at various input loads and Thoma numbers. Several estimators of cavitation were evaluated according to coefficient of determination between Thoma number and cavitation estimators. The best results were achieved with a compound discharge coefficient cavitation estimator. Cavitation estimators were evaluated in several intervals of frequencies. Also, a prediction of cavitation erosion was made in order to choose the appropriate maintenance and repair periods.

Keywords: cavitation erosion, turbine, cavitation measurement, fluid dynamics

Procedia PDF Downloads 376
5768 Effect of Pressing Pressure on Mechanical Properties of Elaeis guineensis Jacq. Fronds-Based Composite Board

Authors: Ellisha Iling, Dayang Siti Hazimmah Ali

Abstract:

Experimental composite boards were fabricated using oil palm (Elaeis guineensis Jacq) fronds particles by applying hot press pressure of 5MPa, 6MPa and 7MPa respectively. Modulus of rupture (MOR) and internal bond strength (IB) of the composite boards made with target density of 0.80 g/cm³ were evaluated. Composite board fabricated under hot press pressure of 5MPa had MOR and IB values of 16.27 and 4.34 N/mm² respectively. Corresponding values for composite board fabricated under hot press pressure of 6MPa were 16.76 and 5.41 N/mm² respectively. Whereas, the MOR and IB values of composite board fabricated under hot press pressure of 7MPa were 17.24 and 6.19 N/mm² respectively. All composite boards met the MOR and IB requirement stated in Japanese Industrial Standard (JIS). Based on results of this work, the strength of mechanical properties of composite board increased with increase of hot press pressure. This study revealed that the selection of applied pressure during fabrication of composite board is important to improve mechanical properties of composite boards.

Keywords: composite board, Elaeis guineensis Jacq. Fronds, hot press pressure, mechanical properties

Procedia PDF Downloads 159
5767 The Impact of Direct and Indirect Pressure Measuring Systems on the Pressure Mapping for the Medical Compression Garments

Authors: Arash M. Shahidi, Tilak Dias, Gayani K. Nandasiri

Abstract:

While graduated compression is the foundation of treatment and management of many medical complications such as leg ulcer, varicose veins, and lymphedema, monitoring the interface pressure has been conducted using different sensors that operate based on diverse approaches. The variations existed from the pressure readings collected using different interface pressure measurement systems would cause difficulties in taking a decision regarding the compression therapy. It is crucial to acknowledge the differences existing between direct and indirect pressure measurement systems while considering the commercially available systems such as AMI, Picopress and OPM which are under direct measurements systems, and HATRA (BSI), HOSY (RAL-GZ) and FlexiForce which comes under the indirect measurement system. Furthermore, Piezo-resistive sensors (Flexiforce) can measure the changes in resistance corresponding to the applied force on the sensing area. Direct pressure measuring systems are capable of measuring interface pressure on the three-dimensional states, while the indirect pressure measuring systems stretch the fabric in the two-dimensional direction and extrapolate pressure from surface tension measured on the device and neglect the vital factor which is the radius of curvature. In this study, a leg mannequin of known dimensions is selected with a knitted class 3 compression stocking. It has been decided to evaluate the data collected from different available systems (AMI, PicoPress, FlexiForce, and HATRA) and compare the results. The results showed a discrepancy between Hatra, AMI, Picopress, and Flexiforce against the pressure standard used to generate class 3 compression stocking. As predicted a higher pressure value with direct interface measuring systems were monitored against HATRA due to the effect of the radius of curvature.

Keywords: AMI, FlexiForce, graduated compression, HATRA, interface pressure, PicoPress

Procedia PDF Downloads 318
5766 Heat Transfer Analysis of Corrugated Plate Heat Exchanger

Authors: Ketankumar Gandabhai Patel, Jalpit Balvantkumar Prajapati

Abstract:

Plate type heat exchangers has many thin plates that are slightly apart and have very large surface areas and fluid flow passages that are good for heat transfer. This can be a more effective heat exchanger than the tube or shell heat exchanger due to advances in brazing and gasket technology that have made this plate exchanger more practical. Plate type heat exchangers are most widely used in food processing industries and dairy industries. Mostly fouling occurs in plate type heat exchanger due to deposits create an insulating layer over the surface of the heat exchanger, that decreases the heat transfer between fluids and increases the pressure drop. The pressure drop increases as a result of the narrowing of the flow area, which increases the gap velocity. Therefore, the thermal performance of the heat exchanger decreases with time, resulting in an undersized heat exchanger and causing the process efficiency to be reduced. Heat exchangers are often over sized by 70 to 80%, of which 30 % to 50% is assigned to fouling. The fouling can be reduced by varying some geometric parameters and flow parameters. Based on the study, a correlation will estimate for Nusselt number as a function of Reynolds number, Prandtl number and chevron angle.

Keywords: heat transfer coefficient, single phase flow, mass flow rate, pressure drop

Procedia PDF Downloads 285
5765 Convective Boiling of CO₂ in Macro and Mini-Channels

Authors: Adonis Menezes, Julio C. Passos

Abstract:

The present work deals with the theoretical and experimental investigation of the convective boiling of CO₂ in macro and mini-channels. A review of the state of the art of convective boiling studies in mini-channels and conventional channels for operating with CO₂ was carried out, with special attention to the flow patterns and pressure drop maps in single-phase and two-phase flows. To carry out an experimental analysis of the convective boiling of CO₂, a properly instrumented experimental bench was built, which allows a parametric analysis for different thermodynamic conditions, such as mass velocities between 200 and 1300 kg/(m².s), pressures between 20 and 70bar, temperature monitoring at the entrance of the mini-channels, heat flow and pressure drop in the test section. The visualization of flow patterns was possible with the use of a high-speed CMOS camera. The results obtained are in line with those found in the literature, both for flow patterns and for the heat transfer coefficient.

Keywords: carbon dioxide, convective boiling, CO₂, mini-channels

Procedia PDF Downloads 139