Search results for: physical contact
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7337

Search results for: physical contact

7157 Beneficial Effects of Physical Activity in Treatment with Mental Health

Authors: Aline Giardin

Abstract:

Introduction: This review addresses the relationship between physical education and mental health and its main objective is to discuss the meanings that circulate in Psychiatric Hospitalization Units and Psychosocial Care Centers (CAPS) about the presence of physical education teachers and the practices developed by Them within these services. Material and methods: It is based on the theoretical contribution of the Psychiatric Reform and is methodologically inspired by the Bibliographic Review. Objectives: The objective of this review was to identify the main scientific evidence on the effects of physical activity on the main psychological aspects associated with mental health during the hospitalization process. Results: It was observed that physical activity has beneficial effects in the psychological, social and cognitive aspects, being thus a fundamental aspect of the lifestyle in promoting a healthy and successful treatment. In studies evaluating the effects of physical activity on mental health, the most frequently evaluated outcomes include anxiety, depression, and health-related quality of life (eg, self-esteem and self-efficacy). Evidence from epistemological studies indicates that the level of physical activity is positively associated with good mental health, when mental health is defined as good mood, general well-being and decreased symptoms. Conclusion: It is necessary to intervene and a greater interest of the professionals of physical education in the treatment with the people with mental disorders so that the negative symptoms are modified, through the aid of the physical activity, by better quality of life, physical condition, nutritional state and A healthy emotional appearance.

Keywords: health mental, physical activity, benefits, treatment

Procedia PDF Downloads 317
7156 Removal of Vanadium from Industrial Effluents by Natural Ion Exchanger

Authors: Shashikant R. Kuchekar, Haribhau R. Aher, Priti M. Dhage

Abstract:

The removal vanadium from aqueous solution using natural exchanger was investigated. The effects of pH, contact time and exchanger dose were studied at ambient temperature (25 0C ± 2 0C). The equilibrium process was described by the Langmuir isotherm model with adsorption capacity for vanadium. The natural exchanger i.e. tamarindus seeds powder was treated with formaldehyde and sulpuric acid to increase the adsorptivity of metals. The maximum exchange level was attained as 80.1% at pH 3 with exchanger dose 5 g and contact time 60 min. Method is applied for removal of vanadium from industrial effluents.

Keywords: industrial effluent, natural ion exchange, Tamarindous indica, vanadium

Procedia PDF Downloads 216
7155 Interdisciplinary Integrated Physical Education Program Using a Philosophical Approach

Authors: Ellie Abdi, Susana Juniu

Abstract:

The purpose of this presentation is to describe an interdisciplinary teaching program that integrates physical education concepts using a philosophical approach. The presentation includes a review of: a) the philosophy of American education, b) the philosophy of sports and physical education, c) the interdisciplinary physical education program, d) professional development programs, (e) the Success of this physical education program, f) future of physical education. This unique interdisciplinary program has been implemented in an urban school physical education discipline in East Orange, New Jersey for over 10 years. During the program the students realize that the bodies go through different experiences. The body becomes a place where a child can recognize in an enjoyable way to express and perceive particular feelings or mental states. Children may distinguish themselves to have high abilities in the social or other domains but low abilities in the field of athletics. The goal of this program for the individuals is to discover new skills, develop and demonstrate age appropriate mastery level at different tasks, therefore the program consists of 9 to 12 sports, including many game. Each successful experience increases the awareness ability. Engaging in sports and physical activities are social movements involving groups of children in situations such as teams, friends, and recreational settings, which serve as a primary socializing agent for teaching interpersonal skills. As a result of this presentation the audience will reflect and explore how to structure a physical education program to integrate interdisciplinary subjects with philosophical concepts.

Keywords: interdisciplinary disciplines, philosophical concepts, physical education, interdisciplinary teaching program

Procedia PDF Downloads 467
7154 Investigation of the Relationship between Physical Activity and Stress and Mental Health in the Elderly

Authors: Mohamad Reza Khodabakhsh

Abstract:

Physical activity is important because it affects the stress and mental health of the elderly. The purpose of this research is to examine the relationship between the physical activity of the elderly and stress and mental health. The current research is correlational research, and the studied population includes all the elderly who are engaged in sports in the parks of Mashhad city in 2021. The whole community consists of 200 people. Sampling was done by the headcount method. The tool used in this research is a questionnaire. The physical activity questionnaire is Likert. General GHQ is based on the self-report method. The study method is correlation type to find the relationship between predictor and predicted variables, and the multiple regression method was used for the relationships between the sub-components. And the results showed that physical activity has the effect of reducing the stress of the elderly and improving their mental health. In general, the results of this research indicate the confirmation of the research hypotheses.

Keywords: relationship, physical activity, stress, mental health, elderly

Procedia PDF Downloads 61
7153 The Effect of Physical Activity and Responses of Leptin

Authors: Sh. Khoshemehry, M. J. Pourvaghar, M. E. Bahram

Abstract:

In modern life, daily physical activity is relatively reduced, which is why the incidence of some diseases associated with overweight and obesity, such as hypertension, diabetes and other chronic illnesses, even in young people are observed. Obesity and overweight is one of the most common metabolic disorders in industrialized countries and in developing countries. One consequence of pathological obesity is cardiovascular disease and metabolic syndrome. In the past, it was believed that adipose tissue was ineffective and served only for storing triglycerides. In this review article, it was tried to refer to the esteemed scientific sources about physical activity and responses of leptin.

Keywords: disease, leptin, obesity, physical activity

Procedia PDF Downloads 317
7152 Elastic and Plastic Collision Comparison Using Finite Element Method

Authors: Gustavo Rodrigues, Hans Weber, Larissa Driemeier

Abstract:

The prevision of post-impact conditions and the behavior of the bodies during the impact have been object of several collision models. The formulation from Hertz’s theory is generally used dated from the 19th century. These models consider the repulsive force as proportional to the deformation of the bodies under contact and may consider it proportional to the rate of deformation. The objective of the present work is to analyze the behavior of the bodies during impact using the Finite Element Method (FEM) with elastic and plastic material models. The main parameters to evaluate are, the contact force, the time of contact and the deformation of the bodies. An advantage of using the FEM approach is the possibility to apply a plastic deformation to the model according to the material definition: there will be used Johnson–Cook plasticity model whose parameters are obtained through empirical tests of real materials. This model allows analyzing the permanent deformation caused by impact, phenomenon observed in real world depending on the forces applied to the body. These results are compared between them and with the model-based Hertz theory.

Keywords: collision, impact models, finite element method, Hertz Theory

Procedia PDF Downloads 149
7151 A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder

Authors: Z. Mazrouei-Sebdani, A. Khoddami, H. Hadadzadeh, M. Zarrebini

Abstract:

Silica aerogels are well-known meso-porous materials with high specific surface area (500–1000 m2/g), high porosity (80–99.8%), and low density (0.003–0.8 g/cm3). However, the silica aerogels generally are highly brittle due to their nanoporous nature. Physical and mechanical properties of the silica aerogels can be enhanced by compounding with the fibers. Although some reports presented incorporation of the fibers into the sol, followed by further modification and drying stages, no information regarding the aerogel powders as filler in the polymeric fibers is available. In this research, waterglass based aerogel powder was prepared in the following steps: sol–gel process to prepare a gel, followed by subsequent washing with propan-2-ol, n-Hexane, and TMCS, then ambient pressure drying, and ball milling. Inspired by limited dust releasing, aerogel powder was introduced to the PET electrospinning solution in an attempt to create required bulk and surface structure for the nano fibers to improve their hydrophobic and insulation properties. The samples evaluation was carried out by measuring density, porosity, contact angle, sliding angle, heat transfer, FTIR, BET and SEM. According to the results, porous silica aerogel powder was fabricated with mean pore diameter of 24 nm and contact angle of 145.9º. The results indicated the usefulness of the aerogel powder confined into nano fibers to control surface roughness for manipulating superhydrophobic nanowebs with sliding angle of 5˚ and water contact angle of 147º. It can be due to a multi-scale surface roughness which was created by nanowebs structure itself and nano fibers surface irregularity in presence of the aerogels while a laye of fluorocarbon created low surface energy. The wettability of a solid substrate is an important property that is controlled by both the chemical composition and geometry of the surface. Also, a decreasing trend in the heat transfer was observed from 22% for the nano fibers without any aerogel powder to 8% for the nano fibers with 4% aerogel powder. The development of thermal insulating materials has become increasingly more important than ever in view of the fossil energy depletion and global warming that call for more demanding energy-saving practices.

Keywords: Superhydrophobicity, Insulation, Sol-gel, Surface energy, Roughness.

Procedia PDF Downloads 306
7150 Effect of Resistance Training on Muscle Strength, IGF₁, and Physical Performance of Volleyball Players

Authors: Menan M. Elsayed, Hussein A. Heshmat

Abstract:

The aim of the study is to assess the effect of resistance training on muscle strength and physical performance of volleyball players of Physical Education College, Helwan University. The researcher used the experimental method of pre-post measurements of one group of 10 volleyball players. The execution of the program was through the period of 12/8/2018 to 12/10/2018; included 24 training units, 3 training units weekly for 8 weeks. The training program revealed an improvement in post measurement of muscle strength, IGF₁ (insulin-like growth factor 1), and physical performance of players. It may be concluded that the resistance training may include changes in hormones and muscle fibers leading to hypertrophy of the muscle and physical performance. It is recommended to use the results of the study in rationing the loads and training programs.

Keywords: IGF₁, muscle strength, physical performance, resistance training, volleyball players

Procedia PDF Downloads 159
7149 Optimizing 3D Shape Parameters of Sports Bra Pads in Motion by Finite Element Dynamic Modelling with Inverse Problem Solution

Authors: Jiazhen Chen, Yue Sun, Joanne Yip, Kit-Lun Yick

Abstract:

The design of sports bras poses a considerable challenge due to the difficulty in accurately predicting the wearing result after computer-aided design (CAD). It needs repeated physical try-on or virtual try-on to obtain a comfortable pressure range during motion. Specifically, in the context of running, the exact support area and force exerted on the breasts remain unclear. Consequently, obtaining an effective method to design the sports bra pads shape becomes particularly challenging. This predicament hinders the successful creation and production of sports bras that cater to women's health needs. The purpose of this study is to propose an effective method to obtain the 3D shape of sports bra pads and to understand the relationship between the supporting force and the 3D shape parameters of the pads. Firstly, the static 3D shape of the sports bra pad and human motion data (Running) are obtained by using the 3D scanner and advanced 4D scanning technology. The 3D shape of the sports bra pad is parameterised and simplified by Free-form Deformation (FFD). Then the sub-models of sports bra and human body are constructed by segmenting and meshing them with MSC Apex software. The material coefficient of sports bras is obtained by material testing. The Marc software is then utilised to establish a dynamic contact model between the human breast and the sports bra pad. To realise the reverse design of the sports bra pad, this contact model serves as a forward model for calculating the inverse problem. Based on the forward contact model, the inverse problem of the 3D shape parameters of the sports bra pad with the target bra-wearing pressure range as the boundary condition is solved. Finally, the credibility and accuracy of the simulation are validated by comparing the experimental results with the simulations by the FE model on the pressure distribution. On the one hand, this research allows for a more accurate understanding of the support area and force distribution on the breasts during running. On the other hand, this study can contribute to the customization of sports bra pads for different individuals. It can help to obtain sports bra pads with comfortable dynamic pressure.

Keywords: sports bra design, breast motion, running, inverse problem, finite element dynamic model

Procedia PDF Downloads 15
7148 The Role of Physical Capital on the Accessibility of Livelihood of Indigenous People

Authors: Anjli Pathak, Harshit Sosan Lakra, Smriti Mishra

Abstract:

The increasing urbanization affects the external environment in which people exist and imposes livelihood vulnerability to shocks and stresses. Although research on the linkages between urbanization and vulnerability has been increasing, only a few studies have examined the caste/ethnicity in livelihood vulnerability. In this study, we explore how physical capital influences vulnerability among indigenous people in the context of livelihood. The study identifies the dimensions and indicators of physical capital that influence the profile of household vulnerability in the livelihood-building process. The result identified five dimensions and 19 indicators of livelihood vulnerability. The study also visualizes the inter-relationship between physical capital and other livelihood capital in formulating the livelihood vulnerability framework.

Keywords: urbanization, livelihood vulnerability, indigenous people, physical capital

Procedia PDF Downloads 45
7147 To Assess Variables Related to Self-Efficacy for Increasing Physical Activity in Advanced-Stage Cancer Patients

Authors: S. Nikpour, S. Vahidi, H. Haghani

Abstract:

Introduction: Exercise has mental and physical health benefits for patients with advanced stage cancer who actively receive chemotherapy, yet little is known about patients’ levels of interest in becoming more active or their confidence in increasing their activity level. Methods and materials: A convenience sample of 200 patients with advanced-stage cancer who were receiving chemotherapy completed self-report measures assessing physical activity level, mood, and quality-of-life variables. Qualitative data on patient-perceived benefits of, and barriers to, physical activity also were collected, coded by independent raters, and organized by predominant themes. Results: Current physical activity level, physical activity outcome expectations, and positive mood were significantly associated with self-efficacy. Fatigue was the most frequently listed barrier to physical activity; improved physical strength and health were the most commonly listed benefits. Participants identified benefits related to both general health and cancer-symptom management that were related to exercise. 59.5% of participants reported that they were seriously planning to increase or maintain their physical activity level, and over 40% reported having interest in receiving an intervention to become more active. Conclusion: These results suggested that many advanced-stage cancer patients who receive chemotherapy are interested in maintaining or increasing their physical activity level and in receiving professional support for exercise. In addition, these individuals identified general health and cancer-specific benefits of, and barriers to, physical activity. Future research will investigate how these findings may be incorporated into physical activity interventions for advanced-stage oncology patients receiving medical treatment.

Keywords: physical activity, cancer, self-efficacy

Procedia PDF Downloads 506
7146 Non-Contact Characterization of Standard Liquids Using Waveguide at 12.4 to18 Ghz Frequency Span

Authors: Kasra Khorsand-Kazemi, Bianca Vizcaino, Mandeep Chhajer Jain, Maryam Moradpour

Abstract:

This work presents an approach to characterize a non- contact microwave sensor using waveguides for different standard liquids such as ethanol, methanol and 2-propanol (Isopropyl Alcohol). Wideband waveguides operating between 12.4GHz to 18 GHz form the core of the sensing structure. Waveguides are sensitive to changes in conductivity of the sample under test (SUT), making them an ideal tool to characterize different polar liquids. As conductivity of the sample under test increase, the loss tangent of the material increase, thereby decreasing the S21 (dB) response of the waveguide. Among all the standard liquids measured, methanol exhibits the highest conductivity and 2-Propanol exhibits the lowest. The cutoff frequency measured for ethanol, 2-propanol, and methanol are 10.28 GHz, 10.32 GHz, and 10.38 GHz respectively. The measured results can be correlated with the loss tangent results of the standard liquid measured using the dielectric probe. This conclusively enables us to characterize different liquids using waveguides expanding the potential future applications in domains ranging from water quality management to bio-medical, chemistry and agriculture.

Keywords: Waveguides, , Microwave sensors, , Standard liquids characterization, Non-contact sensing

Procedia PDF Downloads 114
7145 Frictional Effects on the Dynamics of a Truncated Double-Cone Gravitational Motor

Authors: Barenten Suciu

Abstract:

In this work, effects of the friction and truncation on the dynamics of a double-cone gravitational motor, self-propelled on a straight V-shaped horizontal rail, are evaluated. Such mechanism has a variable radius of contact, and, on one hand, it is similar to a pulley mechanism that changes the potential energy into the kinetic energy of rotation, but on the other hand, it is similar to a pendulum mechanism that converts the potential energy of the suspended body into the kinetic energy of translation along a circular path. Movies of the self- propelled double-cones, made of S45C carbon steel and wood, along rails made of aluminum alloy, were shot for various opening angles of the rails. Kinematical features of the double-cones were estimated through the slow-motion processing of the recorded movies. Then, a kinematical model is derived under assumption that the distance traveled by the contact points on the rectilinear rails is identical with the distance traveled by the contact points on the truncated conical surface. Additionally, a dynamic model, for this particular contact problem, was proposed and validated against the experimental results. Based on such model, the traction force and the traction torque acting on the double-cone are identified. One proved that the rolling traction force is always smaller than the sliding friction force; i.e., the double-cone is rolling without slipping. Results obtained in this work can be used to achieve the proper design of such gravitational motor.

Keywords: Truncated double-cone, friction, rolling and sliding, dynamic model, gravitational motor

Procedia PDF Downloads 250
7144 The Perspective of Smart Thermoregulation in Personal Protective Equipment

Authors: Alireza Saidi

Abstract:

Aside from injuries due to direct contact with hot or cold substances or objects, exposure to extreme temperatures in the workplace involves physical hazards to workers. On the other hand, a poorly acclimatized worker may have reduced performance and alertness and may, therefore, be more vulnerable to the risk of accidents and injuries. Due to the incompatibility of the standards put in place with certain workplaces and the lack of thermoregulation in many protective equipments, thermal strains remain among the physical risks most present in many work sectors. However, many of these problems can be overcome thanks to the potential of intelligent textile technologies allowing intelligent thermoregulation in protective equipment. Nowadays, technologies such as heating elements, cooling elements are applied in products intended for sport and leisure, and research work has been carried out in the integration of temperature sensors and thermal stress detectors in personal protective equipment. However, the usage of all of these technologies in personal protective equipment remains very marginal. This article presents a portrait of the current state of intelligent thermoregulation systems by carrying out a synthesis of technical developments, which is accompanied by a gap analysis of current developments. Thus, the research work necessary for the adaptation and integration of intelligent thermoregulation systems with personal protective equipment is discussed in order to offer a perspective of future developments.

Keywords: personal protective equipment, smart textiles, thermoregulation, thermal strain

Procedia PDF Downloads 82
7143 Metal-Semiconductor Transition in Ultra-Thin Titanium Oxynitride Films Deposited by ALD

Authors: Farzan Gity, Lida Ansari, Ian M. Povey, Roger E. Nagle, James C. Greer

Abstract:

Titanium nitride (TiN) films have been widely used in variety of fields, due to its unique electrical, chemical, physical and mechanical properties, including low electrical resistivity, chemical stability, and high thermal conductivity. In microelectronic devices, thin continuous TiN films are commonly used as diffusion barrier and metal gate material. However, as the film thickness decreases below a few nanometers, electrical properties of the film alter considerably. In this study, the physical and electrical characteristics of 1.5nm to 22nm thin films deposited by Plasma-Enhanced Atomic Layer Deposition (PE-ALD) using Tetrakis(dimethylamino)titanium(IV), (TDMAT) chemistry and Ar/N2 plasma on 80nm SiO2 capped in-situ by 2nm Al2O3 are investigated. ALD technique allows uniformly-thick films at monolayer level in a highly controlled manner. The chemistry incorporates low level of oxygen into the TiN films forming titanium oxynitride (TiON). Thickness of the films is characterized by Transmission Electron Microscopy (TEM) which confirms the uniformity of the films. Surface morphology of the films is investigated by Atomic Force Microscopy (AFM) indicating sub-nanometer surface roughness. Hall measurements are performed to determine the parameters such as carrier mobility, type and concentration, as well as resistivity. The >5nm-thick films exhibit metallic behavior; however, we have observed that thin film resistivity is modulated significantly by film thickness such that there are more than 5 orders of magnitude increment in the sheet resistance at room temperature when comparing 5nm and 1.5nm films. Scattering effects at interfaces and grain boundaries could play a role in thickness-dependent resistivity in addition to quantum confinement effect that could occur at ultra-thin films: based on our measurements the carrier concentration is decreased from 1.5E22 1/cm3 to 5.5E17 1/cm3, while the mobility is increased from < 0.1 cm2/V.s to ~4 cm2/V.s for the 5nm and 1.5nm films, respectively. Also, measurements at different temperatures indicate that the resistivity is relatively constant for the 5nm film, while for the 1.5nm film more than 2 orders of magnitude reduction has been observed over the range of 220K to 400K. The activation energy of the 2.5nm and 1.5nm films is 30meV and 125meV, respectively, indicating that the TiON ultra-thin films are exhibiting semiconducting behaviour attributing this effect to a metal-semiconductor transition. By the same token, the contact is no longer Ohmic for the thinnest film (i.e., 1.5nm-thick film); hence, a modified lift-off process was developed to selectively deposit thicker films allowing us to perform electrical measurements with low contact resistance on the raised contact regions. Our atomic scale simulations based on molecular dynamic-generated amorphous TiON structures with low oxygen content confirm our experimental observations indicating highly n-type thin films.

Keywords: activation energy, ALD, metal-semiconductor transition, resistivity, titanium oxynitride, ultra-thin film

Procedia PDF Downloads 265
7142 Effect of Acids with Different Chain Lengths Modified by Methane Sulfonic Acid and Temperature on the Properties of Thermoplastic Starch/Glycerin Blends

Authors: Chi-Yuan Huang, Mei-Chuan Kuo, Ching-Yi Hsiao

Abstract:

In this study, acids with various chain lengths (C6, C8, C10 and C12) modified by methane sulfonic acid (MSA) and temperature were used to modify tapioca starch (TPS), then the glycerol (GA) were added into modified starch, to prepare new blends. The mechanical properties, thermal properties and physical properties of blends were studied. This investigation was divided into two parts.  First, the biodegradable materials were used such as starch and glycerol with hexanedioic acid (HA), suberic acid (SBA), sebacic acid (SA), decanedicarboxylic acid (DA) manufacturing with different temperatures (90, 110 and 130 °C). And then, the solution was added into modified starch to prepare the blends by using single-screw extruder. The FT-IR patterns indicated that the characteristic peak of C=O in ester was observed at 1730 cm-1. It is proved that different chain length acids (C6, C8, C10 and C12) reacted with glycerol by esterification and these are used to plasticize blends during extrusion. In addition, the blends would improve the hydrolysis and thermal stability. The water contact angle increased from 43.0° to 64.0°.  Second, the HA (110 °C), SBA (110 °C), SA (110 °C), and DA blends (130 °C) were used in study, because they possessed good mechanical properties, water resistances and thermal stability. On the other hand, the various contents (0, 0.005, 0.010, 0.020 g) of MSA were also used to modify the mechanical properties of blends. We observed that the blends were added to MSA, and then the FT-IR patterns indicated that the C=O ester appeared at 1730 cm-1. For this reason, the hydrophobic blends were produced. The water contact angle of the MSA blends increased from 55.0° to 71.0°. Although break elongation of the MSA blends reduced from the original 220% to 128%, the stress increased from 2.5 MPa to 5.1 MPa. Therefore, the optimal composition of blends was the DA blend (130 °C) with adding of MSA (0.005 g).

Keywords: chain length acids, methane sulfonic acid, Tapioca starch (TPS), tensile stress

Procedia PDF Downloads 215
7141 Physical Education Teacher's Interpretation toward Teaching Games for Understanding Model

Authors: Soni Nopembri

Abstract:

The objective of this research is to evaluate the implementation of teaching games for Understanding model by conducting action to physical education teacher who have got long teaching experience. The research applied Participatory Action Research. The subjects of this research were 19 physical education teachers who had got training of Teaching Games for Understanding. Data collection was conducted intensively through a questionnaire, in-depth interview, Focus Group Discussion (FGD), observation, and documentation. The collected data was analysis zed qualitatively and quantitatively. The result showed that physical education teachers had got an appropriate interpretation on TGfU model. Some indicators that were the focus of this research indicated this points; they are: (1) physical education teachers had good understanding toward TGfU model, (2) PE teachers’ competence in applying TGfU model on Physical Education at school were adequate, though some improvement were needed, (3) the influence factors in the implementation of TGfU model, in sequence, were teacher, facilities, environment, and students factors, (4) PE teachers’ perspective toward TGfU model were positively good, although some teachers were less optimistic toward the development of TGfU model in the future.

Keywords: TGfU, physical education teacher, teaching games, FGD

Procedia PDF Downloads 518
7140 Conduction Model Compatible for Multi-Physical Domain Dynamic Investigations: Bond Graph Approach

Authors: A. Zanj, F. He

Abstract:

In the current paper, a domain independent conduction model compatible for multi-physical system dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear conduction model containing physical states is first represented. A compatible discrete configuration of the thermal domain in line with the elastic domain is then generated through the enhancement of the configuration of the conventional thermal element. The presented simulation results of a sample structure indicate that the suggested conductive model can cover a wide range of dynamic behavior of the thermal domain.

Keywords: multi-physical domain, conduction model, port based modeling, dynamic interaction, physical modeling

Procedia PDF Downloads 251
7139 Interaction Effects of Vitamin D Supplementation and Aerobic Exercises on Balance and Physical Performance in Children with Down Syndrome

Authors: Mohamed A. Eid, Sobhy M. Aly, Marwa M. Ibrahim, Nadia L. Radwan

Abstract:

To investigate the interaction effects of vitamin D supplementation combined with aerobic exercises (AE) and conventional physical therapy program (CPTP) on balance and physical performance in children with Down syndrome (DS).Methods: A randomized controlled trial was conducted for 38 children with DS, with ages ranging from 8 to 12 years. They were divided randomly to two groups. The control group (n=19) received the CPTP, while the study group (n=19) received the CPTP, AE, and vitamin D in the form of an oral daily dose of vitamin D3 400 IU (Cholecalciferol). Evaluation of balance by using the Biodex Stability System and physical performance by using the six-minute walk test (6MWT)was performed before and after 12 weeks of the treatment program. Findings: All groups showed a significant improvement in balance and physical performance after treatment (p < 0.05). The study group showed a significant improvement in balance and physical performancecompared with that of the control group (p < 0.05). Conclusion: Vitamin D supplementation combined with AE and CPTP could improve balance and physical performance in children with DS. Therefore, vitamin D and AEshould be considered as adjunctive to the rehabilitation program of these children.

Keywords: aerobic exercises, balance, down syndrome, physical performance, vitamin D

Procedia PDF Downloads 199
7138 A Systematic Approach for Analyzing Multiple Cyber-Physical Attacks on the Smart Grid

Authors: Yatin Wadhawan, Clifford Neuman, Anas Al Majali

Abstract:

In this paper, we evaluate the resilience of the smart grid system in the presence of multiple cyber-physical attacks on its distinct functional components. We discuss attack-defense scenarios and their effect on smart grid resilience. Through contingency simulations in the Network and PowerWorld Simulator, we analyze multiple cyber-physical attacks that propagate from the cyber domain to power systems and discuss how such attacks destabilize the underlying power grid. The analysis of such simulations helps system administrators develop more resilient systems and improves the response of the system in the presence of cyber-physical attacks.

Keywords: smart grid, gas pipeline, cyber- physical attack, security, resilience

Procedia PDF Downloads 283
7137 Mechanical Design of External Pressure Vessel to an AUV

Authors: Artur Siqueira Nóbrega de Freitas

Abstract:

The Autonomous Underwater Vehicles (AUV), as well the Remotely Operated Vehicles (ROV), are unmanned technologies used in oceanographic investigations, offshore oil extraction, military applications, among others. Differently from AUVs, ROVs uses a physical connection with the surface for energy supply e data traffic. The AUVs use batteries and embedded data acquisition systems. These technologies have progressed, supported by studies in the areas of robotics, embedded systems, naval engineering, etc. This work presents a methodology for external pressure vessel design, responsible for contain and keep the internal components of the vehicle, such as on-board electronics and sensors, isolated from contact with water, creating a pressure differential between the inner and external regions.

Keywords: vessel, external pressure, AUV, buckling

Procedia PDF Downloads 487
7136 Electrical Characterization of Hg/n-bulk GaN Schottky Diode

Authors: B. Nabil, O. Zahir, R. Abdelaziz

Abstract:

We present the results of electrical characterizations current-voltage and capacity-voltage implementation of a method of making a Schottky diode on bulk gallium nitride doped n. We made temporary Schottky contact of Mercury (Hg) and an ohmic contact of silver (Ag), the electrical characterizations current-voltage (I-V) and capacitance-voltage (C-V) allows us to determine the difference parameters of our structure (Hg /n-GaN) as the barrier height (ΦB), the ideality factor (n), the series resistor (Rs), the voltage distribution (Vd), the doping of the substrate (Nd) and density of interface states (Nss).

Keywords: Bulk Gallium nitride, electrical characterization, Schottky diode, series resistance, substrate doping

Procedia PDF Downloads 459
7135 Radix Saposhnikoviae Suppresses Allergic Contact Dermatitis in Mice by Regulating DCs Activated Th1-Type Cells

Authors: Hailiang Liu, Yan Ni, Jie Zheng, Xiaoyan Jiang, Min Hong

Abstract:

Allergic contact dermatitis (ACD) is a commonly clinical type IV allergic skin disease, with the pathological features of infiltration by mononuclear cells and tissue necrosis. Traditional Chinese medicine Radix Saposhnikoviae (RS) is traditionally employed to treat exogenous evils, rubella, itching, rheumatism and tetanus. Meanwhile, it is an important component of the commonly used anti-allergy compound. It’s now widely used as an immuno-modulating agent in mixed herbal decoctions to treat inflammation. However, its mechanism of anti-allergy remains unknown. RS was found to reduce ear thickness, as well as the infiltration of eosinophils. The proliferation of T lymphocytes was inhibited significantly by RS, markedly decreased IFN-γ levels in the supernatant of cells cultured and serum were detected with the treatment of RS. RS significantly decreased the amount of DCs in the mouse lymph nodes, and inhibited the expression of CD4 0 and CD86. Meanwhile, T-bet mRNA expression was down remarkably regulated by RS. These results indicate that RS cures Th1-induced allergic skin inflammation by regulating Th1/Th2 balance with decreasing Th1 differentiation, which might be associated with DCs.

Keywords: allergic contact dermatitis, Radix saposhnikoviae, dendritic cells, T-bet, GATA-3, CD4+ CD25+ Foxp3+ treg cells

Procedia PDF Downloads 350
7134 Wettability of Superhydrophobic Polymer Layers Filled with Hydrophobized Silica on Glass

Authors: Diana Rymuszka, Konrad Terpiłowski, Lucyna Hołysz, Elena Goncharuk, Iryna Sulym

Abstract:

Superhydrophobic surfaces exhibit extremely high water repellency. The commonly accepted basic criterion for such surfaces is a water contact angle larger than 150°, low contact angle hysteresis and low sliding angle. These surfaces are of special interest, because properties such as anti-sticking, anti-contamination and self-cleaning are expected. These properties are attractive for many applications such as anti-sticking of snow for antennas and windows, anti-biofouling paints for boats, waterproof clothing, self-cleaning windshields for automobiles, dust-free coatings or metal refining. The various methods for the preparation of superhydrophobic surfaces since last two decades have been reported, such as phase separation, electrochemical deposition, template method, plasma method, chemical vapor deposition, wet chemical reaction, sol-gel processing, lithography and so on. The aim of the study was to investigate the influence of modified colloidal silica, used as a filler, on the hydrophobicity of the polymer film deposited on the glass support activated with plasma. On prepared surfaces water advancing (ӨA) and receding (ӨR) contact angles were measured and then their total apparent surface free energy was determined using the contact angle hysteresis approach (CAH). The structures of deposited films were observed with the help of an optical microscope. Topographies of selected films were also determined using an optical profilometer. It was found that plasma treatment influence glass surface wetting and energetic properties that is observed in higher adhesion between polymer/filler film and glass support. Using the colloidal silica particles as a filler for the polymer thin film deposited on the glass support, it is possible to produce strongly adhering layers of superhydrophobic properties. The best superhydrophobic properties were obtained for surfaces of the film glass/polimer + modified silica covered in 89 and 100%. The advancing contact angle measured on these surfaces amounts above 150° that leads to under 2 mJ/m2 value of the apparent surface free energy. Such films may have many practical applications, among others, as dust-free coatings or anticorrosion protection.

Keywords: contact angle, plasma, superhydrophobic, surface free energy

Procedia PDF Downloads 450
7133 Good Environmental Governance Realization among the Three King Mongkut's Institutes of Technology in Bangkok, Thailand

Authors: Pastraporn Thipayasothorn, Vipawan Tadapratheep, Jintana Nokyoo

Abstract:

A physical realization of good environmental governance about an environmental principle, educational psychology and architecture in the three King Mongkut's Institutes of Technology, is generated for researching physical environmental factors which related to the good environmental governance, communication between the good environmental governance and a physical environmental, and a physical environmental design policy. Moreover, we collected data by a survey, observation and questionnaire that participants are students of the three King Mongkut's Institutes of Technology, and analyzed a relationship between a building utilization and the good environmental governance awareness. We found that, from the data analysis, a balance and creativity participation which played as the project users and communities of the good governance environmental promotion in the institutes helps the good governance and environmental development in the future.

Keywords: built environment, good governance, environmental governance, physical environmental

Procedia PDF Downloads 405
7132 Study on Hydrophilicity of Anodic Aluminum Oxide Templates with TiO2-NTs

Authors: Yu-Wei Chang, Hsuan-Yu Ku, Jo-Shan Chiu, Shao-Fu Chang, Chien-Chon Chen

Abstract:

This paper aims to discuss the hydrophilicity about the anodic aluminum oxide (AAO) template with titania nanotubes (NTs). The AAO templates with pore size diameters of 20-250 nm were generated by anodizing 6061 aluminum alloy substrates in acid solution of sulfuric acid (H2SO4), oxalic acid (COOH)2, and phosphoric acid (H3PO4), respectively. TiO2-NTs were grown on AAO templates by the sol-gel deposition process successfully. The water contact angle on AAO/TiO2-NTs surface was lower compared to the water contact angle on AAO surface. So, the characteristic of hydrophilicity was significantly associated with the AAO pore size and what kinds of materials were immersed variables.

Keywords: AAO, nanotube, sol-gel, anodization, hydrophilicity

Procedia PDF Downloads 321
7131 Modelling and Simulation of Light and Temperature Efficient Interdigitated Back- Surface-Contact Solar Cell with 28.81% Efficiency Rate

Authors: Mahfuzur Rahman

Abstract:

Back-contact solar cells improve optical properties by moving all electrically conducting parts to the back of the cell. The cell's structure allows silicon solar cells to surpass the 25% efficiency barrier and interdigitated solar cells are now the most efficient. In this work, the fabrication of a light, efficient and temperature resistant interdigitated back contact (IBC) solar cell is investigated. This form of solar cell differs from a conventional solar cell in that the electrodes are located at the back of the cell, eliminating the need for grids on the top, allowing the full surface area of the cell to receive sunlight, resulting in increased efficiency. In this project, we will use SILVACO TCAD, an optoelectronic device simulator, to construct a very thin solar cell with dimensions of 100x250um in 2D Luminous. The influence of sunlight intensity and atmospheric temperature on solar cell output power is highly essential and it has been explored in this work. The cell's optimum performance with 150um bulk thickness provides 28.81% efficiency with an 87.68% fill factor rate making it very thin, flexible and resilient, providing diverse operational capabilities.

Keywords: interdigitated, shading, recombination loss, incident-plane, drift-diffusion, luminous, SILVACO

Procedia PDF Downloads 113
7130 Astragaioside IV Inhibits Type2 Allergic Contact Dermatitis in Mice and the Mechanism Through TLRs-NF-kB Pathway

Authors: Xiao Wei, Dandan Sheng, Xiaoyan Jiang, Lili Gui, Huizhu Wang, Xi Yu, Hailiang Liu, Min Hong

Abstract:

Objective: Mice Type2 allergic contact dermatitis was utilized in this study to explore the effect of AS-IV on Type 2 allergic inflammatory. Methods: The mice were topically sensitized on the shaved abdomens with 1.5% FITC solution on abdominal skin in the day 1 and day 2 and elicited on the right ear with 0.5% FITC solution at day 6. Mice were treated with either AS-IV or normal saline from day 1 to day 5 (induction phase). Auricle swelling was measured 24 h after the elicitation. Ear pathohistological examination was carried out by HE staining. IL-4\IL-13, and IL-9 levels of ear tissue were detected by ELISA. Mice were treated with AS-IV at the initial stage of induction phase, ear tissue was taked at day 3.TSLP level of ear tissue was detected by ELISA and TSLPmRNA\NF-kBmRNA\TLRs(TLR2\TLR3\TLR8\TLR9)mRNA were detected by PCR. Results: AS-IV induction phase evidently inhibited the auricle inflam-mation of the models; pathohistological results indicated that AS-IV induction phase alleviated local edema and angiectasis of mice models and reduced lymphocytic infiltration. AS-IV induction phase markedly decreased IL-4\IL-13, and IL-9 levels in ear tissue. Moreover, at the initial stage of induction pha-se, AS-IV significantly reduced TSLP\TSLPmRNA\NF-kBmRNA\TLR2mRNA\TLR8 mRNA levels in ear tissue. Conclusion: Administration with AS-IV in induction phase could inhibit Type 2 allergic contact dermatitis in mice significantly, and the mechanism may be related with regulating TSLP through TLRs-NF-kB pathway.

Keywords: Astragaioside IV, allergic contact dermatitis, TSLP, interleukin-4, interleukin-13, interleukin-9

Procedia PDF Downloads 404
7129 Electronic Physical Activity Record (EPAR): Key for Data Driven Physical Activity Healthcare Services

Authors: Rishi Kanth Saripalle

Abstract:

Medical experts highly recommend to include physical activity in everyone’s daily routine irrespective of gender or age as it helps to improve various medical issues or curb potential issues. Simultaneously, experts are also diligently trying to provide various healthcare services (interventions, plans, exercise routines, etc.) for promoting healthy living and increasing physical activity in one’s ever increasing hectic schedules. With the introduction of wearables, individuals are able to keep track, analyze, and visualize their daily physical activities. However, there seems to be no common agreed standard for representing, gathering, aggregating and analyzing an individual’s physical activity data from disparate multiple sources (exercise pans, multiple wearables, etc.). This issue makes it highly impractical to develop any data-driven physical activity applications and healthcare programs. Further, the inability to integrate the physical activity data into an individual’s Electronic Health Record to provide a wholistic image of that individual’s health is still eluding the experts. This article has identified three primary reasons for this potential issue. First, there is no agreed standard, both structure and semantic, for representing and sharing physical activity data across disparate systems. Second, various organizations (e.g., LA fitness, Gold’s Gym, etc.) and research backed interventions and programs still primarily rely on paper or unstructured format (such as text or notes) to keep track of the data generated from physical activities. Finally, most of the wearable devices operate in silos. This article identifies the underlying problem, explores the idea of reusing existing standards, and identifies the essential modules required to move forward.

Keywords: electronic physical activity record, physical activity in EHR EIM, tracking physical activity data, physical activity data standards

Procedia PDF Downloads 259
7128 Elements of Sector Benchmarking in Physical Education Curriculum: An Indian Perspective

Authors: Kalpana Sharma, Jyoti Mann

Abstract:

The study was designed towards institutional analysis for a clear understanding of the process involved in functioning and layout of determinants influencing physical education teacher’s education program in India. This further can be recommended for selection of parameters for creating sector benchmarking for physical education teachers training institutions across India. 165 stakeholders involving students, teachers, parents, administrators were surveyed from the identified seven institutions and universities from different states of India. They were surveyed on the basis of seven broad parameters which were associated with the post graduate physical education program in India. A physical education program assessment tool of 52 items was designed to administer it among the stakeholders selected for the survey. An item analysis of the contents was concluded through the review process from selected experts working in higher education with experience in teacher training program in physical education. The data was collected from the stakeholders of the selected institutions through Physical Education Program Assessment Tool (PEPAT). The hypothesis that PE teacher education program is independent of physical education institutions was significant. The study directed a need towards robust admission process emphasizing on identification, selection of potential candidates and quality control of intake with the scientific process developed according to the Indian education policies and academic structure. The results revealed that the universities do not have similar functional and delivery process related to the physical education teacher training program. The study reflects towards the need for physical education universities and institutions to identify the best practices to be followed regarding the functioning of delivery of physical education programs at various institutions through strategic management studies on the identified parameters before establishing strict standards and norms for achieving excellence in physical education in India.

Keywords: assessment, benchmarking, curriculum, physical education, teacher education

Procedia PDF Downloads 521