Search results for: particle size distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10465

Search results for: particle size distribution

55 Screening and Improved Production of an Extracellular β-Fructofuranosidase from Bacillus Sp

Authors: Lynette Lincoln, Sunil S. More

Abstract:

With the rising demand of sugar used today, it is proposed that world sugar is expected to escalate up to 203 million tonnes by 2021. Hydrolysis of sucrose (table sugar) into glucose and fructose equimolar mixture is catalyzed by β-D-fructofuranoside fructohydrolase (EC 3.2.1.26), commonly called as invertase. For fluid filled center in chocolates, preparation of artificial honey, as a sweetener and especially to ensure that food stuffs remain fresh, moist and soft for longer spans invertase is applied widely and is extensively being used. From an industrial perspective, properties such as increased solubility, osmotic pressure and prevention of crystallization of sugar in food products are highly desired. Screening for invertase does not involve plate assay/qualitative test to determine the enzyme production. In this study, we use a three-step screening strategy for identification of a novel bacterial isolate from soil which is positive for invertase production. The primary step was serial dilution of soil collected from sugarcane fields (black soil, Maddur region of Mandya district, Karnataka, India) was grown on a Czapek-Dox medium (pH 5.0) containing sucrose as the sole C-source. Only colonies with the capability to utilize/breakdown sucrose exhibited growth. Bacterial isolates released invertase in order to take up sucrose, splitting the disaccharide into simple sugars. Secondly, invertase activity was determined from cell free extract by measuring the glucose released in the medium at 540 nm. Morphological observation of the most potent bacteria was examined by several identification tests using Bergey’s manual, which enabled us to know the genus of the isolate to be Bacillus. Furthermore, this potent bacterial colony was subjected to 16S rDNA PCR amplification and a single discrete PCR amplicon band of 1500 bp was observed. The 16S rDNA sequence was used to carry out BLAST alignment search tool of NCBI Genbank database to obtain maximum identity score of sequence. Molecular sequencing and identification was performed by Xcelris Labs Ltd. (Ahmedabad, India). The colony was identified as Bacillus sp. BAB-3434, indicating to be the first novel strain for extracellular invertase production. Molasses, a by-product of the sugarcane industry is a dark viscous liquid obtained upon crystallization of sugar. An enhanced invertase production and optimization studies were carried out by one-factor-at-a-time approach. Crucial parameters such as time course (24 h), pH (6.0), temperature (45 °C), inoculum size (2% v/v), N-source (yeast extract, 0.2% w/v) and C-source (molasses, 4% v/v) were found to be optimum demonstrating an increased yield. The findings of this study reveal a simple screening method of an extracellular invertase from a rapidly growing Bacillus sp., and selection of best factors that elevate enzyme activity especially utilization of molasses which served as an ideal substrate and also as C-source, results in a cost-effective production under submerged conditions. The invert mixture could be a replacement for table sugar which is an economic advantage and reduce the tedious work of sugar growers. On-going studies involve purification of extracellular invertase and determination of transfructosylating activity as at high concentration of sucrose, invertase produces fructooligosaccharides (FOS) which possesses probiotic properties.

Keywords: Bacillus sp., invertase, molasses, screening, submerged fermentation

Procedia PDF Downloads 205
54 Assessment of Airborne PM0.5 Mutagenic and Genotoxic Effects in Five Different Italian Cities: The MAPEC_LIFE Project

Authors: T. Schilirò, S. Bonetta, S. Bonetta, E. Ceretti, D. Feretti, I. Zerbini, V. Romanazzi, S. Levorato, T. Salvatori, S. Vannini, M. Verani, C. Pignata, F. Bagordo, G. Gilli, S. Bonizzoni, A. Bonetti, E. Carraro, U. Gelatti

Abstract:

Air pollution is one of the most important worldwide health concern. In the last years, in both the US and Europe, new directives and regulations supporting more restrictive pollution limits were published. However, the early effects of air pollution occur, especially for the urban population. Several epidemiological and toxicological studies have documented the remarkable effect of particulate matter (PM) in increasing morbidity and mortality for cardiovascular disease, lung cancer and natural cause mortality. The finest fractions of PM (PM with aerodynamic diameter <2.5 µm and less) play a major role in causing chronic diseases. The International Agency for Research on Cancer (IARC) has recently classified air pollution and fine PM as carcinogenic to human (1 Group). The structure and composition of PM influence the biological properties of particles. The chemical composition varies with season and region of sampling, photochemical-meteorological conditions and sources of emissions. The aim of the MAPEC (Monitoring Air Pollution Effects on Children for supporting public health policy) study is to evaluate the associations between air pollution and biomarkers of early biological effects in oral mucosa cells of 6-8 year old children recruited from first grade schools. The study was performed in five Italian towns (Brescia, Torino, Lecce, Perugia and Pisa) characterized by different levels of airborne PM (PM10 annual average from 44 µg/m3 measured in Torino to 20 µg/m3 measured in Lecce). Two to five schools for each town were chosen to evaluate the variability of pollution within the same town. Child exposure to urban air pollution was evaluated by collecting ultrafine PM (PM0.5) in the school area, on the same day of biological sampling. PM samples were collected for 72h using a high-volume gravimetric air sampler and glass fiber filters in two different seasons (winter and spring). Gravimetric analysis of the collected filters was performed; PM0.5 organic extracts were chemically analyzed (PAH, Nitro-PAH) and tested on A549 by the Comet assay and Micronucleus test and on Salmonella strains (TA100, TA98, TA98NR and YG1021) by Ames test. Results showed that PM0.5 represents a high variable PM10 percentage (range 19.6-63%). PM10 concentration were generally lower than 50µg/m3 (EU daily limit). All PM0.5 extracts showed a mutagenic effect with TA98 strain (net revertant/m3 range 0.3-1.5) and suggested the presence of indirect mutagens, while lower effect was observed with TA100 strain. The results with the TA98NR and YG1021 strains showed the presence of nitroaromatic compounds as confirmed by the chemical analysis. No genotoxic or oxidative effect of PM0.5 extracts was observed using the comet assay (with/without Fpg enzyme) and micronucleus test except for some sporadic samples. The low biological effect observed could be related to the low level of air pollution observed in this winter sampling associated to a high atmospheric instability. For a greater understanding of the relationship between PM size, composition and biological effects the results obtained in this study suggest to investigate the biological effect of the other PM fractions and in particular of the PM0.5-1 fraction.

Keywords: airborne PM, ames test, comet assay, micronucleus test

Procedia PDF Downloads 293
53 Production of Bioethanol from Oil PalmTrunk by Cocktail Carbohydrases Enzyme Produced by Thermophilic Bacteria Isolated from Hot spring in West Sumatera, Indonesia

Authors: Yetti Marlida, Syukri Arif, Nadirman Haska

Abstract:

Recently, alcohol fuels have been produced on industrial scales by fermentation of sugars derived from wheat, corn, sugar beets, sugar cane etc. The enzymatic hydrolysis of cellulosic materials to produce fermentable sugars has an enormous potential in meeting global bioenergy demand through the biorefinery concept, since agri-food processes generate millions of tones of waste each year (Xeros and Christakopoulos 2009) such as sugar cane baggase , wheat straw, rice straw, corn cob, and oil palm trunk. In fact oil palm trunk is one of the most abundant lignocellulosic wastes by-products worldwide especially come from Malaysia, Indonesia and Nigeria and provides an alternative substrate to produce useful chemicals such as bioethanol. Usually, from the ages 3 years to 25 years, is the economical life of oil palm and after that, it is cut for replantation. The size of trunk usually is 15-18 meters in length and 46-60 centimeters in diameter. The trunk after cutting is agricultural waste causing problem in elimination but due to the trunk contains about 42% cellulose, 34.4%hemicellulose, 17.1% lignin and 7.3% other compounds,these agricultural wastes could make value added products (Pumiput, 2006).This research was production of bioethanol from oil palm trunk via saccharafication by cocktail carbohydrases enzymes. Enzymatic saccharification of acid treated oil palm trunk was carried out in reaction mixture containing 40 g treated oil palm trunk in 200 ml 0.1 M citrate buffer pH 4.8 with 500 unit/kg amylase for treatment A: Treatment B: Treatment A + 500 unit/kg cellulose; C: treatment B + 500 unit/kgg xylanase: D: treatment D + 500 unit/kg ligninase and E: OPT without treated + 500 unit/kg amylase + 500 unit/kg cellulose + 500 unit/kg xylanase + 500 unit/kg ligninase. The reaction mixture was incubated on a water bath rotary shaker adjusted to 600C and 75 rpm. The samples were withdraw at intervals 12 and 24, 36, 48,60, and 72 hr. For bioethanol production in biofermentor of 5L the hydrolysis product were inoculated a loop of Saccharomyces cerevisiae and then incubated at 34 0C under static conditions. Samples are withdraw after 12, 24, 36, 48 and 72 hr for bioethanol and residual glucose. The results of the enzymatic hidrolysis (Figure1) showed that the treatment B (OPT hydrolyzed with amylase and cellulase) have optimum condition for glucose production, where was both of enzymes can be degraded OPT perfectly. The same results also reported by Primarini et al., (2012) reported the optimum conditions the hydrolysis of OPT was at concentration of 25% (w /v) with 0.3% (w/v) amylase, 0.6% (w /v) glucoamylase and 4% (w/v) cellulase. In the Figure 2 showed that optimum bioethanol produced at 48 hr after incubation,if time increased the biothanol decreased. According Roukas (1996), a decrease in the concentration of ethanol occur at excess glucose as substrate and product inhibition effects. Substrate concentration is too high reduces the amount of dissolved oxygen, although in very small amounts, oxygen is still needed in the fermentation by Saccaromyces cerevisiae to keep life in high cell concentrations (Nowak 2000, Tao et al. 2005). The results of the research can be conluded that the optimum enzymatic hydrolysis occured when the OPT added with amylase and cellulase and optimum bioethanol produced at 48 hr incubation using Saccharomyses cerevicea whereas 18.08 % bioethanol produced from glucose conversion. This work was funded by Directorate General of Higher Education (DGHE), Ministry of Education and Culture, contract no.245/SP2H/DIT.LimtabMas/II/2013

Keywords: oil palm trunk, enzymatic hydrolysis, saccharification

Procedia PDF Downloads 488
52 Continuity Through Best Practice. A Case Series of Complex Wounds Manage by Dedicated Orthopedic Nursing Team

Authors: Siti Rahayu, Khairulniza Mohd Puat, Kesavan R., Mohammad Harris A., Jalila, Kunalan G., Fazir Mohamad

Abstract:

The greatest challenge has been in establishing and maintaining the dedicated nursing team. Continuity is served when nurses are assigned exclusively for managing wound, where they can continue to build expertise and skills. In addition, there is a growing incidence of chronic wounds and recognition of the complexity involved in caring for these patients. We would like to share 4 cases with different techniques of wound management. 1st case, 39 years old gentleman with underlying rheumatoid arthritis with chronic periprosthetic joint infection of right total knee replacement presented with persistent drainage over right knee. Patient was consulted for two stage revision total knee replacement. However, patient only agreed for debridement and retention of implant. After debridement, large medial and lateral wound was treated with Instillation Negative Pressure Wound Therapy Dressings. After several cycle, the wound size reduced, and conventional dressing was applied. 2nd case, 58 years old gentleman with underlying diabetes presented with right foot necrotizing fasciitis with gangrene of 5th toe. He underwent extensive debridement of foot with rays’ amputation of 5th toe. Post debridement patient was started on Instillation Negative Pressure Wound Therapy Dressings. After several cycle of VAC, the wound bed was prepared, and he underwent split skin graft over right foot. 3 rd case, 60 years old gentleman with underlying diabetes mellitus presented with right foot necrotizing soft tissue infection. He underwent rays’ amputation and extensive wound debridement. Upon stabilization of general condition, patient was discharge with regular wound dressing by same nurse and doctor during each visit to clinic follow up. After 6 months of follow up, the wound healed well. 4th case, 38-year-old gentleman had alleged motor vehicle accident and sustained closed fracture right tibial plateau. Open reduction and proximal tibial locking plate were done. At 2 weeks post-surgery, the patient presented with warm, erythematous leg and pus discharge from the surgical site. Empirical antibiotic was started, and wound debridement was done. Intraoperatively, 50cc pus was evacuated, unhealthy muscle and tissue debrided. No loosening of the implant. Patient underwent multiple wound debridement. At 2 weeks post debridement wound healed well, but the proximal aspect was unable to close immediately. This left the proximal part of the implant to be exposed. Patient was then put on VAC dressing for 3 weeks until healthy granulation tissue closes the implant. Meanwhile, antibiotic was change according to culture and sensitivity. At 6 weeks post the first debridement, the wound was completely close, and patient was discharge home well. At 3 months post operatively, patient wound and fracture healed uneventfully and able to ambulate independently. Complex wounds are too serious to be dealt with. Team managing complex wound need continuous support through the provision of educational tools to support their professional development, engagement with local and international expert, as well as highquality products that increase efficiencies in services

Keywords: VAC (Vacuum Assisted Closure), empirical- initial antibiotics, NPWT- negative pressure wound therapy, NF- necrotizing fasciitis, gangrene- blackish discoloration due to poor blood supply

Procedia PDF Downloads 81
51 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet

Authors: Justin Woulfe

Abstract:

Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.

Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics

Procedia PDF Downloads 120
50 Characterization of the Lytic Bacteriophage VbɸAB-1 against Drug Resistant Acinetobacter baumannii Isolated from Hospitalized Pressure Ulcers Patients

Authors: M. Doudi, M. H. Pazandeh, L. Rahimzadeh Torabi

Abstract:

Bedsores are pressure ulcers that occur on the skin or tissue due to being immobile and lying in bed for extended periods. Bedsores have the potential to progress into open ulcers, increasing the possibility of variety of bacterial infection. Acinetobacter baumannii, a pathogen of considerable clinical importance, exhibited a significant correlation with Bedsores (pressure ulcers) infections, thereby manifesting a wide spectrum of antibiotic resistance. The emergence of drug resistance has led researchers to focus on alternative methods, particularly phage therapy, for tackling bacterial infections. Phage therapy has emerged as a novel therapeutic approach to regulate the activity of these agents. The management of bacterial infections greatly benefits from the clinical utilization of bacteriophages as a valuable antimicrobial intervention. The primary objective of this investigation consisted of isolating and discerning potent bacteriophage capable of targeting multi drug-resistant (MDR) and extensively drug-resistant (XDR) bacteria obtained from pressure ulcers. In present study, analyzed and isolated A. baumannii strains obtained from a cohort of patients suffering from pressure ulcers at Taleghani Hospital in Ahvaz, Iran. An approach that included biochemical and molecular identification techniques was used to determine the taxonomic classification of bacterial isolates at the genus and species levels. The molecular identification process was facilitated by using the 16S rRNA gene in combination with universal primers 27 F, and 1492 R. Bacteriophage was obtained through the isolation process conducted on treatment plant sewage located in Isfahan, Iran. The main goal of this study was to evaluate different characteristics of phage, such as their appearance, range of hosts they can infect, how quickly they can enter a host, their stability at varying temperatures and pH levels, their effectiveness in killing bacteria, the growth pattern of a single phage stage, mapping of enzymatic digestion, and identification of proteomics patterns. The findings demonstrated that an examination was conducted on a sample of 50 specimens, wherein 15 instances of A. baumannii were identified. These microorganisms are the predominant Gram-negative agents known to cause wound infections in individuals suffering from bedsores. The study's findings indicated a high prevalence of antibiotic resistance in the strains isolated from pressure ulcers, excluding the clinical strains that exhibited responsiveness to colistin.According to the findings obtained from assessments of host range and morphological characteristics of bacteriophage VbɸAB-1, it can be concluded that this phage possesses specificity towards A. Baumannii BAH_Glau1001 was classified as a member of the Plasmaviridae family. The bacteriophage mentioned earlier showed the strongest antibacterial effect at a temperature of 18 °C and a pH of 6.5. Through the utilization of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis on protein fragments, it was established that the bacteriophage VbɸAB-1 exhibited a size range between 50 and 75 kilodaltons (KDa). The numerous research findings on the effectiveness of phages and the safety studies conducted suggest that the phages studied in this research can be considered as a practical solution and recommended approach for controlling and treating stubborn pathogens in burn wounds among hospitalized patients.

Keywords: acinetobacter baumannii, extremely drug- resistant, phage therapy, surgery wound

Procedia PDF Downloads 55
49 A Novel Paradigm in the Management of Pancreatic Trauma

Authors: E. Tan, O. McKay, T. Clarnette T., D. Croagh

Abstract:

Background: Historically with pancreatic trauma, complete disruption of the main pancreatic duct (MPD), classified as Grade IV-V by the American Association for the Surgery of Trauma (AAST), necessitated a damage-control laparotomy. This was to avoid mortality, shorten diet upgrade timeframe, and hence shorter length of stay. However, acute pancreatic resection entailed complications of pancreatic fistulas and leaks. With the advance of imaging-guided interventions, non-operative management such as percutaneous and transpapillary drainage of traumatic peripancreatic collections have been trialled favourably. The aim of this case series is to evaluate the efficacy of endoscopic ultrasound-guided (EUS) transmural drainage in managing traumatic peripancreatic collections as a less invasive alternative to traditional approaches. This study also highlights the importance of anatomical knowledge regarding peripancreatic collection’s common location in the lesser sac, the pancreas relationship to adjacent organs, and the formation of the main pancreatic duct in regards to the feasibility of therapeutic internal drainage. Methodology: A retrospective case series was conducted at a single tertiary endoscopy unit, analysing patient data over a 5-year period. Inclusion criteria outlined patients age 5 to 80-years-old, traumatic pancreatic injury of at least Grade IV and haemodynamic stability. Exclusion criteria involved previous episodes of pancreatitis or abdominal trauma. Patient demographics and clinicopathological characteristics were retrospectively collected. Results: The study identified 7 patients with traumatic pancreatic injuries that were managed from 2018-2022; age ranging from 5 to 34 years old, with majority being female (n=5). Majority of the mechanisms of trauma were a handlebar injury (n=4). Diagnosis was confirmed with an elevated lipase and computerized tomotography (CT) confirmation of proximal pancreatic transection with MPD disruption. All patients sustained an isolated single organ grade IV pancreatic injury, except case 4 and 5 with other intra-abdominal visceral Grade 1 injuries. 6 patients underwent early ERCP-guided transpapillary drainage with 1 being unsuccessful for pancreatic duct stent insertion (case 1) and 1 complication of stent migration (case 2). Surveillance imaging post ERCP showed the stents were unable to bridge the disrupted duct and development of symptomatic collections with an average size of 9.9cm. Hence, all patients proceeded to EUS-guided transmural drainage, with 2/7 patients requiring repeat drainages (case 6 and 7). Majority (n=6) had a cystogastrostomy, whilst 1 (case 6) had a cystoenterostomy due to feasibility of the peripancreatic collection being adjacent to duodenum rather than stomach. However, case 6 subsequently required repeat EUS-guided drainage with cystogastrostomy for ongoing collections. Hence all patients avoided initial laparotomy with an average index length of stay of 11.7 days. Successful transmural drainage was demonstrated, with no long-term complications of pancreatic insufficiency; except for 1 patient requiring a distal pancreatectomy at 2 year follow-up due to chronic pain. Conclusion: The early results of this series support EUS-guided transmural drainage as a viable management option for traumatic peripancreatic collections, showcasing successful outcomes, minimal complications, and long-term efficacy in avoiding surgical interventions. More studies are required before the adoption of this procedure as a less invasive and complication-prone management approach for traumatic peripancreatic collections.

Keywords: endoscopic ultrasound, cystogastrostomy, pancreatic trauma, traumatic peripancreatic collection, transmural drainage

Procedia PDF Downloads 12
48 Multiple Primary Pulmonary Meningiomas: A Case Report

Authors: Wellemans Isabelle, Remmelink Myriam, Foucart Annick, Rusu Stefan, Compère Christophe

Abstract:

Primary pulmonary meningioma (PPM) is a very rare tumor, and its occurrence has been reported only sporadically. Multiple PPMs are even more exceptional, and herein, we report, to the best of our knowledge, the fourth case, focusing on the clinicopathological features of the tumor. Moreover, the possible relationship between the use of progesterone–only contraceptives and the development of these neoplasms will be discussed. Case Report: We report a case of a 51-year-old female presenting three solid pulmonary nodules, with the following localizations: right upper lobe, middle lobe, and left lower lobe, described as incidental findings on computed tomography (CT) during a pre-bariatric surgery check-up. The patient revealed no drinking or smoking history. The physical exam was unremarkable except for the obesity. The lesions ranged in size between 6 and 24 mm and presented as solid nodules with lobulated contours. The largest lesion situated in the middle lobe had mild fluorodeoxyglucose (FDG) uptake on F-18 FDG positron emission tomography (PET)/CT, highly suggestive of primary lung neoplasm. For pathological assessment, video-assisted thoracoscopic middle lobectomy and wedge resection of the right upper nodule was performed. Histological examination revealed relatively well-circumscribed solid proliferation of bland meningothelial cells growing in whorls and lobular nests, presenting intranuclear pseudo-inclusions and psammoma bodies. No signs of anaplasia were observed. The meningothelial cells expressed diffusely Vimentin, focally Progesterone receptors and were negative for epithelial (cytokeratin (CK) AE1/AE3, CK7, CK20, Epithelial Membrane Antigen (EMA)), neuroendocrine markers (Synaptophysin, Chromogranin, CD56) and Estrogenic receptors. The proliferation labelling index Ki-67 was low (<5%). Metastatic meningioma was ruled out by brain and spine magnetic resonance imaging (MRI) scans. The third lesion localized in the left lower lobe was followed-up and resected three years later because of its slow but significant growth (14 mm to 16 mm), alongside two new infra centimetric lesions. Those three lesions showed a morphological and immunohistochemical profile similar to previously resected lesions. The patient was disease-free one year post-last surgery. Discussion: Although PPMs are mostly benign and slow-growing tumors with an excellent prognosis, they do not present specific radiological characteristics, and it is difficult to differentiate it from other lung tumors, histopathologic examination being essential. Aggressive behavior is associated with atypical or anaplastic features (WHO grades II–III) The etiology is still uncertain and different mechanisms have been proposed. A causal connection between sexual hormones and meningothelial proliferation has long been suspected and few studies examining progesterone only contraception and meningioma risk have all suggested an association. In line with this, our patient was treated with Levonorgestrel, a progesterone agonist, intra-uterine device (IUD). Conclusions: PPM, defined by the typical histological and immunohistochemical features of meningioma in the lungs and the absence of central nervous system lesions, is an extremely rare neoplasm, mainly solitary and associating, and indolent growth. Because of the unspecific radiologic findings, it should always be considered in the differential diagnosis of lung neoplasms. Regarding multiple PPM, only three cases are reported in the literature, and this is the first described in a woman treated by a progesterone-only IUD to the best of our knowledge.

Keywords: pulmonary meningioma, multiple meningioma, meningioma, pulmonary nodules

Procedia PDF Downloads 76
47 Designing and Simulation of the Rotor and Hub of the Unmanned Helicopter

Authors: Zbigniew Czyz, Ksenia Siadkowska, Krzysztof Skiba, Karol Scislowski

Abstract:

Today’s progress in the rotorcraft is mostly associated with an optimization of aircraft performance achieved by active and passive modifications of main rotor assemblies and a tail propeller. The key task is to improve their performance, improve the hover quality factor for rotors but not change in specific fuel consumption. One of the tasks to improve the helicopter is an active optimization of the main rotor providing for flight stages, i.e., an ascend, flight, a descend. An active interference with the airflow around the rotor blade section can significantly change characteristics of the aerodynamic airfoil. The efficiency of actuator systems modifying aerodynamic coefficients in the current solutions is relatively high and significantly affects the increase in strength. The solution to actively change aerodynamic characteristics assumes a periodic change of geometric features of blades depending on flight stages. Changing geometric parameters of blade warping enables an optimization of main rotor performance depending on helicopter flight stages. Structurally, an adaptation of shape memory alloys does not significantly affect rotor blade fatigue strength, which contributes to reduce costs associated with an adaptation of the system to the existing blades, and gains from a better performance can easily amortize such a modification and improve profitability of such a structure. In order to obtain quantitative and qualitative data to solve this research problem, a number of numerical analyses have been necessary. The main problem is a selection of design parameters of the main rotor and a preliminary optimization of its performance to improve the hover quality factor for rotors. This design concept assumes a three-bladed main rotor with a chord of 0.07 m and radius R = 1 m. The value of rotor speed is a calculated parameter of an optimization function. To specify the initial distribution of geometric warping, a special software has been created that uses a numerical method of a blade element which respects dynamic design features such as fluctuations of a blade in its joints. A number of performance analyses as a function of rotor speed, forward speed, and altitude have been performed. The calculations were carried out for the full model assembly. This approach makes it possible to observe the behavior of components and their mutual interaction resulting from the forces. The key element of each rotor is the shaft, hub and pins holding the joints and blade yokes. These components are exposed to the highest loads. As a result of the analysis, the safety factor was determined at the level of k > 1.5, which gives grounds to obtain certification for the strength of the structure. The construction of the joint rotor has numerous moving elements in its structure. Despite the high safety factor, the places with the highest stresses, where the signs of wear and tear may appear, have been indicated. The numerical analysis carried out showed that the most loaded element is the pin connecting the modular bearing of the blade yoke with the element of the horizontal oscillation joint. The stresses in this element result in a safety factor of k=1.7. The other analysed rotor components have a safety factor of more than 2 and in the case of the shaft, this factor is more than 3. However, it must be remembered that the structure is as strong as the weakest cell is. Designed rotor for unmanned aerial vehicles adapted to work with blades with intelligent materials in its structure meets the requirements for certification testing. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.

Keywords: main rotor, rotorcraft aerodynamics, shape memory alloy, materials, unmanned helicopter

Procedia PDF Downloads 120
46 Farm-Women in Technology Transfer to Foster the Capacity Building of Agriculture: A Forecast from a Draught-Prone Rural Setting in India

Authors: Pradipta Chandra, Titas Bhattacharjee, Bhaskar Bhowmick

Abstract:

The foundation of economy in India is primarily based on agriculture while this is the most neglected in the rural setting. More significantly, household women take part in agriculture with higher involvement. However, because of lower education of women they have limited access towards financial decisions, land ownership and technology but they have vital role towards the individual family level. There are limited studies on the institution-wise training barriers with the focus of gender disparity. The main purpose of this paper is to find out the factors of institution-wise training (non-formal education) barriers in technology transfer with the focus of participation of rural women in agriculture. For this study primary and secondary data were collected in the line of qualitative and quantitative approach. Qualitative data were collected by several field visits in the adjacent areas of Seva-Bharati, Seva Bharati Krishi Vigyan Kendra through semi-structured questionnaires. In the next level detailed field surveys were conducted with close-ended questionnaires scored on the seven-point Likert scale. Sample size was considered as 162. During the data collection the focus was to include women although some biasness from the end of respondents and interviewer might exist due to dissimilarity in observation, views etc. In addition to that the heterogeneity of sample is not very high although female participation is more than fifty percent. Data were analyzed using Exploratory Factor Analysis (EFA) technique with the outcome of three significant factors of training barriers in technology adoption by farmers: (a) Failure of technology transfer training (TTT) comprehension interprets that the technology takers, i.e., farmers can’t understand the technology either language barrier or way of demonstration exhibited by the experts/ trainers. (b) Failure of TTT customization, articulates that the training for individual farmer, gender crop or season-wise is not tailored. (c) Failure of TTT generalization conveys that absence of common training methods for individual trainers for specific crops is more prominent at the community level. The central finding is that the technology transfer training method can’t fulfill the need of the farmers under an economically challenged area. The impact of such study is very high in the area of dry lateritic and resource crunch area of Jangalmahal under Paschim Medinipur district, West Bengal and areas with similar socio-economy. Towards the policy level decision this research may help in framing digital agriculture for implementation of the appropriate information technology for the farming community, effective and timely investment by the government with the selection of beneficiary, formation of farmers club/ farm science club etc. The most important research implication of this study lies upon the contribution towards the knowledge diffusion mechanism of the agricultural sector in India. Farmers may overcome the barriers to achieve higher productivity through adoption of modern farm practices. Corporates will be interested in agro-sector through investment under corporate social responsibility (CSR). The research will help in framing public or industry policy and land use pattern. Consequently, a huge mass of rural farm-women will be empowered and farmer community will be benefitted.

Keywords: dry lateritic zone, institutional barriers, technology transfer in India, farm-women participation

Procedia PDF Downloads 346
45 Uterine Leiomyomas and Urological Complications

Authors: Dharshini Selvarajah, Nicula Lui, Karen Kong

Abstract:

Background: Uterine fibroids are a common benign gynaecologic neoplasm in reproductive-aged women. Fibroids may become symptomatic in a vast majority of nulliparous women. Their diagnosis and management is often coordinated between gyneacologists, radiologists and urologists depending on the anatomical location, growth, size and the fibroids sarcomatous evolvement. Some patients may develop obstructive uropathy symptoms, either uni or bilateral secondary urethral obstruction causing hydronephrosis. Uterine artery emoblisation (UAE) has previously shown to effectively resolve symptoms as well as relieve urethral obstruction and resolve the hydronephrosis. UAE has now established itself as an organ preserving and minimally invasive procedure in the management of symptomatic uterine fibroids. It is a safe and effective alternative to hysterectomy for resolving fibroid related pressure symptoms. The case presented examines the clinical manifestations and impact of uterine fibroids on the urinary tract system. The therapeutic options to relieve the urological symptoms as well as preserve fertility are explored and presented. Case: The case is a 29-year-old Nepalese female admitted to hospital with recurrent urosepsis with multiresistant organisms. This was on a background of an enlarged uterus (measuring 17cm x11cm) with multiple subserosal, intramural and exophytic fibroids- causing external ureteric compression. She had bilateral ureteric stents insitu and required bilateral right and left nephrostomies during repeated episodes of urosepsis and bilateral ureteric obstruction. The left nephrostomy was removed a month prior to admission and her most recent CT KUB demonstrated hypofunctioning ureteric stents with bilateral hydronephrosis. Options of hysterectomy versus uterine artery emoblisation (UAE) were extensively explored. The patient was keen to preserve fertility. Risks associated with UAE such as expulsion of the submucosal component of the fibroids and the possibilities of sepsis in the setting of ongoing ureteric colonisation were particularly high. The patient opted to trial UAE even though the risks of recurrent hospital admissions with urosepsis were going to be particularly high. In the event, the uterus fails to shrink adequately enough to relieve the obstructed ureters a hysterectomy would inevitably be required in future. Day 3 post UAE the patient developed fevers, was hypotensive and tachycardic post-receiving prophylactic meropenem and fluconazole pre emoblisation. She was noted to have a CRP of 293 with the most recent urine culture during this time growing Candida albicans. The patient was recommenced on oral fluconazole and IV meropenem, with good effect. Her repeat renal tract ultrasound post-UAE showed ongoing marked left hydronephrosis relatively unchanged from the scan one month prior to the procedure, however the right-sided hydronephrosis had resolved. The patient was discharged on a 2-week course of antibiotics. The patient will have a repeat renal tract ultrasound and MRI of the ureters to re-evaluate the degree of hydronephrosis and progress- this was unavailable at the time of abstract submission and will be presented at the conference. Conclusion: Fibroids are a common benign tumour of the uterus and can frequently impact the lower urinary system resulting in significant uropathy. They often enlarge and compress the urinary bladder, urethra and lower end of the ureters. The effectiveness of UAE as a fertility preserving option is described.

Keywords: Uterine leiomyomas and urological complications, uterine artery embolisation for fibroids, Uterine fibroids and complications, Management of uterine fibroids

Procedia PDF Downloads 193
44 Management of Urological Complications Secondary to Uterine Fibroids

Authors: Dharshini Selvarajah, Karen Kong

Abstract:

Background: Uterine fibroids are a common benign gynaecologic neoplasm in reproductive-aged women. Fibroids may become symptomatic in a vast majority of nulliparous women. Their diagnosis and management are often coordinated between gyneacologists, radiologists and urologists depending on the anatomical location, growth, size and the fibroids' sarcomatous evolvement. Some patients may develop obstructive uropathy symptoms, either uni or bilateral secondary urethral obstruction causing hydronephrosis. Uterine artery embolization (UAE) has previously been shown to effectively resolve symptoms as well as relieve urethral obstruction and resolve hydronephrosis. UAE has now established itself as an organ-preserving and minimally invasive procedure in the management of symptomatic uterine fibroids. It is a safe and effective alternative to hysterectomy for resolving fibroid-related pressure symptoms. The case presented examines the clinical manifestations and impact of uterine fibroids on the urinary tract system. The therapeutic options to relieve the urological symptoms as well as preserve fertility are explored and presented. Case: The case is a 29-year-old Nepalese female admitted to the hospital with recurrent urosepsis with multiresistant organisms. This was on a background of an enlarged uterus (measuring 17cm x11cm) with multiple subserosal, intramural and exophytic fibroids- causing external ureteric compression. She had bilateral ureteric stents in situ and required bilateral right and left nephrostomies during repeated episodes of urosepsis and bilateral ureteric obstruction. The left nephrostomy was removed a month prior to admission, and her most recent CT KUB demonstrated hypofunctioning ureteric stents with bilateral hydronephrosis. Options of hysterectomy versus uterine artery embolization (UAE) were extensively explored. The patient was keen to preserve fertility. Risks associated with UAE, such as the expulsion of the submucosal component of the fibroids and the possibilities of sepsis in the setting of ongoing ureteric colonisation were particularly high. The patient opted to trial UAE even though the risks of recurrent hospital admissions with urosepsis were going to be particularly high. In the event, the uterus fails to shrink adequately enough to relieve the obstructed ureters, a hysterectomy would inevitably be required in the future. Day 3 post-UAE the patient developed fevers, was hypotensive and tachycardic post-receiving prophylactic meropenem and fluconazole pre emoblisation. She was noted to have a CRP of 293 with the most recent urine culture during this time growing Candida albicans. The patient was recommenced on oral fluconazole and IV meropenum, with good effect. Her repeat renal tract ultrasound post-UAE showed ongoing marked left hydronephrosis relatively unchanged from the scan one month prior to the procedure; however, the right-sided hydronephrosis had resolved. The patient was discharged on a 2-week course of antibiotics. The patient will have a repeat renal tract ultrasound and MRI of the ureters to re-evaluate the degree of hydronephrosis and progress- this was unavailable at the time of abstract submission and will be presented at the conference. Conclusion: Fibroids are a common benign tumor of the uterus and can frequently impact the lower urinary system resulting in significant uropathy. They often enlarge and compress the urinary bladder, urethra and lower end of the ureters. The effectiveness of the UAE as a fertility-preserving option is described.

Keywords: uterine artery embolisation for fibroids, urological complications from fibroids, uropathy of fibroids, obstructive fibroid management

Procedia PDF Downloads 182
43 New Hybrid Process for Converting Small Structural Parts from Metal to CFRP

Authors: Yannick Willemin

Abstract:

Carbon fibre-reinforced plastic (CFRP) offers outstanding value. However, like all materials, CFRP also has its challenges. Many forming processes are largely manual and hard to automate, making it challenging to control repeatability and reproducibility (R&R); they generate significant scrap and are too slow for high-series production; fibre costs are relatively high and subject to supply and cost fluctuations; the supply chain is fragmented; many forms of CFRP are not recyclable, and many materials have yet to be fully characterized for accurate simulation; shelf life and outlife limitations add cost; continuous-fibre forms have design limitations; many materials are brittle; and small and/or thick parts are costly to produce and difficult to automate. A majority of small structural parts are metal due to high CFRP fabrication costs for the small-size class. The fact that CFRP manufacturing processes that produce the highest performance parts also tend to be the slowest and least automated is another reason CFRP parts are generally higher in cost than comparably performing metal parts, which are easier to produce. Fortunately, business is in the midst of a major manufacturing evolution—Industry 4.0— one technology seeing rapid growth is additive manufacturing/3D printing, thanks to new processes and materials, plus an ability to harness Industry 4.0 tools. No longer limited to just prototype parts, metal-additive technologies are used to produce tooling and mold components for high-volume manufacturing, and polymer-additive technologies can incorporate fibres to produce true composites and be used to produce end-use parts with high aesthetics, unmatched complexity, mass customization opportunities, and high mechanical performance. A new hybrid manufacturing process combines the best capabilities of additive—high complexity, low energy usage and waste, 100% traceability, faster to market—and post-consolidation—tight tolerances, high R&R, established materials, and supply chains—technologies. The platform was developed by Zürich-based 9T Labs AG and is called Additive Fusion Technology (AFT). It consists of a design software offering the possibility to determine optimal fibre layup, then exports files back to check predicted performance—plus two pieces of equipment: a 3d-printer—which lays up (near)-net-shape preforms using neat thermoplastic filaments and slit, roll-formed unidirectional carbon fibre-reinforced thermoplastic tapes—and a post-consolidation module—which consolidates then shapes preforms into final parts using a compact compression press fitted with a heating unit and matched metal molds. Matrices—currently including PEKK, PEEK, PA12, and PPS, although nearly any high-quality commercial thermoplastic tapes and filaments can be used—are matched between filaments and tapes to assure excellent bonding. Since thermoplastics are used exclusively, larger assemblies can be produced by bonding or welding together smaller components, and end-of-life parts can be recycled. By combining compression molding with 3D printing, higher part quality with very-low voids and excellent surface finish on A and B sides can be produced. Tight tolerances (min. section thickness=1.5mm, min. section height=0.6mm, min. fibre radius=1.5mm) with high R&R can be cost-competitively held in production volumes of 100 to 10,000 parts/year on a single set of machines.

Keywords: additive manufacturing, composites, thermoplastic, hybrid manufacturing

Procedia PDF Downloads 66
42 Triple Immunotherapy to Overcome Immune Evasion by Tumors in a Melanoma Mouse Model

Authors: Mary-Ann N. Jallad, Dalal F. Jaber, Alexander M. Abdelnoor

Abstract:

Introduction: Current evidence confirms that both innate and adaptive immune systems are capable of recognizing and abolishing malignant cells. The emergence of cancerous tumors in patients is, therefore, an indication that certain cancer cells can resist elimination by the immune system through a process known as “immune evasion”. In fact, cancer cells often exploit regulatory mechanisms to escape immunity. Such mechanisms normally exist to control the immune responses and prohibit exaggerated or autoimmune reactions. Recently, immunotherapies have shown promising yet limited results. Therefore this study investigates several immunotherapeutic combinations and devises a triple immunotherapy which harnesses the innate and acquired immune responses towards the annihilation of malignant cells through overcoming their ability of immune evasion, consequently hampering malignant progression and eliminating established tumors. The aims of the study are to rule out acute/chronic toxic effects of the proposed treatment combinations, to assess the effect of these combinations on tumor growth and survival rates, and to investigate potential mechanisms underlying the phenotypic results through analyzing serum levels of anti-tumor cytokines, angiogenic factors and tumor progression indicator, and the tumor-infiltrating immune-cells populations. Methodology: For toxicity analysis, cancer-free C57BL/6 mice are randomized into 9 groups: Group 1 untreated, group 2 treated with sterile saline (solvent of used treatments), group 3 treated with Monophosphoryl-lipid-A, group 4 with anti-CTLA4-antibodies, group 5 with 1-Methyl-Tryptophan (Indolamine-Dioxygenase-1 inhibitor), group 6 with both MPLA and anti-CTLA4-antibodies, group 7 with both MPLA and 1-MT, group 8 with both anti-CTLA4-antibodies and 1-MT, and group 9 with all three: MPLA, anti-CTLA4-antibodies and 1-MT. Mice are monitored throughout the treatment period and for three following months. At that point, histological sections from their main organs are assessed. For tumor progression and survival analysis, a murine melanoma model is generated by injecting analogous mice with B16F10 melanoma cells. These mice are segregated into the listed nine groups. Their tumor size and survival are monitored. For a depiction of underlying mechanisms, melanoma-bearing mice from each group are sacrificed at several time-points. Sera are tested to assess the levels of Interleukin-12 (IL-12), Vascular-Endothelial-Growth Factor (VEGF), and S100B. Furthermore, tumors are excised for analysis of infiltrated immune cell populations including T-cells, macrophages, natural killer cells and immune-regulatory cells. Results: Toxicity analysis shows that all treated groups present no signs of neither acute nor chronic toxicity. Their appearance and weights were comparable to those of control groups throughout the treatment period and for the following 3 months. Moreover, histological sections from their hearts, kidneys, lungs, and livers were normal. Work is ongoing for completion of the remaining study aims. Conclusion: Toxicity was the major concern for the success of the proposed comprehensive combinational therapy. Data generated so far ruled out any acute or chronic toxic effects. Consequently, ongoing work is quite promising and may significantly contribute to the development of more effective immunotherapeutic strategies for the treatment of cancer patients.

Keywords: cancer immunotherapy, check-point blockade, combination therapy, melanoma

Procedia PDF Downloads 92
41 Supplier Carbon Footprint Methodology Development for Automotive Original Equipment Manufacturers

Authors: Nur A. Özdemir, Sude Erkin, Hatice K. Güney, Cemre S. Atılgan, Enes Huylu, Hüseyin Y. Altıntaş, Aysemin Top, Özak Durmuş

Abstract:

Carbon emissions produced during a product’s life cycle, from extraction of raw materials up to waste disposal and market consumption activities are the major contributors to global warming. In the light of the science-based targets (SBT) leading the way to a zero-carbon economy for sustainable growth of the companies, carbon footprint reporting of the purchased goods has become critical for identifying hotspots and best practices for emission reduction opportunities. In line with Ford Otosan's corporate sustainability strategy, research was conducted to evaluate the carbon footprint of purchased products in accordance with Scope 3 of the Greenhouse Gas Protocol (GHG). The purpose of this paper is to develop a systematic and transparent methodology to calculate carbon footprint of the products produced by automotive OEMs (Original Equipment Manufacturers) within the context of automobile supply chain management. To begin with, primary material data were collected through IMDS (International Material Database System) corresponds to company’s three distinct types of vehicles including Light Commercial Vehicle (Courier), Medium Commercial Vehicle (Transit and Transit Custom), Heavy Commercial Vehicle (F-MAX). Obtained material data was classified as metals, plastics, liquids, electronics, and others to get insights about the overall material distribution of produced vehicles and matched to the SimaPro Ecoinvent 3 database which is one of the most extent versions for modelling material data related to the product life cycle. Product life cycle analysis was calculated within the framework of ISO 14040 – 14044 standards by addressing the requirements and procedures. A comprehensive literature review and cooperation with suppliers were undertaken to identify the production methods of parts used in vehicles and to find out the amount of scrap generated during part production. Cumulative weight and material information with related production process belonging the components were listed by multiplying with current sales figures. The results of the study show a key modelling on carbon footprint of products and processes based on a scientific approach to drive sustainable growth by setting straightforward, science-based emission reduction targets. Hence, this study targets to identify the hotspots and correspondingly provide broad ideas about our understanding of how to integrate carbon footprint estimates into our company's supply chain management by defining convenient actions in line with climate science. According to emission values arising from the production phase including raw material extraction and material processing for Ford OTOSAN vehicles subjected in this study, GHG emissions from the production of metals used for HCV, MCV and LCV account for more than half of the carbon footprint of the vehicle's production. Correspondingly, aluminum and steel have the largest share among all material types and achieving carbon neutrality in the steel and aluminum industry is of great significance to the world, which will also present an immense impact on the automobile industry. Strategic product sustainability plan which includes the use of secondary materials, conversion to green energy and low-energy process design is required to reduce emissions of steel, aluminum, and plastics due to the projected increase in total volume by 2030.

Keywords: automotive, carbon footprint, IMDS, scope 3, SimaPro, sustainability

Procedia PDF Downloads 81
40 Social Enterprises over Microfinance Institutions: The Challenges of Governance and Management

Authors: Dean Sinković, Tea Golja, Morena Paulišić

Abstract:

Upon the end of the vicious war in former Yugoslavia in 1995, international development community widely promoted microfinance as the key development framework to eradicate poverty, create jobs, increase income. Widespread claims were made that microfinance institutions would play vital role in creating a bedrock for sustainable ‘bottom-up’ economic development trajectory, thus, helping newly formed states to find proper way from economic post-war depression. This uplifting neoliberal narrative has no empirical support in the Republic of Croatia. Firstly, the type of enterprises created via microfinance sector are small, unskilled, labor intensive, no technology and with huge debt burden. This results in extremely high failure rates of microenterprises and poor individuals plunging into even deeper poverty, acute indebtedness and social marginalization. Secondly, evidence shows that microcredit is exact reflection of dangerous and destructive sub-prime lending model with ‘boom-to-bust’ scenarios in which benefits are solely extracted by the tiny financial and political elite working around the microfinance sector. We argue that microcredit providers are not proper financial structures through which developing countries should look way out of underdevelopment and poverty. In order to achieve sustainable long-term growth goals, public policy needs to focus on creating, supporting and facilitating the small and mid-size enterprises development. These enterprises should be technically sophisticated, capable of creating new capabilities and innovations, with managerial expertise (skills formation) and inter-connected with other organizations (i.e. clusters, networks, supply chains, etc.). Evidence from South-East Europe suggest that such structures are not created via microfinance model but can be fostered through various forms of social enterprises. Various legal entities may operate as social enterprises: limited liability private company, limited liability public company, cooperative, associations, foundations, institutions, Mutual Insurances and Credit union. Our main hypothesis is that cooperatives are potential agents of social and economic transformation and community development in the region. Financial cooperatives are structures that can foster more efficient allocation of financial resources involving deeper democratic arrangements and more socially just outcomes. In Croatia, pioneers of the first social enterprises were civil society organizations whilst forming a separated legal entity. (i.e. cooperatives, associations, commercial companies working on the principles of returning the investment to the founder). Ever since 1995 cooperatives in Croatia have not grown by pursuing their own internal growth but mostly by relying on external financial support. The greater part of today’s registered cooperatives tend to be agricultural (39%), followed by war veterans cooperatives (38%) and others. There are no financial cooperatives in Croatia. Due to the above mentioned we look at the historical developments and the prevailing social enterprises forms and discuss their advantages and disadvantages as potential agents for social and economic transformation and community development in the region. There is an evident lack of understanding of this business model and of its potential for social and economic development followed by an unfavorable institutional environment. Thus, we discuss the role of governance and management in the formation of social enterprises in Croatia, stressing the challenges for the governance of the country’s social enterprise movement.

Keywords: financial cooperatives, governance and management models, microfinance institutions, social enterprises

Procedia PDF Downloads 242
39 Pulmonary Complication of Chronic Liver Disease and the Challenges Identifying and Managing Three Patients

Authors: Aidan Ryan, Nahima Miah, Sahaj Kaur, Imogen Sutherland, Mohamed Saleh

Abstract:

Pulmonary symptoms are a common presentation to the emergency department. Due to a lack of understanding of the underlying pathophysiology, chronic liver disease is not often considered a cause of dyspnea. We present three patients who were admitted with significant respiratory distress secondary to hepatopulmonary syndrome, portopulmonary hypertension, and hepatic hydrothorax. The first is a 27-year-old male with a 6-month history of progressive dyspnea. The patient developed a severe type 1 respiratory failure with a PaO₂ of 6.3kPa and was escalated to critical care, where he was managed with non-invasive ventilation to maintain oxygen saturation. He had an agitated saline contrast echocardiogram, which showed the presence of a possible shunt. A CT angiogram revealed significant liver cirrhosis, portal hypertension, and large para esophageal varices. Ultrasound of the abdomen showed coarse liver echo patter and enlarged spleen. Along with these imaging findings, his biochemistry demonstrated impaired synthetic liver function with an elevated international normalized ratio (INR) of 1.4 and hypoalbuminaemia of 28g/L. The patient was then transferred to a tertiary center for further management. Further investigations confirmed a shunt of 56%, and liver biopsy confirmed cirrhosis suggestive of alpha-1-antitripsyin deficiency. The findings were consistent with a diagnosis of hepatopulmonary syndrome, and the patient is awaiting a liver transplant. The second patient is a 56-year-old male with a 12-month history of worsening dyspnoea, jaundice, confusion. His medical history included liver cirrhosis, portal hypertension, and grade 1 oesophageal varices secondary to significant alcohol excess. On admission, he developed a type 1 respiratory failure with PaO₂ of 6.8kPa requiring 10L of oxygen. CT pulmonary angiogram was negative for pulmonary embolism but showed evidence of chronic pulmonary hypertension, liver cirrhosis, and portal hypertension. An echocardiogram revealed a grossly dilated right heart with reduced function, pulmonary and tricuspid regurgitation, and pulmonary artery pressures estimated at 78mmHg. His biochemical markers showed impaired synthetic liver function with an INR of 3.2, albumin of 29g/L, along with raised bilirubin of 148mg/dL. During his long admission, he was managed with diuretics with little improvement. After three weeks, he was diagnosed with portopulmonary hypertension and was commenced on terlipressin. This resulted in successfully weaning off oxygen, and he was discharged home. The third patient is a 61-year-old male who presented to the local ambulatory care unit for therapeutic paracentesis on a background of decompensated liver cirrhosis. On presenting, he complained of a 2-day history of worsening dyspnoea and a productive cough. Chest x-ray showed a large pleural effusion, increasing in size over the previous eight months, and his abdomen was visibly distended with ascitic fluid. Unfortunately, the patient deteriorated, developing a larger effusion along with an increase in oxygen demand, and passed away. Without underlying cardiorespiratory disease, in the presence of a persistent pleural effusion with underlying decompensated cirrhosis, he was diagnosed with hepatic hydrothorax. While each presented with dyspnoea, the cause and underlying pathophysiology differ significantly from case to case. By describing these complications, we hope to improve awareness and aid prompt and accurate diagnosis, vital for improving outcomes.

Keywords: dyspnea, hepatic hydrothorax, hepatopulmonary syndrome, portopulmonary syndrome

Procedia PDF Downloads 95
38 The Lytic Bacteriophage VbɸAB-1 Against Drug-Resistant Acinetobacter Baumannii Isolated from Hospitalized Pressure Ulcers Patients

Authors: M. Doudi, M. H. Pazandeh, L. Rahimzadeh Torabi

Abstract:

Bedsores are pressure ulcers that occur on the skin or tissue due to being immobile and lying in bed for extended periods. Bedsores have the potential to progress into open ulcers, increasing the possibility of a variety of bacterial infections. Acinetobacter baumannii, a pathogen of considerable clinical importance, exhibited a significant correlation with Bedsores (pressure ulcers) infections, thereby manifesting a wide spectrum of antibiotic resistance. The emergence of drug resistance has led researchers to focus on alternative methods, particularly phage therapy, for tackling bacterial infections. Phage therapy has emerged as a novel therapeutic approach to regulate the activity of these agents. The management of bacterial infections greatly benefits from the clinical utilization of bacteriophages as a valuable antimicrobial intervention. The primary objective of this investigation consisted of isolating and discerning potent bacteriophage capable of targeting multi-drug-resistant (MDR) and extensively drug-resistant (XDR) bacteria obtained from pressure ulcers. The present study analyzed and isolated A. baumannii strains obtained from a cohort of patients suffering from pressure ulcers at Taleghani Hospital in Ahvaz, Iran. An approach that included biochemical and molecular identification techniques was used to determine the taxonomic classification of bacterial isolates at the genus and species levels. The molecular identification process was facilitated by using the 16S rRNA gene in combination with universal primers 27 F and 1492 R. Bacteriophage was obtained through the isolation process conducted on treatment plant sewage located in Isfahan, Iran. The main goal of this study was to evaluate different characteristics of phage, such as their appearance, the range of hosts they can infect, how quickly they can enter a host, their stability at varying temperatures and pH levels, their effectiveness in killing bacteria, the growth pattern of a single phage stage, mapping of enzymatic digestion, and identification of proteomics patterns. The findings demonstrated that an examination was conducted on a sample of 50 specimens, wherein 15 instances of A. baumannii were identified. These microorganisms are the predominant Gram-negative agents known to cause wound infections in individuals suffering from bedsores. The study's findings indicated a high prevalence of antibiotic resistance in the strains isolated from pressure ulcers, excluding the clinical strains that exhibited responsiveness to colistin. According to the findings obtained from assessments of host range and morphological characteristics of bacteriophage VbɸAB-1, it can be concluded that this phage possesses specificity towards A. Baumannii BAH_Glau1001 was classified as a member of the Podoviridae family. The bacteriophage mentioned earlier showed the strongest antibacterial effect at a temperature of 18 °C and a pH of 6.5. Through the utilization of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis on protein fragments, it was established that the bacteriophage VbɸAB-1 exhibited a size range between 50 and 75 kilodaltons (KDa). The numerous research findings on the effectiveness of phages and the safety studies conducted suggest that the phages studied in this research can be considered as a practical solution and recommended approach for controlling and treating stubborn pathogens in burn wounds among hospitalized patients. The findings of our research indicated that isolated phages could be an effective antimicrobial and an appreciate candidate for prophylaxis against pressure ulcers.

Keywords: acinetobacter baumannii, extremely drug-resistant, phage therapy, surgery wound

Procedia PDF Downloads 53
37 Investigation of Delamination Process in Adhesively Bonded Hardwood Elements under Changing Environmental Conditions

Authors: M. M. Hassani, S. Ammann, F. K. Wittel, P. Niemz, H. J. Herrmann

Abstract:

Application of engineered wood, especially in the form of glued-laminated timbers has increased significantly. Recent progress in plywood made of high strength and high stiffness hardwoods, like European beech, gives designers in general more freedom by increased dimensional stability and load-bearing capacity. However, the strong hygric dependence of basically all mechanical properties renders many innovative ideas futile. The tendency of hardwood for higher moisture sorption and swelling coefficients lead to significant residual stresses in glued-laminated configurations, cross-laminated patterns in particular. These stress fields cause initiation and evolution of cracks in the bond-lines resulting in: interfacial de-bonding, loss of structural integrity, and reduction of load-carrying capacity. Subsequently, delamination of glued-laminated timbers made of hardwood elements can be considered as the dominant failure mechanism in such composite elements. In addition, long-term creep and mechano-sorption under changing environmental conditions lead to loss of stiffness and can amplify delamination growth over the lifetime of a structure even after decades. In this study we investigate the delamination process of adhesively bonded hardwood (European beech) elements subjected to changing climatic conditions. To gain further insight into the long-term performance of adhesively bonded elements during the design phase of new products, the development and verification of an authentic moisture-dependent constitutive model for various species is of great significance. Since up to now, a comprehensive moisture-dependent rheological model comprising all possibly emerging deformation mechanisms was missing, a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive material model for wood, with all material constants being defined as a function of moisture content, was developed. Apart from the solid wood adherends, adhesive layer also plays a crucial role in the generation and distribution of the interfacial stresses. Adhesive substance can be treated as a continuum layer constructed from finite elements, represented as a homogeneous and isotropic material. To obtain a realistic assessment on the mechanical performance of the adhesive layer and a detailed look at the interfacial stress distributions, a generic constitutive model including all potentially activated deformation modes, namely elastic, plastic, and visco-elastic creep was developed. We focused our studies on the three most common adhesive systems for structural timber engineering: one-component polyurethane adhesive (PUR), melamine-urea-formaldehyde (MUF), and phenol-resorcinol-formaldehyde (PRF). The corresponding numerical integration approaches, with additive decomposition of the total strain are implemented within the ABAQUS FEM environment by means of user subroutine UMAT. To predict the true stress state, we perform a history dependent sequential moisture-stress analysis using the developed material models for both wood substrate and adhesive layer. Prediction of the delamination process is founded on the fracture mechanical properties of the adhesive bond-line, measured under different levels of moisture content and application of the cohesive interface elements. Finally, we compare the numerical predictions with the experimental observations of de-bonding in glued-laminated samples under changing environmental conditions.

Keywords: engineered wood, adhesive, material model, FEM analysis, fracture mechanics, delamination

Procedia PDF Downloads 404
36 4-Channel CWDM Optical Transceiver Applying Silicon Photonics Ge-Photodiode and MZ-Modulator

Authors: Do-Won Kim, Andy Eu Jin Lim, Raja Muthusamy Kumarasamy, Vishal Vinayak, Jacky Wang Yu-Shun, Jason Liow Tsung Yang, Patrick Lo Guo Qiang

Abstract:

In this study, we demonstrate 4-channel coarse wavelength division multiplexing (CWDM) optical transceiver based on silicon photonics integrated circuits (PIC) of waveguide Ge-photodiode (Ge-PD) and Mach Zehnder (MZ)-modulator. 4-channel arrayed PICs of Ge-PD and MZ-modulator are verified to operate at 25 Gbps/ch achieving 4x25 Gbps of total data rate. 4 bare dies of single-channel commercial electronics ICs (EICs) of trans-impedance amplifier (TIA) for Ge-PD and driver IC for MZ-modulator are packaged with PIC on printed circuit board (PCB) in a chip-on-board (COB) manner. Each single-channel EIC is electrically connected to the one channel of 4-channel PICs by wire bonds to trace. The PICs have 4-channel multiplexer for MZ-modulator and 4-channel demultiplexer for Ge-PD. The 4-channel multiplexer/demultiplexer have echelle gratings for4 CWDM optic signals of which center wavelengths are 1511, 1531, 1553, and 1573 nm. Its insertion loss is around 4dB with over 15dB of extinction ratio.The dimension of 4-channel Ge-PD is 3.6x1.4x0.3mm, and its responsivity is 1A/W with dark current of less than 20 nA.Its measured 3dB bandwidth is around 20GHz. The dimension of the 4-channel MZ-modulator is 3.6x4.8x0.3mm, and its 3dB bandwidth is around 11Ghz at -2V of reverse biasing voltage. It has 2.4V•cmbyVπVL of 6V for π shift to 4 mm length modulator.5x5um of Inversed tapered mode size converter with less than 2dB of coupling loss is used for the coupling of the lensed fiber which has 5um of mode field diameter.The PCB for COB packaging and signal transmission is designed to have 6 layers in the hybrid layer structure. 0.25 mm-thick Rogers Duroid RT5880 is used as the first core dielectric layer for high-speed performance over 25 Gbps. It has 0.017 mm-thick of copper layers and its dielectric constant is 2.2and dissipation factor is 0.0009 at 10 GHz. The dimension of both single ended and differential microstrip transmission lines are calculated using full-wave electromagnetic (EM) field simulator HFSS which RF industry is using most. It showed 3dB bandwidth at around 15GHz in S-parameter measurement using network analyzer. The wire bond length for transmission line and ground connection from EIC is done to have less than 300 µm to minimize the parasitic effect to the system.Single layered capacitors (SLC) of 100pF and 1000pF are connected as close as possible to the EICs for stabilizing the DC biasing voltage by decoupling. Its signal transmission performance is under measurement at 25Gbps achieving 100Gbps by 4chx25Gbps. This work can be applied for the active optical cable (AOC) and quad small form-factor pluggable (QSFP) for high-speed optical interconnections. Its demands are quite large in data centers targeting 100 Gbps, 400 Gbps, and 1 Tbps. As the demands of high-speed AOC and QSFP for the application to intra/inter data centers increase, this silicon photonics based high-speed 4 channel CWDM scheme can have advantages not only in data throughput but also cost effectiveness since it reduces fiber cost dramatically through WDM.

Keywords: active optical cable(AOC), 4-channel coarse wavelength division multiplexing (CWDM), communication system, data center, ge-photodiode, Mach Zehnder (MZ) modulator, optical interconnections, optical transceiver, photonics integrated circuits (PIC), quad small form-factor pluggable (QSFP), silicon photonics

Procedia PDF Downloads 386
35 A Chemical Perspective to Nineteenth-Century Female Medical Pioneers: Utilizing Mass Spectrometry in the Museum Space

Authors: Elizabeth R. LaFave, Grayson Sink, Anna Vassallo, Samantha Mills, Eli G. Hvastkovs

Abstract:

Throughout history and into modern times, the continuation of male influence over female healthcare has created inadequacies in availability and access to treatments, often further limited in rural communities. The historical plight of women in healthcare can be understood by studying the advancements made by women in the field, both through their career arcs and by delving into the treatments they offer. An early example is the case of Martha Ballard (1735-1812), a midwife in New York who practiced when female practitioners were dismissed in favor of less educated male physicians, which was a well-accepted practice into the twentieth century. In order to overcome these setbacks, a strategy used by some female practitioners was to develop and market their own remedies in an attempt to better serve female patients. By highlighting the compromises and social manipulation of female entrepreneurs, in comparison with the medicines they developed and used, we can map their ability to carve a specific niche for themselves and their targeted customers. The application of modern chemical approaches in a historical context serves to enhance a variety of perspectives within the museum sphere necessary for the comprehension and understanding of the female plight in both medical care and service. In order to further examine the overall bias and scrutiny for women in the medical field, specifically those undertaking entrepreneurial roles, examples of alternative remedies from female founders will be analyzed utilizing these approaches. Modern analytical chemistry techniques, specifically mass spectrometry (MS), have been successful in offering compositional analyses for both labeled and unlabeled ingredients in old medicines. Previously, we have analyzed two forms of alternative treatment options created by male medical professionals to address lingering historical questions of purity and validity. Although primarily sugar based, both Humphreys’ Specifics and Boericke & Tafel remedies also contained unique ingredients, albeit in small quantities, with medicinal properties. Here, we applied the same methodology to study another highly politicized 19th-century debate surrounding the contribution and role of women in the medical profession through analyzing three remedies, each from a different female-led manufacturing company; Mrs. Joe Persons, Lydia Pinkham, and Winslow’s Syrups. Following MS analyses for both labeled and unlabeled ingredients, both Winslow’s and Pinkham’s remedies were similar to their male counterparts in advertisement strategy, targeted customer base, and overall composition of remedy (primarily sugar-based with small amounts of unique ingredients). In effect, these unbiased chemical assessments are used to dissect the rationality of both market and physician criticism for each individual manufacturer through assessment of authenticity, benefaction, and comparison among female entrepreneurs and their aims to enter the medical community (i.e., geographic location, market size). Our work aims to increase collaboration between STEM (Science, Technology, Engineering, Mathematics)-based fields and historical museum studies on a larger scale while also answering questions of potential bias towards females in the medical community as means of comparison to their male counterparts and in-depth historical analyses to unravel individual strategies to overcome the setback.

Keywords: nineteenth-century medicine, alternative remedies, female healthcare, chemical analyses, mass spectrometry

Procedia PDF Downloads 59
34 A Regional Comparison of Hunter and Harvest Trends of Sika Deer (Cervus n. nippon) and Wild Boar (Sus s. leucomystax) in Japan from 1990 to 2013

Authors: Arthur Müller

Abstract:

The study treats human dimensions of hunting by conducting statistical data analysis and providing decision-making support by examples of good prefectural governance and successful wildlife management, crucial to reduce pest species and sustain a stable hunter population in the future. Therefore it analyzes recent revision of wildlife legislation, reveals differences in administrative management structures, as well as socio-demographic characteristics of hunters in correlation with harvest trends of sika deer and wild boar in 47 prefectures in Japan between 1990 and 2013. In a wider context, Japan’s decentralized license hunting system might take the potential future role of a regional pioneer in East Asia. Consequently, the study contributes to similar issues in premature hunting systems of South Korea and Taiwan. Firstly, a quantitative comparison of seven mainland regions was conducted in Hokkaido, Tohoku, Kanto, Chubu, Kinki, Chugoku, and Kyushu. Example prefectures were chosen by a cluster analysis. Shifts, differences, mean values and exponential growth rates between trap and gun hunters, age classes and common occupation types of hunters were statistically exterminated. While western Japan is characterized by high numbers of aged trap-hunters, occupied in agricultural- and forestry, the north-eastern prefectures show higher relative numbers of younger gun-hunters occupied in the field of production and process workers. With the exception of Okinawa island, most hunters in all prefectures are 60 years and older. Hence, unemployed and retired hunters are the fastest growing occupation group. Despite to drastic decrease in hunter population in absolute numbers, Hunting Recruitment Index indicated that all age classes tend to continue their hunting activity over a longer period, above ten years from 2004 to 2013 than during the former decade. Associated with a rapid population increase and distribution of sika deer and wild boar since 1978, a number of harvest from hunting and culling also have been rapidly increasing. Both wild boar hunting and culling is particularly high in western Japan, while sika hunting and culling proofs most successful in Hokkaido, central and western Japan. Since the Wildlife Protection and Proper Hunting Act in 1999 distinct prefectural hunting management authorities with different power, sets apply management approaches under the principles of subsidiarity and guidelines of the Ministry of Environment. Additionally, the Act on Special Measures for Prevention of Damage Related to Agriculture, Forestry, and Fisheries Caused by Wildlife from 2008 supports local hunters in damage prevention measures through subsidies by the Ministry of Agriculture and Forestry, which caused a rise of trap hunting, especially in western Japan. Secondly, prefectural staff in charge of wildlife management in seven regions was contacted. In summary, Hokkaido serves as a role model for dynamic, integrative, adaptive “feedback” management of Ezo sika deer, as well as a diverse network between management organizations, while Hyogo takes active measures to trap-hunt wild boars effectively. Both prefectures take the leadership in institutional performance and capacity. Northern prefectures in Tohoku, Chubu and Kanto region, firstly confronted with the emergence of wild boars and rising sika deer numbers, demand new institution and capacity building, as well as organizational learning.

Keywords: hunting and culling harvest trends, hunter socio-demographics, regional comparison, wildlife management approach

Procedia PDF Downloads 252
33 Parallel Opportunity for Water Conservation and Habitat Formation on Regulated Streams through Formation of Thermal Stratification in River Pools

Authors: Todd H. Buxton, Yong G. Lai

Abstract:

Temperature management in regulated rivers can involve significant expenditures of water to meet the cold-water requirements of species in summer. For this purpose, flows released from Lewiston Dam on the Trinity River in Northern California are 12.7 cms with temperatures around 11oC in July through September to provide adult spring Chinook cold water to hold in deep pools and mature until spawning in fall. The releases are more than double the flow and 10oC colder temperatures than the natural conditions before the dam was built. The high, cold releases provide springers the habitat they require but may suppress the stream food base and limit future populations of salmon by reducing the juvenile fish size and survival to adults via the positive relationship between the two. Field and modeling research was undertaken to explore whether lowering summer releases from Lewiston Dam may promote thermal stratification in river pools so that both the cold-water needs of adult salmon and warmer water requirements of other organisms in the stream biome may be met. For this investigation, a three-dimensional (3D) computational fluid dynamics (CFD) model was developed and validated with field measurements in two deep pools on the Trinity River. Modeling and field observations were then used to identify the flows and temperatures that may form and maintain thermal stratification under different meteorologic conditions. Under low flows, a pool was found to be well mixed and thermally homogenous until temperatures began to stratify shortly after sunrise. Stratification then strengthened through the day until shading from trees and mountains cooled the inlet flow and decayed the thermal gradient, which collapsed shortly before sunset and returned the pool to a well-mixed state. This diurnal process of stratification formation and destruction was closely predicted by the 3D CFD model. Both the model and field observations indicate that thermal stratification maintained the coldest temperatures of the day at ≥2m depth in a pool and provided water that was around 8oC warmer in the upper 2m of the pool. Results further indicate that the stratified pool under low flows provided almost the same daily average temperatures as when flows were an order of magnitude higher and stratification was prevented, indicating significant water savings may be realized in regulated streams while also providing a diversity in water temperatures the ecosystem requires. With confidence in the 3D CFD model, the model is now being applied to a dozen pools in the Trinity River to understand how pool bathymetry influences thermal stratification under variable flows and diurnal temperature variations. This knowledge will be used to expand the results to 52 pools in a 64 km reach below Lewiston Dam that meet the depth criteria (≥2 m) for spring Chinook holding. From this, rating curves will be developed to relate discharge to the volume of pool habitat that provides springers the temperature (<15.6oC daily average), velocity (0.15 to 0.4 m/s) and depths that accommodate the escapement target for spring Chinook (6,000 adults) under maximum fish densities measured in other streams (3.1 m3/fish) during the holding time of year (May through August). Flow releases that meet these goals will be evaluated for water savings relative to the current flow regime and their influence on indicator species, including the Foothill Yellow-Legged Frog, and aspects of the stream biome that support salmon populations, including macroinvertebrate production and juvenile Chinook growth rates.

Keywords: 3D CFD modeling, flow regulation, thermal stratification, chinook salmon, foothill yellow-legged frogs, water managment

Procedia PDF Downloads 32
32 Cardiac Hypertrophy in Diabetes; The Role of Factor Forkhead Box Class O-Regulation by O-GlcNAcylation

Authors: Mohammadjavad Sotoudeheian, Navid Farahmandian

Abstract:

Cardiac hypertrophy arises in response to persistent increases in hemodynamic loads. In comparison, diabetic cardiomyopathy is defined by an abnormal myocardial changes without other cardiac-related risk factors. Pathological cardiac hypertrophy and myocardial remodeling are hallmarks of cardiovascular diseases and are risk factors for heart failure. The transcription factor forkhead box class O (FOXOs) can protect heart tissue by hostile oxidative stress and stimulating apoptosis and autophagy. FOXO proteins, as sensitive elements and mediators in response to environmental changes, have been revealed to prevent and inverse cardiac hypertrophy. FOXOs are inhibited by insulin and are critical mediators of insulin action. Insulin deficiency and uncontrolled diabetes lead to a catabolic state. FOXO1 acts downstream of the insulin-dependent pathways, which are dysregulated in diabetes. It regulates cardiomyocyte hypertrophy downstream of IGF1R/PI3K/Akt activation, which are critical regulators of cardiac hypertrophy. The complex network of signaling pathways comprising insulin/IGF-1 signaling, AMPK, JNK, and Sirtuins regulate the development of cardiovascular dysfunction by modulating the activity of FOXOs. Insulin receptors and IGF1R act via the PI3k/Akt and the MAPK/ERK pathways. Activation of Akt in response to insulin or IGF-1 induces phosphorylation of FOXOs. Increased protein synthesis induced by activation of the IGF-I/Akt/mTOR signaling pathway leads to hypertrophy. This pathway and the myostatin/Smad pathway are potent negative muscle development regulators. In cardiac muscle, insulin receptor substrates (IRS)-1 or IRS-2 activates the Akt signaling pathway and inactivate FOXO1. Under metabolic stress, p38 MAPK promotes degradation of IRS-1 and IRS-2 in cardiac myocytes and activates FOXO1, leading to cardiomyopathy. Sirt1 and FOXO1 interaction play an essential role in starvation-induced autophagy in cardiac metabolism. Inhibition of Angiotensin-II induced cardiomyocyte hypertrophy is associated with reduced FOXO1 acetylation and activation of Sirt1. The NF-κB, ERK, and FOXOs are de-acetylated by SIRT1. De-acetylation of FOXO1 induces the expression of genes involved in autophagy and stimulates autophagy flux. Therefore, under metabolic stress, FOXO1 can cause diabetic cardiomyopathy. The overexpression of FOXO1 leads to decreased cardiomyocyte size and suppresses cardiac hypertrophy through inhibition of the calcineurin–NFAT pathway. Diabetes mellitus is associated with elevation of O-GlcNAcylation. Some of its binding partners regulate the substrate selectivity of O-GlcNAc transferase (OGT). O-GlcNAcylation of essential contractile proteins may inhibit protein-protein interactions, reduce calcium sensitivity, and modulate contractile function. Uridine diphosphate (UDP)-GlcNAc is the obligatory substrate of OGT, which catalyzes a reversible post-translational protein modification. The increase of O-GlcNAcylation is accompanied by impaired cardiac hypertrophy in diabetic hearts. Inhibition of O-GlcNAcylation blocks activation of ERK1/2 and hypertrophic growth. O-GlcNAc modification on NFAT is required for its translocation from the cytosol to the nucleus, where NFAT stimulates the transcription of various hypertrophic genes. Inhibition of O-GlcNAcylation dampens NFAT-induced cardiac hypertrophic growth. Transcriptional activity of FOXO1 is enriched by improved O-GlcNAcylation upon high glucose stimulation or OGT overexpression. In diabetic conditions, the modification of FOXO1 by O-GlcNAc is promoted in cardiac troponin I and myosin light chain 2. Therefore targeting O-GlcNAcylation represents a potential therapeutic option to prevent hypertrophy in the diabetic heart.

Keywords: diabetes, cardiac hypertrophy, O-GlcNAcylation, FOXO1, Akt, PI3K, AMPK, insulin

Procedia PDF Downloads 81
31 Optimum Irrigation System Management for Climate Resilient and Improved Productivity of Flood-based Livelihood Systems

Authors: Mara Getachew Zenebe, Luuk Fleskens, Abdu Obieda Ahmed

Abstract:

This paper seeks to advance our scientific understanding of optimizing flood utilization in regions impacted by climate change, with a focus on enhancing agricultural productivity through effective irrigation management. The study was conducted as part of a three-year (2021 to 2023) USAID-supported initiative aimed at promoting Economic Growth and Peace in the Gash Agricultural Scheme (GAS), situated in Sudan's water-stressed Eastern region. GAS is the country's largest flood-irrigated scheme, covering 100,800 hectares of cultivable land, with a potential to provide the food security needs of over a quarter of a million agro-pastoral community members. GAS relies on the Gash River, which sources its water from high-intensity rainfall events in the highlands of Ethiopia and Eritrea. However, climate change and variations in these highlands have led to increased variability in the Gash River's flow. The study conducted water balance analyses based on a ten-year dataset of the annual Gash River flow, irrigated area; as well as the evapotranspiration demand of the major sorghum crop. Data collection methods included field measurements, surveys, remote sensing, and CropWat modelling. The water balance assessment revealed that the existing three-year rotation-based irrigation system management, capping cultivated land at 33,000 hectares annually, is excessively risk-averse. While this system reduced conflicts among the agro-pastoral communities by consistently delivering on the land promised to be annually cultivated, it also increased GAS's vulnerability to flood damage due to several reasons. The irrigation efficiency over the past decade was approximately 30%, leaving significant unharnessed floodwater that caused damage to infrastructure and agricultural land. The three-year rotation resulted in inadequate infrastructural maintenance, given the destructive nature of floods. Additionally, it led to infrequent land tillage, allowing the encroachment of mesquite trees hindering major sorghum crop growth. Remote sensing data confirmed that mesquite trees have overtaken 70,000 hectares in the past two decades, rendering them unavailable for agriculture. The water balance analyses suggest shifting to a two-year rotation, covering approximately 50,000 hectares annually while maintaining risk aversion. This shift could boost GAS's annual sorghum production by two-thirds, exceeding 850,000 tons. The scheme's efficiency can be further enhanced through low-cost on-farm interventions. Currently, large irrigation plots that range from 420 to 756 hectares are irrigated with limited water distribution guidance, leading to uneven irrigation. As demonstrated through field trials, implementing internal longitudinal bunds and horizontal deflector bunds can increase adequately irrigated parts of the irrigation plots from 50% to 80% and thus nearly double the sorghum yield to 2 tons per hectare while reducing the irrigation duration from 30 days to a maximum of 17 days. Flow measurements in 2021 and 2022 confirmed that these changes sufficiently meet the sorghum crop's water requirements, even with a conservative 60% field application efficiency assumption. These insights and lessons from the GAS on enhancing agricultural resilience and sustainability in the face of climate change are relevant to flood-based livelihood systems globally.

Keywords: climate change, irrigation management and productivity, variable flood flows, water balance analysis

Procedia PDF Downloads 40
30 Regional Metamorphism of the Loki Crystalline Massif Allochthonous Complex of the Caucasus

Authors: David Shengelia, Giorgi Chichinadze, Tamara Tsutsunava, Giorgi Beridze, Irakli Javakhishvili

Abstract:

The Loki pre-Alpine crystalline massif crops out within the Caucasus region. The massif basement is represented by the Upper Devonian gneissose quartz-diorites, the Lower-Middle Paleozoic metamorphic allochthonous complex, and different magmatites. Earlier, the metamorphic complex was considered as indivisible set represented by the series of different temperature metamorphits. The degree of metamorphism of separate parts of the complex is due to different formation conditions. This fact according to authors of the abstract was explained by the allochthonous-flaky structure of the complex. It was stated that the complex thrust over the gneissose quartz diorites before the intrusion of Sudetic granites. During the detailed mapping, the authors turned out that the metamorphism issues need to be reviewed and additional researches to be carried out. Investigations were accomplished by using the following methodologies: finding of key sections, a sampling of rocks, microscopic description of the material, analytical determination of elements in the rocks, microprobe analysis of minerals and new interpretation of obtained data. According to the author’s recent data within the massif four tectonic plates: Lower Gorastskali, Sapharlo-Lok-Jandari, Moshevani and “mélange” overthrust sheets have been mapped. They differ from each other by composition, the degree of metamorphism and internal structure. It is confirmed that the initial rocks of the tectonic plates formed in different geodynamic conditions during overthrusting due to tectonic compression form a thick tectonic sheet. Based on the detailed laboratory investigations additional mineral assemblages were established, temperature limits were specified, and a renewed trend of metamorphism facies and subfacies was elaborated. The results are the following: 1. The Lower Gorastskali overthrust sheet is a fragment of ophiolitic association corresponding to the Paleotethys oceanic crust. The main rock-forming minerals are carbonate, chlorite, spinel, epidote, clinoptilolite, plagioclase, hornblende, actinolite, hornblende, albite, serpentine, tremolite, talc, garnet, and prehnite. Regional metamorphism of rocks corresponds to the greenschist facies lowest stage. 2. The Sapharlo-Lok-Jandari overthrust sheet metapelites are represented by chloritoid, chlorite, phengite, muscovite, biotite, garnet, ankerite, carbonate, and quartz. Metabasites containing actinolite, chlorite, plagioclase, calcite, epidote, albite, actinolitic hornblende and hornblende are also present. The degree of metamorphism corresponds to the greenschist high-temperature chlorite, biotite, and low-temperature garnet subfacies. Later the rocks underwent the contact influence of Late Variscan granites. 3. The Moshevani overthrust sheet is represented mainly by metapelites and rarely by metabasites. Main rock-forming minerals of metapelites are muscovite, biotite, chlorite, quartz, andalusite, plagioclase, garnet and cordierite and of metabasites - plagioclase, green and blue-green hornblende, chlorite, epidote, actinolite, albite, and carbonate. Metamorphism level corresponds to staurolite-andalusite subfacies of staurolite facies and partially to facies of biotite muscovite gneisses and hornfelse facies as well. 4. The “mélange” overthrust sheet is built of different size rock fragments and blocks of Moshevani and Lower Gorastskali overthrust sheets. The degree of regional metamorphism of first and second overthrust sheets of the Loki massif corresponds to chlorite, biotite, and low-temperature garnet subfacies, but of the third overthrust sheet – to staurolite-andalusite subfacies of staurolite facies and partially to facies of biotite muscovite gneisses and hornfelse facies.

Keywords: regional metamorphism, crystalline massif, mineral assemblages, the Caucasus

Procedia PDF Downloads 137
29 Ultra-Rapid and Efficient Immunomagnetic Separation of Listeria Monocytogenes from Complex Samples in High-Gradient Magnetic Field Using Disposable Magnetic Microfluidic Device

Authors: L. Malic, X. Zhang, D. Brassard, L. Clime, J. Daoud, C. Luebbert, V. Barrere, A. Boutin, S. Bidawid, N. Corneau, J. Farber, T. Veres

Abstract:

The incidence of infections caused by foodborne pathogens such as Listeria monocytogenes (L. monocytogenes) poses a great potential threat to public health and safety. These issues are further exacerbated by legal repercussions due to “zero tolerance” food safety standards adopted in developed countries. Unfortunately, a large number of related disease outbreaks are caused by pathogens present in extremely low counts currently undetectable by available techniques. The development of highly sensitive and rapid detection of foodborne pathogens is therefore crucial, and requires robust and efficient pre-analytical sample preparation. Immunomagnetic separation is a popular approach to sample preparation. Microfluidic chips combined with external magnets have emerged as viable high throughput methods. However, external magnets alone are not suitable for the capture of nanoparticles, as very strong magnetic fields are required. Devices that incorporate externally applied magnetic field and microstructures of a soft magnetic material have thus been used for local field amplification. Unfortunately, very complex and costly fabrication processes used for integration of soft magnetic materials in the reported proof-of-concept devices would prohibit their use as disposable tools for food and water safety or diagnostic applications. We present a sample preparation magnetic microfluidic device implemented in low-cost thermoplastic polymers using fabrication techniques suitable for mass-production. The developed magnetic capture chip (M-chip) was employed for rapid capture and release of L. monocytogenes conjugated to immunomagnetic nanoparticles (IMNs) in buffer and beef filtrate. The M-chip relies on a dense array of Nickel-coated high-aspect ratio pillars for capture with controlled magnetic field distribution and a microfluidic channel network for sample delivery, waste, wash and recovery. The developed Nickel-coating process and passivation allows generation of switchable local perturbations within the uniform magnetic field generated with a pair of permanent magnets placed at the opposite edges of the chip. This leads to strong and reversible trapping force, wherein high local magnetic field gradients allow efficient capture of IMNs conjugated to L. monocytogenes flowing through the microfluidic chamber. The experimental optimization of the M-chip was performed using commercially available magnetic microparticles and fabricated silica-coated iron-oxide nanoparticles. The fabricated nanoparticles were optimized to achieve the desired magnetic moment and surface functionalization was tailored to allow efficient capture antibody immobilization. The integration, validation and further optimization of the capture and release protocol is demonstrated using both, dead and live L. monocytogenes through fluorescence microscopy and plate- culture method. The capture efficiency of the chip was found to vary as function of listeria to nanoparticle concentration ratio. The maximum capture efficiency of 30% was obtained and the 24-hour plate-culture method allowed the detection of initial sample concentration of only 16 cfu/ml. The device was also very efficient in concentrating the sample from a 10 ml initial volume. Specifically, 280% concentration efficiency was achieved in 17 minutes only, demonstrating the suitability of the system for food safety applications. In addition, flexible design and low-cost fabrication process will allow rapid sample preparation for applications beyond food and water safety, including point-of-care diagnosis.

Keywords: array of pillars, bacteria isolation, immunomagnetic sample preparation, polymer microfluidic device

Procedia PDF Downloads 250
28 Exploiting Charges on Medicinal Synthetic Aluminum Magnesium Silicate's {Al₄ (SiO₄)₃ + 3Mg₂SiO₄ → 2Al₂Mg₃ (SiO₄)₃} Nanoparticles in Treating Viral Diseases, Tumors, Antimicrobial Resistant Infections

Authors: M. C. O. Ezeibe, F. I. O. Ezeibe

Abstract:

Reasons viral diseases (including AI, HIV/AIDS, and COVID-19), tumors (including Cancers and Prostrate enlargement), and antimicrobial-resistant infections (AMR) are difficult to cure are features of the pathogens which normal cells do not have or need (biomedical markers) have not been identified; medicines that can counter the markers have not been invented; strategies and mechanisms for their treatments have not been developed. When cells become abnormal, they acquire negative electrical charges, and viruses are either positively charged or negatively charged, while normal cells remain neutral (without electrical charges). So, opposite charges' electrostatic attraction is a treatment mechanism for viral diseases and tumors. Medicines that have positive electrical charges would mop abnormal (infected and tumor) cells and DNA viruses (negatively charged), while negatively charged medicines would mop RNA viruses (positively charged). Molecules of Aluminum-magnesium silicate [AMS: Al₂Mg₃ (SiO₄)₃], an approved medicine and pharmaceutical stabilizing agent, consist of nanoparticles which have both positive electrically charged ends and negative electrically charged ends. The very small size (0.96 nm) of the nanoparticles allows them to reach all cells in every organ. By stabilizing antimicrobials, AMS reduces the rate at which the body metabolizes them so that they remain at high concentrations for extended periods. When drugs remain at high concentrations for longer periods, their efficacies improve. Again, nanoparticles enhance the delivery of medicines to effect targets. Both remaining at high concentrations for longer periods and better delivery to effect targets improve efficacy and make lower doses achieve desired effects so that side effects of medicines are reduced to allow the immunity of patients to be enhanced. Silicates also enhance the immune responses of treated patients. Improving antimicrobial efficacies and enhancing patients` immunity terminate infections so that none remains that could develop resistance. Some countries do not have natural deposits of AMS, but they may have Aluminum silicate (AS: Al₄ (SiO₄)₃) and Magnesium silicate (MS: Mg₂SiO₄), which are also approved medicines. So, AS and MS were used to formulate an AMS-brand, named Medicinal synthetic AMS {Al₄ (SiO₄)₃ + 3Mg₂SiO₄ → 2Al₂Mg₃ (SiO₄)₃}. To overcome the challenge of AMS, AS, and MS being un-absorbable, Dextrose monohydrate is incorporated in MSAMS-formulations for the simple sugar to convey the electrically charged nanoparticles into blood circulation by the principle of active transport so that MSAMS-antimicrobial formulations function systemically. In vitro, MSAMS reduced (P≤0.05) titers of viruses, including Avian influenza virus and HIV. When used to treat virus-infected animals, it cured Newcastle disease and Infectious bursa disease of chickens, Parvovirus disease of dogs, and Peste des petits ruminants disease of sheep and goats. A number of HIV/AIDS patients treated with it have been reported to become HIV-negative (antibody and antigen). COVID-19 patients are also reported to recover and test virus negative when treated with MSAMS. PSA titers of prostate cancer/enlargement patients normalize (≤4) following treatment with MSAMS. MSAMS has also potentiated ampicillin trihydrate, sulfadimidin, cotrimoxazole, piparazine citrate and chloroquine phosphate to achieve ≥ 95 % infection-load reductions (AMR-prevention). At 75 % of doses of ampicillin, cotrimoxazole, and streptomycin, supporting MSAMS-formulations' treatments with antioxidants led to the termination of even already resistant infections.

Keywords: electrical charges, viruses, abnormal cells, aluminum-magnesium silicate

Procedia PDF Downloads 31
27 Integrating Experiential Real-World Learning in Undergraduate Degrees: Maximizing Benefits and Overcoming Challenges

Authors: Anne E. Goodenough

Abstract:

One of the most important roles of higher education professionals is to ensure that graduates have excellent employment prospects. This means providing students with the skills necessary to be immediately effective in the workplace. Increasingly, universities are seeking to achieve this by moving from lecture-based and campus-delivered curricula to more varied delivery, which takes students out of their academic comfort zone and allows them to engage with, and be challenged by, real world issues. One popular approach is integration of problem-based learning (PBL) projects into curricula. However, although the potential benefits of PBL are considerable, it can be difficult to devise projects that are meaningful, such that they can be regarded as mere ‘hoop jumping’ exercises. This study examines three-way partnerships between academics, students, and external link organizations. It studied the experiences of all partners involved in different collaborative projects to identify how benefits can be maximized and challenges overcome. Focal collaborations included: (1) development of real-world modules with novel assessment whereby the organization became the ‘client’ for student consultancy work; (2) frameworks where students collected/analyzed data for link organizations in research methods modules; (3) placement-based internships and dissertations; (4) immersive fieldwork projects in novel locations; and (5) students working as partners on staff-led research with link organizations. Focus groups, questionnaires and semi-structured interviews were used to identify opportunities and barriers, while quantitative analysis of students’ grades was used to determine academic effectiveness. Common challenges identified by academics were finding suitable link organizations and devising projects that simultaneously provided education opportunities and tangible benefits. There was no ‘one size fits all’ formula for success, but careful planning and ensuring clarity of roles/responsibilities were vital. Students were very positive about collaboration projects. They identified benefits to confidence, time-keeping and communication, as well as conveying their enthusiasm when their work was of benefit to the wider community. They frequently highlighted employability opportunities that collaborative projects opened up and analysis of grades demonstrated the potential for such projects to increase attainment. Organizations generally recognized the value of project outputs, but often required considerable assistance to put the right scaffolding in place to ensure projects worked. Benefits were maximized by ensuring projects were well-designed, innovative, and challenging. Co-publication of projects in peer-reviewed journals sometimes gave additional benefits for all involved, being especially beneficial for student curriculum vitae. PBL and student projects are by no means new pedagogic approaches: the novelty here came from creating meaningful three-way partnerships between academics, students, and link organizations at all undergraduate levels. Such collaborations can allow students to make a genuine contribution to knowledge, answer real questions, solve actual problems, all while providing tangible benefits to organizations. Because projects are actually needed, students tend to engage with learning at a deep level. This enhances student experience, increases attainment, encourages development of subject-specific and transferable skills, and promotes networking opportunities. Such projects frequently rely upon students and staff working collaboratively, thereby also acting to break down the traditional teacher/learner division that is typically unhelpful in developing students as advanced learners.

Keywords: higher education, employability, link organizations, innovative teaching and learning methods, interactions between enterprise and education, student experience

Procedia PDF Downloads 162
26 Clinical Course and Prognosis of Cutaneous Manifestations of COVID-19: A Systematic Review of Reported Cases

Authors: Hilary Modir, Kyle Dutton, Michelle Swab, Shabnam Asghari

Abstract:

Since its emergence, the cutaneous manifestations of COVID-19 have been documented in the literature. However, the majority are case reports with significant limitations in appraisal quality, thus leaving the role of dermatological manifestations of COVID-19 erroneously underexplored. The primary aim of this review was to systematically examine clinical patterns of dermatological manifestations as reported in the literature. This study was designed as a systematic review of case reports. The inclusion criteria consisted of all published reports and articles regarding COVID-19 in English, from September 1st, 2019, until June 22nd, 2020. The population consisted of confirmed cases of COVID-19 with associated cutaneous signs and symptoms. Exclusion criteria included research in planning stages, protocols, book reviews, news articles, review studies, and policy analyses. With the collaboration of a librarian, a search strategy was created consisting of a mixture of keyword terms and controlled vocabulary. Electronic databases searched were MEDLINE via PubMed, EMBASE, CINAHL, Web of Science, LILACS, PsycINFO, WHO Global Literature on Coronavirus Disease, Cochrane Library, Campbell Collaboration, Prospero, WHO International Clinical Trials Registry Platform, Australian and New Zealand Clinical Trials Registry, U.S. Institutes of Health Ongoing Trials Register, AAD Registry, OSF preprints, SSRN, MedRxiV and BioRxiV. The study selection featured an initial pre-screening of titles and abstracts by one independent reviewer. Results were verified by re-examining a random sample of 1% of excluded articles. Eligible studies progressed for full-text review by two calibrated independent reviewers. Covidence was used to store and extract data, such as citation information and findings pertaining to COVID-19 and cutaneous signs and symptoms. Data analysis and summarization methodology reflect the framework proposed by PRISMA and recommendations set out by Cochrane and Joanna Brigg’s Institute for conducting systematic reviews. The Oxford Centre for Evidence-Based Medicine’s level of evidence was used to appraise the quality of individual studies. The literature search revealed a total of 1221 articles. After the abstract and full-text screening, only 95 studies met the eligibility criteria, proceeding to data extraction. Studies were divided into 58% case reports and 42% series. A total of 833 manifestations were reported in 723 confirmed COVID-19 cases. The most frequent lesions were 23% maculopapular, 15% urticarial and 13% pseudo-chilblains, with 46% of lesions reporting pruritus, 16% erythema, 14% pain, 12% burning sensation, and 4% edema. The most common lesion locations were 20% trunk, 19.5% lower limbs, and 17.7% upper limbs. The time to resolution of lesions was between one and twenty-one days. In conclusion, over half of the reported cutaneous presentations in COVID-19 positive patients were maculopapular, urticarial and pseudo-chilblains, with the majority of lesions distributed to the extremities and trunk. As this review’s sample size only contained COVID-19 confirmed cases with skin presentations, it becomes difficult to deduce the direct relationship between skin findings and COVID-19. However, it can be correlated that acute onset of skin lesions, such as chilblains-like, may be associated with or may warrant consideration of COVID-19 as part of the differential diagnosis.

Keywords: COVID-19, cutaneous manifestations, cutaneous signs, general dermatology, medical dermatology, Sars-Cov-2, skin and infectious disease, skin findings, skin manifestations

Procedia PDF Downloads 156