Search results for: potentiodynamic polarisation
89 The Effect of Molybdate on Corrosion Behaviour of AISI 316Ti Stainless Steel in Chloride Environment
Authors: Viera Zatkalíková, Lenka Markovičová, Aneta Tor-Swiatek
Abstract:
The effect of molybdate addition to chloride environment on resistance of AISI 316Ti stainless steel to pitting corrosion was studied. Potentiodynamic polarisation tests were performed in 1 M and 0.1 M chloride acidified solutions with various additions of sodium molybdate at room temperature. The presented results compare the effect of molybdate anions on quality of passive film (expressed by the pitting potential) in both chloride solutions. The pitting potential increases with the increase inhibitor concentration. The inhibitive effect of molybdate ions is stronger in chloride solution of lower aggressiveness (0.1M).Keywords: AISI 316Ti steel, molybdate inhibitor, pitting corrosion, pitting potential, potentiodynamic polarisation
Procedia PDF Downloads 39188 Inhibition Effect of Natural Junipers Extract towards Steel Corrosion in HCl Solution
Authors: L. Bammou, M. Belkhaouda R. Salghi, L. Bazzi, B. Hammouti
Abstract:
Steel and steel-based alloys of different grades steel are extensively used in numerous applications where acid solutions are widely applied such as industrial acid pickling, industrial acid cleaning and oil-well acidizing. The use of chemical inhibitors is one of the most practical methods for the protection against corrosion in acidic media. Most of the excellent acid inhibitors are organic compounds containing nitrogen, oxygen, phosphorus and sulphur. The use of non-toxic inhibitors called green or eco-friendly environmental inhibitors is one of the solutions possible to prevent the corrosion of the material. These advantages have incited us to draw a large part of program of our laboratory to examine natural substances as corrosion inhibitors such as: prickly pear seed oil, Argan oil, Argan extract, Fennel oil, Rosemary oil, Thymus oil, Lavender oil, Jojoba oil, Pennyroyal Mint oil, and Artemisia. In the present work, we investigate the corrosion inhibition of steel in 1 M HCl by junipers extract using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The result obtained of junipers extract (JE) shows excellent inhibition properties for the corrosion of C38 steel in 1M HCl at 298K, and the inhibition efficiency increases with increasing of the JE concentration. The inhibitor efficiencies determined by weight loss, Tafel polarisation and EIS methods are in reasonable agreement. Based on the polarisation results, the investigated junipers extract can be classified as mixed inhibitor. The calculated structural parameters show increase of the obtained Rct values and decrease of the capacitance, Cdl, with JE concentration increase. It is suggested to attribute this to the increase of the thickness of the adsorption layer at steel surface. The adsorption model obeys to the Langmuir adsorption isotherm. The adsorption process is a spontaneous and exothermic process.Keywords: corrosion inhibition, steel, friendly inhibitors, Tafel polarisation
Procedia PDF Downloads 52187 Olive Leaf Extract as Natural Corrosion Inhibitor for Pure Copper in 0.5 M NaCl Solution: A Study by Voltammetry around OCP
Authors: Chahla Rahal, Philippe Refait
Abstract:
Oleuropein-rich extract from olive leaf and acid hydrolysates, rich in hydroxytyrosol and elenolic acid was prepared under different experimental conditions. These phenolic compounds may be used as a corrosion inhibitor. The inhibitive action of these extracts and its major constituents on the corrosion of copper in 0.5 M NaCl solution has been evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The product of extraction was analyzed with high performance liquid chromatography (HPLC), whose analysis shows that olive leaf extract are greatly rich in phenolic compounds, mainly Oleuropeine (OLE), Hydroxytyrosol (HT) and elenolic acid (EA). After the acid hydrolysis and high temperature of extraction, an increase in hydroxytyrosol concentration was detected, coupled with relatively low oleuropeine content and high concentration of elenolic acid. The potentiodynamic measurements have shown that this extract acts as a mixed-type corrosion inhibitor, and good inhibition efficiency is observed with the increase in HT and EA concentration. These results suggest that the inhibitive effect of olive leaf extract might be due to the adsorption of the various phenolic compounds onto the copper surface.Keywords: Olive leaf extract, Oleuropein, hydroxytyrosol, elenolic acid , Copper, Corrosion, HPLC/DAD, Polarisation, EIS
Procedia PDF Downloads 25786 Polarisation in Latin America: Examining the Role of Social Media in Ideological Positioning Based on 2018 Census Data
Authors: Sarah Ledoux
Abstract:
This paper analyses the quantitative effects of political content consumption in social media platforms on self-reported ideological preference across the Latin American region. Initially praising the democratic potential of the internet and its social networking websites, digital politics scholars have transitioned their discourse to warning against the undemocratic side-effects it cultivates, such as hate speech, filter bubbles, and ideological polarisation. Holding technology solely responsible for political trends worldwide is an oversimplification of the factors influencing social change. Nonetheless, widespread use of social media in new democracies raises questions on the reproduction of recent trends that have been observed in the US and Western Europe. Through the analysis of ordered logistic regressions on data from the 2018 AmericasBarometer survey, this study examines the extent to which the relationship between the consumption of political content on social media is related to ideological polarisation in Latin America. The findings indicate that there is a close link between consumption of political information on social media, specifically on Facebook and WhatsApp, and ideological positioning on the extremes of the political left- and right-wings. This relation holds when controlling for individual-level demographic and attitudinal factors, as well as country-level effects. These results demonstrate with empirical evidence that viewing political content on social media has a significant positive effect on the likelihood that citizens position themselves on the extreme ends of the left-right ideological spectrum and implies that political polarisation is a phenomenon that accompanies politically driven social media use.Keywords: Latin America, polarisation, political consumption, political ideology, social media, survey
Procedia PDF Downloads 14685 Mechanism of Cathodic Protection to Minimize Corrosion Caused by Chloride in Reinforcement Concrete
Authors: Mohamed A. Deyab, Omnia El-Shamy
Abstract:
The main objective of this case study is to integrate the advantages of cathodic protection technologies in order to lessen chloride-induced corrosion in reinforced concrete. This research employs potentiodynamic polarisation, impedance spectroscopy (EIS), and surface characteristics. The results showed how effectively the new cathodic control strategy is preventing corrosion of the concrete iron rods. Over time, the protective system becomes more reliable and effective. The potentials of the zinc electrode persist still more negative after 30 days, implying that the zinc electrode can maintain powerful electrocatalytic behavior for a long period of time. As per the electrochemical impedance spectroscopy (EIS), using the CP technique reduces the rate of corrosion of rebar iron in cementitious materials over time.Keywords: cathodic protection, corrosion, reinforced concrete, chloride
Procedia PDF Downloads 8684 A Study of the Weld Properties of Inconel 625 Based on Nb Content
Authors: JongWon Han, NoHoon Kim, HyoIk Ahn, HaeWoo Lee
Abstract:
In this study, shielded metal arc welding was performed as a function of Nb content at 2.24 wt%, 3.25 wt%, and 4.26 wt%. The microstructure was observed using scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and showed the development of a columnar dendrite structure in the specimen having the least Nb content. From the hardness test, the hardness value was confirmed to reduce with decreasing Nb content. From electron backscatter diffraction (EBSD) analysis, the largest grain size was found in the specimen with Nb content of 2.24 wt%. The potentiodynamic polarization test was carried out to determine the pitting corrosion resistance; there was no significant difference in the pitting corrosion resistance with increasing Nb content. To evaluate the degree of sensitization to intergranular corrosion, the Double Loop Electrochemical Potentiodynamic Reactivation(DL-EPR test) was conducted. A similar degree of sensitization was found in two specimens except with a Nb content of 2.24 wt%, while a relatively high degree of sensitization was found in the specimen with a Nb content of 2.24 wt%.Keywords: inconel 625, Nb content, potentiodynamic test, DL-EPR test
Procedia PDF Downloads 30883 Green Corrosion Inhibitor from Essential Oil of Linseed for Aluminum in Na2CO3 Solution
Authors: L. Bazzi, E. Azzouyahar, A. Lamiri, M. Essahli
Abstract:
Effect of addition of linseed oil (LSO) on the corrosion of aluminium in 0.1 M Na2CO3 has been studied by weight loss measurements, potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements. The inhibition efficiency was found to increase with inhibitor content to attain 70% for LSO at 4g/L. Inhibition efficiency E (%) obtained from the various methods is in good agreement. The temperature effect on the corrosion behavior of aluminium was studied by potentiodynamic technique in the range from 298 to 308 K.Keywords: aluminum, corrosion, green inhibitors, carbonate, linseed oil
Procedia PDF Downloads 36082 Electrochemical Behaviour of 2014 and 2024 Al-Cu-Mg Alloys of Various Tempers
Authors: K. S. Ghosh, Sagnik Bose, Kapil Tripati
Abstract:
Potentiodynamic polarization studies carried out on AA2024 and AA2014 Al-Cu-Mg alloys of various tempers in 3.5 wt. % NaCl and in 3.5 wt. % NaCl + 1.0 % H2O2 solution characteristic E-i curves. Corrosion potential (Ecorr) value has shifted towards more negative potential with the increase of artificial aging time. The Ecorr value for the alloy tempers has also shifted anodically in presence of H2O2 in 3.5 % NaCl solution. Further, passivity phenomenon has been observed in all the alloy tempers when tested in 3.5 wt. % NaCl solution at pH 12. Stress corrosion cracking (SCC) behaviour of friction stir weld (FSW) joint of AA2014 alloy has been studied bu slow strain rate test (SSRT) in 3.5 wt. % NaCl solution. Optical micrographs of the corroded surfaces of polarised samples showed general corrosion, extensive pitting and intergranular corrosion as well. Further, potentiodynamic cyclic polarization curves displayed wide hysteresis loop indicating that the alloy tempers are susceptible to pit growth damage. Attempts have been made to explain the variation of observed electrochemical and SCC behaviour of the alloy tempers and the electrolyte conditions with the help of microstructural features.Keywords: AA 2014 and AA 2024 Al-C-Mg alloy, artificial ageing, potentiodynamic polarization, TEM micrographs, stress corrosion cracking (SCC)
Procedia PDF Downloads 33481 Investigation of Acidizing Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Theoretical and Experimental Approaches
Authors: Ambrish Singh
Abstract:
The corrosion inhibition performance of pyran derivatives (AP) on mild steel in 15% HCl was investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, weight loss, contact angle, and scanning electron microscopy (SEM) measurements, DFT and molecular dynamic simulation. The adsorption of APs on the surface of mild steel obeyed Langmuir isotherm. The potentiodynamic polarization study confirmed that inhibitors are mixed type with cathodic predominance. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. The theoretical data obtained are, in most cases, in agreement with experimental results.Keywords: acidizing inhibitor, pyran derivatives, DFT, molecular simulation, mild steel, EIS
Procedia PDF Downloads 19580 Waste-Based Surface Modification to Enhance Corrosion Resistance of Aluminium Bronze Alloy
Authors: Wilson Handoko, Farshid Pahlevani, Isha Singla, Himanish Kumar, Veena Sahajwalla
Abstract:
Aluminium bronze alloys are well known for their superior abrasion, tensile strength and non-magnetic properties, due to the co-presence of iron (Fe) and aluminium (Al) as alloying elements and have been commonly used in many industrial applications. However, continuous exposure to the marine environment will accelerate the risk of a tendency to Al bronze alloys parts failures. Although a higher level of corrosion resistance properties can be achieved by modifying its elemental composition, it will come at a price through the complex manufacturing process and increases the risk of reducing the ductility of Al bronze alloy. In this research, the use of ironmaking slag and waste plastic as the input source for surface modification of Al bronze alloy was implemented. Microstructural analysis conducted using polarised light microscopy and scanning electron microscopy (SEM) that is equipped with energy dispersive spectroscopy (EDS). An electrochemical corrosion test was carried out through Tafel polarisation method and calculation of protection efficiency against the base-material was determined. Results have indicated that uniform modified surface which is as the result of selective diffusion process, has enhanced corrosion resistance properties up to 12.67%. This approach has opened a new opportunity to access various industrial utilisations in commercial scale through minimising the dependency on natural resources by transforming waste sources into the protective coating in environmentally friendly and cost-effective ways.Keywords: aluminium bronze, waste-based surface modification, tafel polarisation, corrosion resistance
Procedia PDF Downloads 23679 Inhibition of the Corrosion of Copper in 0.5 NaCl Solutions by Aqueous Extract and Hydrolysis Acid of Olive Leaf Extract
Authors: Chahla Rahal, Philippe Refait
Abstract:
Oleuropein-rich extract from olive leaf and acid hydrolysates, rich in hydroxytyrosol and elenolic acid was prepared under different experimental conditions. These phenolic compounds may be used as a corrosion inhibitor. The inhibitive action of these extracts and its major constituents on the corrosion of copper in 0.5 M NaCl solution has been evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The product of extraction was analyzed with high performance liquid chromatography (HPLC), whose analysis shows that olive leaf extract are greatly rich in phenolic compounds, mainly Oleuropeine (OLE), Hydroxytyrosol (HT) and elenolic acid (EA). After the acid hydrolysis and high temperature of extraction, an increase in hydroxytyrosol concentration was detected, coupled with relatively low oleuropeine content and high concentration of elenolic acid. The potentiodynamic measurements have shown that this extract acts as a mixed-type corrosion inhibitor, and good inhibition efficiency is observed with the increase in HT and EA concentration. These results suggest that the inhibitive effect of olive leaf extract might be due to the adsorption of the various phenolic compounds onto the copper surface.Keywords: olive leaf extract, oleuropein, voltammetry, copper, corrosion, HPLC, EIS
Procedia PDF Downloads 30278 Corrosion Resistance Performance of Epoxy/Polyamidoamine Coating Due to Incorporation of Nano Aluminium Powder
Authors: Asiful Hossain Seikh, Mohammad Asif Alam, Ubair Abdus Samad, Jabair A. Mohammed, S. M. Al-Zahrani, El-Sayed M. Sherif
Abstract:
In this current investigation, aliphatic amine-cured diglycidyl ether of bisphenol-A (DGEBA) based epoxy coating was mixed with certain weight % hardener polyaminoamide (1:2) and was coated on carbon steel panels with and without 1% nano crystalline Al powder. The corrosion behavior of the coated samples were investigated by exposing them in the salt spray chamber, for 500 hours. According to ASTM-B-117, the bath was kept at 35 °C and 5% NaCl containing mist was sprayed at 1.3 bars pressure. Composition of coatings was confirmed using Fourier-transform infrared spectroscopy (FTIR). Electrochemical characterization of the coated samples was also performed using potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS) technique. All the experiments were done in 3.5% NaCl solution. The nano Al coated sample shows good corrosion resistance property compared to bare Al sample. In fact after salt spray exposure no pitting or local damage was observed for nano coated sample and the coating gloss was negligibly affected. The surface morphology of coated and corroded samples was studied using scanning electron microscopy (SEM).Keywords: epoxy, nano aluminium, potentiodynamic polarization, salt spray, electrochemical impedence spectroscopy
Procedia PDF Downloads 16777 Novel Poly Schiff Bases as Corrosion Inhibitors for Carbon Steel in Sour Petroleum Conditions
Authors: Shimaa A. Higazy, Olfat E. El-Azabawy, Ahmed M. Al-Sabagh, Notaila M. Nasser, Eman A. Khamis
Abstract:
In this work, two novel Schiff base polymers (PSB1 and PSB₂) with extra-high protective barrier features were facilely prepared via Polycondensation reactions. They were applied for the first time as effective corrosion inhibitors in the sour corrosive media of petroleum environments containing hydrogen sulfide (H₂S) gas. For studying the polymers' inhibitive action on the carbon steel, numerous corrosion testing methods including potentiodynamic polarization (PDP), open circuit potential, and electrochemical impedance spectroscopy (EIS) have been employed at various temperatures (298-328 K) in the oil wells formation water with H₂S concentrations of 100, 400, and 700 ppm as aggressive media. The activation energy (Ea) and other thermodynamic parameters were computed to describe the mechanism of adsorption. The corrosion morphological traits and steel samples' surfaces composition were analyzed by field emission scanning electron microscope and energy dispersive X-ray analysis. The PSB2 inhibited sour corrosion more effectively than PSB1 when subjected to electrochemical testing. The 100 ppm concentration of PSB2 exhibited 82.18 % and 81.14 % inhibition efficiencies at 298 K in PDP and EIS measurements, respectively. While at 328 K, the inhibition efficiencies were 61.85 % and 67.4 % at the same dosage and measurements. These poly Schiff bases exhibited fascinating performance as corrosion inhibitors in sour environment. They provide a great corrosion inhibition platform for the sustainable future environment.Keywords: schiff base polymers, corrosion inhibitors, sour corrosive media, potentiodynamic polarization, H₂S concentrations
Procedia PDF Downloads 10076 Electrocatalysts for Lithium-Sulfur Energy Storage Systems
Authors: Mirko Ante, Şeniz Sörgel, Andreas Bund
Abstract:
Li-S- (Lithium-Sulfur-) battery systems provide very high specific gravimetric energy (2600 Wh/kg) and volumetric energy density (2800Wh/l). Hence, Li-S batteries are one of the key technologies for both the upcoming electromobility and stationary applications. Furthermore, the Li-S battery system is potentially cheap and environmentally benign. However, the technical implementation suffers from cycling stability, low charge and discharge rates and incomplete understanding of the complex polysulfide reaction mechanism. The aim of this work is to develop an effective electrocatalyst for the polysulfide reactions so that the electrode kinetics of the sulfur half-cell will be improved. Accordingly, the overvoltage will be decreased, and the efficiency of the cell will be increased. An enhanced electroactive surface additionally improves the charge and discharge rates. To reach this goal, functionalized electrocatalytic coatings are investigated to accelerate the kinetics of the polysulfide reactions. In order to determine a suitable electrocatalyst, apparent exchange current densities of a variety of materials (Ni, Co, Pt, Cr, Al, Cu, ITO, stainless steel) have been evaluated in a polysulfide containing electrolyte by potentiodynamic measurements and a Butler-Volmer fit including diffusion limitation. The samples have been examined by Scanning Electron Microscopy (SEM) after the potentiodynamic measurements. Up to now, our work shows that cobalt is a promising material with good electrocatalytic properties for the polysulfide reactions and good chemical stability in the system. Furthermore, an electrodeposition from a modified Watt’s nickel electrolyte with a sulfur source seems to provide an autocatalytic effect, but the electrocatalytic behavior decreases after several cycles of the current-potential-curve.Keywords: electrocatalyst, energy storage, lithium sulfur battery, sulfur electrode materials
Procedia PDF Downloads 36875 Chemical, Structural and Mechanical Optimization of Zr-Based Bulk Metallic Glass for Biomedical Applications
Authors: Eliott Guérin, Remi Daudin, Georges Kalepsi, Alexis Lenain, Sebastien Gravier, Benoit Ter-Ovanessian, Damien Fabregue, Jean-Jacques Blandin
Abstract:
Due to interesting compromise between mechanical and corrosion properties, Zr-based BMGs are attractive for biomedical applications. However, the enhancement of their glass forming ability (GFA) is often achieved by addition of toxic elements like Ni or Be, which is of course a problem for such applications. Consequently, the development of Ni-free Be-free Zr-based BMGs is of great interest. We have developed a Zr-based (Ni and Be-free) amorphous metallic alloy with an elastic limit twice the one of Ti-6Al-4V. The Zr56Co28Al16 composition exhibits a yield strength close to 2 GPa and low Young’s modulus (close to 90 GPa) [1-2]. In this work, we investigated Niobium (Nb) addition through substitution of Zr up to 8 at%. Cobalt substitution has already been reported [3], but we chose Zr substitution to preserve the glass forming ability. In this case, we show that the glass forming ability for 5 mm diameters rods is maintained up to 3 at% of Nb substitution using suction casting in cooper moulds. Concerning the thermal stability, we measure a strong compositional dependence on the glass transition (Tg). Using DSC analysis (heating rate 20 K/min), we show that the Tg rises from 752 K for 0 at% of Nb to 759 K for 3 at% of Nb. Yet, the thermal range between Tg and the crystallisation temperature (Tx) remains almost unchanged from 33 K to 35 K. Uniaxial compression tests on 2 mm diameter pillars and 3 points bending (3PB) tests on 1 mm thick plates are performed to study the Nb addition on the mechanical properties and the plastic behaviour. With these tests, an optimal Nb concentration is found, improving both plasticity and fatigue resistance. Through interpretations of DSC measurements, an attempt is made to correlate the modifications of the mechanical properties with the structural changes. The optimized chemical, structural and mechanical properties through Nb addition are encouraging to develop the potential of this BMG alloy for biomedical applications. For this purpose, we performed polarisation, immersion and cytotoxicity tests. The figure illustrates the polarisation response of Zr56Co28Al16, Zr54Co28Al16Nb2 and TA6V as a reference after 2h of open circuit potential. The results show that the substitution of Zr by a small amount of Nb significantly improves the corrosion resistance of the alloy.Keywords: metallic glasses, amorphous metal, medical, mechanical resistance, biocompatibility
Procedia PDF Downloads 14974 Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior
Authors: Y. El Kaissi, M. Allam, A. Koulou, M. Galai, M. Ebn Touhami
Abstract:
The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment.Keywords: cyclic voltammetry, EIS, electroless Ni–P coating, heat treatment, potentiodynamic polarization
Procedia PDF Downloads 30173 Effect of Co Substitution on Structural, Magnetocaloric, Magnetic, and Electrical Properties of Sm0.6Sr0.4CoxMn1-xO3 Synthesized by Sol-gel Method
Authors: A. A. Azab
Abstract:
In this work, Sm0.6Sr0.4CoxMn1-xO3 (x=0, 0.1, 0.2 and 0.3) was synthesized by sol-gel method for magnetocaloric effect (MCE) applications. XRD analysis confirmed formation of the required orthorhombic phase of perovskite, and there is crystallographic phase transition as a result of substitution. Maxwell-Wagner interfacial polarisation and Koops phenomenological theory were used to investigate and analyze the temperature and frequency dependency of the dielectric permittivity. The phase transition from the ferromagnetic to the paramagnetic state was demonstrated to be second order. Based on the isothermal magnetization curves obtained at various temperatures, the magnetic entropy change was calculated. A magnetocaloric effect (MCE) over a wide temperature range was studied by determining DSM and the relative cooling power (RCP).Keywords: magnetocaloric effect, pperovskite, magnetic phase transition, dielectric permittivity
Procedia PDF Downloads 6872 Anticorrosive Properties of Poly(O-Phenylendiamine)/ZnO Nanocomposites Coated Stainless Steel
Authors: Aisha Ganash
Abstract:
Poly(o-phenylendiamine) and poly(ophenylendiamine)/ZnO(PoPd/ZnO) nanocomposites coating were prepared on type-304 austenitic stainless steel (SS) using H2SO4 acid as electrolyte by potentiostatic methods. Fourier transforms infrared spectroscopy and scanning electron microscopy techniques were used to characterize the composition and structure of PoPd/ZnO nanocomposites. The corrosion protection of polymer coatings ability was studied by Eocp-time measurement, anodic and cathodic potentiodynamic polarization and Impedance techniques in 3.5% NaCl as a corrosive solution. It was found that ZnO nanoparticles improve the barrier and electrochemical anticorrosive properties of poly(o-phenylendiamine).Keywords: anticorrosion, conducting polymers, electrochemistry, nanocomposites
Procedia PDF Downloads 29271 Electrochemical Studies of Some Schiff Bases on the Corrosion of Steel in H2SO4 Solution
Authors: Ahmed A. Farag, M. A. Hgazy
Abstract:
The influence of three Schiff bases (SB-I, SB-II, and SB-III) on the corrosion of carbon steel in 0.5 M H2SO4 solution was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiency increases with the concentration of the Schiff bases and follow the trend: SB-III > SB-II > SB-I. Tafel polarization measurements revealed that the three tested inhibitors function as anodic inhibitors. The thermodynamic parameters Kads and ΔGºads are calculated and discussed. The Langmuir isotherm equation was found to provide an accurate description of the adsorption behaviour of the investigated Schiff bases. Depending on the results, the inhibitive mechanism was proposed.Keywords: Schiff bases, corrosion inhibitors, EIS, adsorption
Procedia PDF Downloads 54270 Corrosion Inhibition of Mild Steel in 20% Sulfuric Acid
Authors: M. Dekmouche, M. Hadjada, Z. Rahmani, M. Saidi
Abstract:
The effect of iodide ions on the corrosion inhibition of mild steel in 20% sulfuric acid in the presence of 3-méthylthio-5-p-méthoxyphényl-1,2-dithiolylium against anion (I-) A1 synthesized in our laboratory,was studied by different electrochemical techniques such as electrochemical impedance spectroscopy, potentiodynamic polarization. The obtained results showed that A1 effectively reduces the corrosion rate of steel. The adsorption of 3-méthylthio-5-p-méthoxyphényl-1,2-dithiolylium against anion (I-) followed Langmuir and temkin adsorption isotherm.Keywords: steel XC52, corrosion, inhibition, 3-méthylthio-5-p-méthoxyphényl-1, 2-dithiolylium against anion (I-) , sulfuric acid
Procedia PDF Downloads 32869 The Corrosion Resistance of the 32CrMoV13 Steel Nitriding
Authors: Okba Belahssen, Lazhar Torchane, Said Benramache, Abdelouahed Chala
Abstract:
This paper presents corrosion behavior of the plasma-nitrided 32CrMoV13 steel. Different kinds of samples were tested: non-treated, plasma nitrided samples. The structure of layers was determined by X-ray diffraction, while the morphology was observed by scanning electron microscopy (SEM). The corrosion behavior was evaluated by electrochemical techniques (potentiodynamic curves and electrochemical impedance spectroscopy). The corrosion tests were carried out in acid chloride solution (HCl 1M). Experimental results showed that the nitrides ε-Fe2−3N and γ′-Fe4N present in the white layer are nobler than the substrate but may promote, by galvanic effect, a localized corrosion through open porosity. The better corrosion protection was observed for nitrided sample.Keywords: plasma-nitrided, 32CrMoV13 steel, corrosion, EIS
Procedia PDF Downloads 58868 Ionic Liquids as Corrosion Inhibitors in CO2 Capture Systems
Abstract:
We present the viability of using thermally stable, practically non-volatile ionic liquids as corrosion inhibitors in aqueous monoethanolamine system. Carbon steel 1020, which widely used as construction material in CO2 capture plants, has been taken as a test material. Corrosion inhibition capacities of typical room-temperature ionic liquids constituting imidazolium cation in concentration range ≤ 3% by weight in CO2 capture applications were investigated. Electrochemical corrosion experiments using the potentiodynamic polarization technique for measuring corrosion current were carried out. The results show that ionic liquids possess ability to suppressing severe operational problems of corrosion in typical CO2 capture plants.Keywords: carbon dioxide, carbon steel, monoethanolamine, corrosion rate, ionic liquids, tafel fit
Procedia PDF Downloads 32467 Thiosemicarbazone Derived from 4-Aminoantipyrine as Corrosion Inhibitor
Authors: Ahmed A. Al-Amiery, Yasmin K. Al-Majedy, Abdul Amir H. Kadhum, Abu Bakar Mohamad
Abstract:
The efficiency of synthesized thiosemicarbazone namely 2-(1,5-dimethyl-4-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene) hydrazinecarbothioamide investigated as corrosion inhibitor of mild steel in 1N H2SO4 using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PD) in addition of scanning electron microscopy (SEM). The results showed that this inhibitor behaved as a good corrosion inhibitor even at low concentration with a mean efficiency of 93%. Polarization technique and EIS were tested in different concentrations reveal that this compound is adsorbed on the mild steel, therefore blocking the active sites and the adsorption follows the Langmuir adsorption isotherm model. SEM shows that mild steel surface is nearly perfect for mild steel which was immersed in a solution of H2SO4 with corrosion inhibitor.Keywords: corrosion inhibitor, thiosemicarbazide, electrochemical impedance, electrochemical impedance spectroscopy
Procedia PDF Downloads 52166 Influence of Strain on the Corrosion Behavior of Dual Phase 590 Steel
Authors: Amit Sarkar, Jayanta K. Mahato, Tushar Bhattacharya, Amrita Kundu, P. C. Chakraborti
Abstract:
With increasing the demand for safety and fuel efficiency of automobiles, automotive manufacturers are looking for light weight, high strength steel with excellent formability and corrosion resistance. Dual-phase steel is finding applications in automotive sectors, because of its high strength, good formability, and high corrosion resistance. During service automotive components suffer from environmental attack and thereby gradual degradation of the components occurs reducing the service life of the components. The objective of the present investigation is to assess the effect of deformation on corrosion behaviour of DP590 grade dual phase steel which is used in automotive industries. The material was received from TATA Steel Jamshedpur, India in the form of 1 mm thick sheet. Tensile properties of the steel at strain rate of 10-3 sec-1: 0.2 % Yield Stress is 382 MPa, Ultimate Tensile Strength is 629 MPa, Uniform Strain is 16.30% and Ductility is 29%. Rectangular strips of 100x10x1 mm were machined keeping the long axis of the strips parallel to rolling direction of the sheet. These strips were longitudinally deformed at a strain rate at 10-3 sec-1 to a different percentage of strain, e.g. 2.5, 5, 7.5,10 and 12.5%, and then slowly unloaded. Small specimens were extracted from the mid region of the unclamped portion of these deformed strips. These small specimens were metallographic polished, and corrosion behaviour has been studied by potentiodynamic polarization, electrochemical impedance spectra, and cyclic polarization and potentiostatic tests. Present results show that among three different environments, the 3.5 pct NaCl solution is most aggressive in case of DP 590 dual-phase steel. It is observed that with the increase in the amount of deformation, corrosion rate increases. With deformation, the stored energy increases and leads to enhanced corrosion rate. Cyclic polarization results revealed highly deformed specimen are more prone to pitting corrosion as compared to the condition when amount of deformation is less. It is also observed that stability of the passive layer decreases with the amount of deformation. With the increase of deformation, current density increases in a passive zone and passive zone is also decreased. From Electrochemical impedance spectroscopy study it is found that with increasing amount of deformation polarization resistance (Rp) decreases. EBSD results showed that average geometrically necessary dislocation density increases with increasing strain which in term increased galvanic corrosion as dislocation areas act as the less noble metal.Keywords: dual phase 590 steel, prestrain, potentiodynamic polarization, cyclic polarization, electrochemical impedance spectra
Procedia PDF Downloads 42865 Design, Modeling and Analysis of 2×2 Microstrip Patch Antenna Array System for 5G Applications
Authors: Vinay Kumar K. S., Shravani V., Spoorthi G., Udith K. S., Divya T. M., Venkatesha M.
Abstract:
In this work, the mathematical modeling, design and analysis of a 2×2 microstrip patch antenna array (MSPA) antenna configuration is presented. Array utilizes a tiny strip antenna module with two vertical slots for 5G applications at an operating frequency of 5.3 GHz. The proposed array of antennas where the phased array antenna systems (PAAS) are used ubiquitously everywhere, from defense radar applications to commercial applications like 5G/6G. Microstrip patch antennae with slot arrays for linear polarisation parallel and perpendicular to the axis, respectively, are fed through transverse slots in the side wall of the circular waveguide and fed through longitudinal slots in the small wall of the rectangular waveguide. The microstrip patch antenna is developed using Ansys HFSS (High-Frequency Structure Simulator), this simulation tool. The maximum gain of 6.14 dB is achieved at 5.3 GHz for a single MSPA. For 2×2 array structure, a gain of 7.713 dB at 5.3 GHz is observed. Such antennas find many applications in 5G devices and technology.Keywords: Ansys HFSS, gain, return loss, slot array, microstrip patch antenna, 5G antenna
Procedia PDF Downloads 11264 Actually Existing Policy Mobilities in Czechia: Comparing Creative and Smart Cities
Authors: Ondrej Slach, Jan Machacek, Jan Zenka, Lucie Hyllova, Petr Rumpel
Abstract:
The aim of the paper is to identify and asses different trajectories of two fashionable urban policies –creative and smart cities– in specific post-socialistic context. Drawing on the case of Czechia, we employ the concept of policy mobility research. More specifically, we employ a discourse analysis in order to identify the so-called 'infrastructure' of both policies (such as principal actors, journals, conferences, events), with the special focus on 'agents of transfer' in a multiscale perspective. The preliminary results indicate faster and more aggressive spatial penetration of smart cities policy compared to creative cities policy in Czechia. Further, it seems that existed translation and implementation of smart cities policy into the national and urban context resulted in deliberated fragmented policy of smart cities in Czechia (pure technocratic view), which might be a threat for the future development of social sustainability, especially in cities that are facing increasing social polarisation. Last but not least, due to the fast spatial penetration of the concept and policies of smart cities, it seems that creative cities policy has almost been crowded out of the Czech urban agenda.Keywords: policy mobility, smart cities, creative cities, Czechia
Procedia PDF Downloads 16863 Bright–Dark Pulses in Nonlinear Polarisation Rotation Based Erbium-Doped Fiber Laser
Authors: R. Z. R. R. Rosdin, N. M. Ali, S. W. Harun, H. Arof
Abstract:
We have experimentally demonstrated bright-dark pulses in a nonlinear polarization rotation (NPR) based mode-locked Erbium-doped fiber laser (EDFL) with a long cavity configuration. Bright–dark pulses could be achieved when the laser works in the passively mode-locking regime and the net group velocity dispersion is quite anomalous. The EDFL starts to generate a bright pulse train with degenerated dark pulse at the mode-locking threshold pump power of 35.09 mW by manipulating the polarization states of the laser oscillation modes using a polarization controller (PC). A split bright–dark pulse is generated when further increasing the pump power up to 37.95 mW. Stable bright pulses with no obvious evidence of a dark pulse can also be generated when further adjusting PC and increasing the pump power up to 52.19 mW. At higher pump power of 54.96 mW, a new form of bright-dark pulse emission was successfully identified with the repetition rate of 29 kHz. The bright and dark pulses have a duration of 795.5 ns and 640 ns, respectively.Keywords: Erbium-doped fiber laser, nonlinear polarization rotation, bright-dark pulse, photonic
Procedia PDF Downloads 52462 Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂
Authors: Ambrish Singh
Abstract:
The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface.Keywords: corrosion, inhibitor, EFM, AFM, DFT, MD
Procedia PDF Downloads 10561 Synthesis, Electrochemical and Theoretical Study of Corrosion Inhibition on Carbon Steel in 1M HCl Medium by 2,2'-(piperazine-1,4-diyl)bis(N-(4-bromophenyl)acetamide)
Authors: Tanghourte Mohamed, Ouassou Nazih, El Mesky Mohammed, Znini Mohamed, Mabrouk El Houssine
Abstract:
In the present study, a distinct organic inhibitor, namely 2,2'-(piperazine-1,4-diyl)bis(N-(4-bromophenyl)acetamide) (PBRA), was synthesized and characterized using ¹H, ¹³C NMR, and IR spectroscopy. Subsequently, the inhibition effect of PBRA on the corrosion of carbon steel in 1 M HCl was studied using electrochemical measurements such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results showed that the inhibition efficiency increased with concentration, reaching 87% at 10-³M. Furthermore, PBRA remained effective at temperatures ranging from 298 to 328 K. The adsorption of the inhibitor onto carbon steel was well described by the Langmuir adsorption isotherm. Additionally, a correlation between the molecular structure and quantum chemistry indices was established using density functional theory (DFT).Keywords: synthesis, corrosion, inhibition, piperazine, efficacy, isotherm, acetamide
Procedia PDF Downloads 560 Studies on Corrosion Resistant Composite Coating for Metallic Surfaces
Authors: Navneetinder Singh, Harprabhjot Singh, Harpreet Singh, Supreet Singh
Abstract:
Many materials are known to mankind that is widely used for synthesis of corrosion resistant hydrophobic coatings. In the current work, novel hydrophobic composite was synthesized by mixing polytetrafluoroethylene (PTFE) and 20 weight% ceria particles followed by sintering. This composite had same hydrophobic behavior as PTFE. Moreover, composite showed better scratch resistance than virgin PTFE. Pits of plasma sprayed Ni₃Al coating were exploited to hold PTFE composite on the substrate as Superni-75 alloy surface through sintering process. Plasma sprayed surface showed good adhesion with the composite coating during scratch test. Potentiodynamic corrosion test showed 100 fold decreases in corrosion rate of coated sample this may be attributed to inert and hydrophobic nature of PTFE and ceria.Keywords: polytetrafluoroethylene, PTFE, ceria, coating, corrosion
Procedia PDF Downloads 383