Search results for: nutrient digestibility
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 698

Search results for: nutrient digestibility

518 Microbial Inoculants to Increase the Biomass and Nutrient Uptake of Tithonia Cultivated as Hedgerow Plants to Control Erosion in Ultisols

Authors: Nurhajati Hakim, Kiki Amalia, A. Agustian, H. Hermansah, Y. Yulnafatmawita

Abstract:

Ultisols require greater amounts of fertilizer application compared to other soils and susceptible to erosion. Unfortunately, the price of synthetic fertilizers has increased over time during the years, making them unaffordable for most Indonesian farmers. While terrace technique to control erosion very costly.Over the last century, efforts to reduce reliance on synthetic agro-chemicals fertilizers and erosion control have recently focused on Tithonia diversifolia as a fertilizer alternative, and as hedgerow plant to control erosion. Generally known by its common name of tree marigold or Mexican sunflower, this plant has attracted considerable attention for its prolific production of green biomass, rich in nitrogen, phosphorous and potassium (NPK). In pot experiments has founded some microbial such as Mycorrhizal, Azotobacter, Azospirillum, phosphate solubilizing bacterial (PSB) and fungi (PSF) are expected to play an important role in biomass production and high nutrient uptake of this plant. This issue of importance was pursued further in the following investigation in field condition. The aim of this study was to determine the type of microbial combination suitable for Tithonia cultivation as hedgerow plants in Ultisols which have higher biomass production and nutrient content, and decline soil erosion. The field experiment was conducted with 6 treatments in a randomized block design (RBD) using 3 replications. The treatments were: Tithonia rhizosphere without microbial inoculated (A); Inokulanted by Mycorrhizal + Azotobacter + Azospirillium (B); Mycorrhizal + PSF (C); Mycorrhizal + PSB(D); Mycorrhizal + PSB + PSF(E);and without hedgerow Tithonia (F).The microbial substrates were inoculated into the Tithonia rhizosphere in the nursery. The young Tithonia plants were then planted as hedgerow on Ultisols in the experimental field for 8 months, and pruned once every 2 months. Soil erosion were collected every rainy time. The differences between treatments were statistically significant by HSD test at the 95% level of probability. The result showed that treatment C (mycorrhizal + PSB) was the most effective, and followed by treatment D (mycorrhizal + PSF) in producing higher Tithonia biomass about 8 t dry matter 2000 m-2 ha-1 y-1 and declined soil erosion 71-75%.

Keywords: hedgerow tithonia, microbial inoculants, organic fertilizer, soil erosion control

Procedia PDF Downloads 329
517 A New Approach to Increase Consumer Understanding of Meal’s Quality – Food Focus Instead of Nutrient Focus

Authors: Elsa Lamy, Marília Prada, Ada Rocha, Cláudia Viegas

Abstract:

The traditional and widely used nutrition-focused approach to communicate with consumers is reductionist and makes it difficult for consumers to assess their food intake. Without sufficient nutrition knowledge and understanding, it would be difficult to choose a healthful diet based only on nutritional recommendations. This study aimed to evaluate the understanding of how food/nutritional information is presented in menus to Portuguese consumers, comparing the nutrient-focused approach (currently used Nutrition Declaration) and the new food-focused approach (the infographic). For data collection, a questionnaire was distributed online using social media channels. A main effect of format on ratings of meal balance and completeness (Fbalance(1,79) = 18.26, p < .001, ηp2 = .188; Fcompleteness(1,67) = 27.18, p < .001, ηp2 = .289). Overall, dishes paired with the nutritional information were rated as more balanced (Mbalance= 3.70, SE = .11; Mcompleteness = 4.00, SE = .14) than meals with the infographic representation (Mbalance = 3.14, SE = .11; Mcompleteness = 3.29, SE = .13). We also observed a main effect of the meal, F(3,237) = 48.90, p < .001, ηp2 = .382, such that M1 and M2 were perceived as less balanced than the M3 and M4, all p < .001. The use of a food-focused approach (infographic) helped participants identify the lack of balance in the less healthful meals (dishes M1 and M2), allowing for a better understanding of meals' compliance with recommendations contributing to better food choices and a healthier lifestyle.

Keywords: food labelling, food and nutritional recommendations, infographics, portions based information

Procedia PDF Downloads 55
516 Invasive Asian Carp Fish Species: A Natural and Sustainable Source of Methionine for Organic Poultry Production

Authors: Komala Arsi, Ann M. Donoghue, Dan J. Donoghue

Abstract:

Methionine is an essential dietary amino acid necessary to promote growth and health of poultry. Synthetic methionine is commonly used as a supplement in conventional poultry diets and is temporarily allowed in organic poultry feed for lack of natural and organically approved sources of methionine. It has been a challenge to find a natural, sustainable and cost-effective source for methionine which reiterates the pressing need to explore potential alternatives of methionine for organic poultry production. Fish have high concentrations of methionine, but wild-caught fish are expensive and adversely impact wild fish populations. Asian carp (AC) is an invasive species and its utilization has the potential to be used as a natural methionine source. However, to our best knowledge, there is no proven technology to utilize this fish as a methionine source. In this study, we co-extruded Asian carp and soybean meal to form a dry-extruded, methionine-rich AC meal. In order to formulate rations with the novel extruded carp meal, the product was tested on cecectomized roosters for its amino acid digestibility and total metabolizable energy (TMEn). Excreta was collected and the gross energy, protein content of the feces was determined to calculate Total Metabolizable Energy (TME). The methionine content, digestibility and TME values were greater for the extruded AC meal than control diets. Carp meal was subsequently tested as a methionine source in feeds formulated for broilers, and production performance (body weight gain and feed conversion ratio) was assessed in comparison with broilers fed standard commercial diets supplemented with synthetic methionine. In this study, broiler chickens were fed either a control diet with synthetic methionine or a treatment diet with extruded AC meal (8 replicates/treatment; n=30 birds/replicate) from day 1 to 42 days of age. At the end of the trial, data for body weights, feed intake and feed conversion ratio (FCR) was analyzed using one-way ANOVA with Fisher LSD test for multiple comparisons. Results revealed that birds on AC diet had body weight gains and feed intake comparable to diets containing synthetic methionine (P > 0.05). Results from the study suggest that invasive AC-derived fish meal could potentially be an effective and inexpensive source of sustainable natural methionine for organic poultry farmers.

Keywords: Asian carp, methionine, organic, poultry

Procedia PDF Downloads 124
515 Interactive of Calcium, Potassium, and Dynamic Unequal Salt Distribution on the Growth of Tomato in Hydroponic System

Authors: Mohammad Koushafar, Amir Hossein Khoshgoftarmanesh

Abstract:

Due to water shortage, application of saline water for irrigation is an urgent requirement in agriculture. Thus, this study, the effect of calcium and potassium application as additive in saline root media for reduce salinity adverse effects was investigated on tomato growth in a hydroponic system with unequal distribution of salts in the root media, which was divided into two equal parts containing full Johnson nutrient solution and 40 mM NaCl solution, alone or in combination with KCl (6 mM), CaCl2 (4 mM), K+Ca (3+2 mM) or half-strength Johnson nutrient solution. The root splits were exchanged every 7 days. Results showed that addition of calcium, calcium-potassium and nutrition elements equivalent to half the concentration of Johnson formula to the saline-half of culture media minimized the reduction in plant growth caused by NaCl, although the addition of potassium to culture media was not effective. The greatest concentration of sodium was observed at the shoot of treatments which had the smallest growth. According to the results of this study, in the case of dynamic and non-uniform distribution of salts in the root media, by the addition of additive to the saline solution, it would be possible to use of saline water with no significant growth reduction.

Keywords: calcium, hydroponic, local salinity, potassium, salin water, tomato

Procedia PDF Downloads 415
514 Biochar from Empty Fruit Bunches Generated in the Palm Oil Extraction and Its Nutrients Contribution in Cultivated Soils with Elaeis guineensis in Casanare, Colombia

Authors: Alvarado M. Lady G., Ortiz V. Yaylenne, Quintero B. Quelbis R.

Abstract:

The oil palm sector has seen significant growth in Colombia after the insertion of policies to stimulate the use of biofuels, which eventually contributes to the reduction of greenhouse gases (GHG) that deteriorate not only the environment but the health of people. However, the policy of using biofuels has been strongly questioned by the impacts that can generate; an example is the increase of other more harmful GHGs like the CH₄ that underlies the amount of solid waste generated. Casanare's department is estimated be one of the major producers of palm oil of the country given that has recently expanded its sowed area, which implies an increase in waste generated primarily in the industrial stage. For this reason, the following study evaluated the agronomic potential of the biochar obtained from empty fruit bunches and its nutritional contribution in cultivated soils with Elaeis guineensis in Casanare, Colombia. The biochar was obtained by slow pyrolysis of the clusters in a retort oven at an average temperature of 190 °C and a residence time of 8 hours. The final product was taken to the laboratory for its physical and chemical analysis as well as a soil sample from a cultivation of Elaeis guineensis located in Tauramena-Casanare. With the results obtained plus the bibliographical reports of the nutrient demand in this cultivation, the possible nutritional contribution of the biochar was determined. It is estimated that the cultivation requirements of nitrogen is 12.1 kg.ha⁻¹, potassium is 59.3 kg.ha⁻¹, magnesium is -31.5 kg.ha⁻¹ and phosphorus is 5.6 kg.ha⁻¹ obtaining a biochar contribution of 143.1 kg.ha⁻¹, 1204.5 kg.ha⁻¹, 39.2 kg.ha⁻¹ and 71.6 kg.ha⁻¹ respectively. The incorporation of biochar into the soil would significantly improve the concentrations of N, P, K and Mg, nutrients considered important in the yield of palm oil, coupled with the importance of nutrient recycling in agricultural production systems sustainable. The biochar application improves the physical properties of soils, mainly in the humidity retention. On the other hand, it regulates the availability of nutrients for plants absorption, with economic savings in the application of synthetic fertilizers and water by irrigation. It also becomes an alternative to manage agricultural waste, reducing the involuntary emissions of greenhouse gases to the environment by decomposition in the field, reducing the CO₂ content in the atmosphere.

Keywords: biochar, nutrient recycling, oil palm, pyrolysis

Procedia PDF Downloads 128
513 Effects of Macro and Micro Nutrients on Growth and Yield Performances of Tomato (Lycopersicon esculentum MILL.)

Authors: K. M. S. Weerasinghe, A. H. K. Balasooriya, S. L. Ransingha, G. D. Krishantha, R. S. Brhakamanagae, L. C. Wijethilke

Abstract:

Tomato (Lycopersicon esculentum Mill.) is a major horticultural crop with an estimated global production of over 120 million metric tons and ranks first as a processing crop. The average tomato productivity in Sri Lanka (11 metric tons/ha) is much lower than the world average (24 metric tons/ha).To meet the tomato demand for the increasing population the productivity has to be intensified through the agronomic-techniques. Nutrition is one of the main factors which govern the growth and yield of tomato and the main nutrient source soil affect the plant growth and quality of the produce. Continuous cropping, improper fertilizer usage etc., cause widespread nutrient deficiencies. Therefore synthetic fertilizers and organic manures were introduced to enhance plant growth and maximize the crop yields. In this study, effects of macro and micronutrient supplementations on improvement of growth and yield of tomato were investigated. Selected tomato variety is Maheshi and plants were grown in Regional Agricultural and Research Centre Makadura under the Department of Agriculture recommended (DOA) macro nutrients and various combination of Ontario recommended dosages of secondary and micro fertilizer supplementations. There were six treatments in this experiment and each treatment was replicated in three times and each replicate consisted of six plants. Other than the DOA recommendation, five combinations of Ontario recommended dosage of secondary and micronutrients for tomato were also used as treatments. The treatments were arranged in a Randomized Complete Block Design. All cultural practices were carried out according to the DOA recommendations. The mean data was subjected to the statistical analysis using SAS package and mean separation (Duncan’s Multiple Range test at 5% probability level) procedures. Secondary and micronutrients containing treatments significantly increased most of the growth parameters. Plant height, plant girth, number of leaves, leaf area index etc. Fruits harvested from pots amended with macro, secondary and micronutrients performed best in terms of total yield; yield quality; to pots amended with DOA recommended dosage of fertilizer for tomato. It could be due to the application of all essential macro and micro nutrients that rise in photosynthetic activity, efficient translocation and utilization of photosynthates causing rapid cell elongation and cell division in actively growing region of the plant leading to stimulation of growth and yield were caused. The experiment revealed and highlighted the requirements of essential macro, secondary and micro nutrient fertilizer supplementations for tomato farming. The study indicated that, macro and micro nutrient supplementation practices can influence growth and yield performances of tomato fruits and it is a promising approach to get potential tomato yields.

Keywords: macro and micronutrients, tomato, SAS package, photosynthates

Procedia PDF Downloads 423
512 Conformal Coating Technology Applicable to Cell Therapeutics Using Click-Reactive Biocompatible Polymers

Authors: Venkat Garigapati

Abstract:

Cell-based therapies are limited due to underlying host immune system activity. Microencapsulation of living cells to overcome this issue has some serious drawbacks, such as limitations of nutrient and oxygen diffusion, which pose a threat to the function and longevity of cells. The conformal coating could overcome the issues which are generally involved in traditional microencapsulation. Some of the theoretical advantages of conformal coating include superior nutrient and oxygen supply to cells, prolonged lifespan, improved drug-secreting cell functionality and an opportunity to load high cell doses in small volumes. Despite several advantages to the conformal coating, there are no suitable methods available to apply to living cells. The ultra-thin conformal coating was achieved utilizing click-reactive methacryloyloxyethyl phosphorylcholine (MPC) polymers, which are capable of specifically reacting one polymer to another at neutral pH in the aqueous isotonic system at the desired temperature suitable for living cells without the need of deleterious initiators. ARPE-19 (Adult Retinal Pigment Epithelial cell line-19) cell-spheroids and rat pancreatic islets were used in the formulation studies. The in vitro studies of coated ARPE-19 cell-spheroids and rat islets indicate that the coat was intact; cells were viable and functioning. The in vitro study results revealed that the conformal coating technology seems promising and in vivo studies are being planned.

Keywords: cells, hydrogel, conformal coating, microencapsulation, insulin

Procedia PDF Downloads 68
511 Improvement Anaerobic Digestion Performance of Sewage Sludge by Co-Digestion with Cattle Manure

Authors: Raouf Hassan

Abstract:

Biogas energy production from sewage sludge is an economically feasible and eco-friendly in nature. Sewage sludge is considered nutrient-rich substrates, but had lower values of carbone which consider an energy source for anaerobic bacteria. The lack or lower values of carbone-to-nitrogen ratio (C/N) reduced biogas yield and fermentation rate. Anaerobic co-digestion of sewage sludge offers several benefits over mono-digestion such as optimize nutrient balance, increased cost-efficiency and increased degradation rate. The high produced amounts of animal manures, which reach up to 90% of the total collected organic wastes, are recommended for the co-digestion with sewage sludge, especially with the limitations of industrial substrates. Moreover, cattle manures had high methane production potential (500 m3/t vsadded). When mixed with sewage sludge the potential methane production increased with increasing cattle manure content. In this paper, the effect of cattle manure (CM) addition as co-substrates on the sewage sludge (SS) anaerobic digestion performance was investigated under mesophilic conditions (35°C) using anaerobic batch reactors. The batch reactors were operated with a working volume 0.8 liter, and a hydraulic retention time of 30 days. The research work focus on studying two main parameters; the biogas yield (expressed as VSS) and pH values inside the reactors.

Keywords: anaerobic digestion, sewage sludge, cattle manure, mesophilic, biogas yield, pH

Procedia PDF Downloads 281
510 Studies on Irrigation and Nutrient Interactions in Sweet Orange (Citrus sinensis Osbeck)

Authors: S. M. Jogdand, D. D. Jagtap, N. R. Dalal

Abstract:

Sweet orange (Citrus sinensis Osbeck) is one of the most important commercially cultivated fruit crop in India. It stands on second position amongst citrus group after mandarin. Irrigation and fertigation are vital importance of sweet orange orchard and considered to be the most critical cultural operations. The soil acts as the reservoir of water and applied nutrients, the interaction between irrigation and fertigation leads to the ultimate quality and production of fruits. The increasing cost of fertilizers and scarcity of irrigation water forced the farmers for optimum use of irrigation and nutrients. The experiment was conducted with object to find out irrigation and nutrient interaction in sweet orange to optimize the use of both the factors. The experiment was conducted in medium to deep soil. The irrigation level I3,drip irrigation at 90% ER (effective rainfall) and fertigation level F3 80% RDF (recommended dose of fertilizer) recorded significantly maximum plant height, plant spread, canopy volume, number of fruits, weight of fruit, fruit yield kg/plant and t/ha followed by F2 , fertigation with 70% RDF. The interaction effect of irrigation and fertigation on growth was also significant and the maximum plant height, E-W spread, N-S spread, canopy volume, highest number of fruits, weight of fruit and yield kg/plant and t/ha was recorded in T9 i.e. I3F3 drip irrigation at 90% ER and fertigation with 80% of RDF followed by I3F2 drip irrigation at 90% ER and fertigation with 70% of RDF.

Keywords: sweet orange, fertigation, irrigation, interactions

Procedia PDF Downloads 144
509 Economic and Environmental Impact of the Missouri Grazing Schools

Authors: C. A. Roberts, S. L. Mascaro, J. R. Gerrish, J. L. Horner

Abstract:

Management-intensive Grazing (MiG) is a practice that rotates livestock through paddocks in a way that best matches the nutrient requirements of the animal to the yield and quality of the pasture. In the USA, MiG has been taught to livestock producers throughout the state of Missouri in 2- and 3-day workshops called “Missouri Grazing Schools.” The economic impact of these schools was quantified using IMPLAN software. The model included hectares of adoption, animal performance, carrying capacity, and input costs. To date, MiG, as taught in the Missouri Grazing Schools, has been implemented on more than 70,000 hectares in Missouri. The economic impact of these schools is presently $125 million USD per year added to the state economy. This magnitude of impact is the result not only of widespread adoption but also because of increased livestock carrying capacity; in Missouri, a capacity increase of 25 to 30% has been well documented. Additional impacts have been MiG improving forage quality and reducing the cost of feed and fertilizer. The environmental impact of MiG in the state of Missouri is currently being estimated. Environmental impact takes into account the reduction in the application of commercial fertilizers; in MiG systems, nitrogen is supplied by N fixation from legumes, and much of the P and K is recycled naturally by well-distributed manure. The environmental impact also estimates carbon sequestration and methane production; MiG can increase carbon sequestration and reduce methane production in comparison to default grazing practices and feedlot operations in the USA.

Keywords: agricultural education, forage quality, management-intensive grazing, nutrient cycling, stock density, sustainable agriculture

Procedia PDF Downloads 168
508 Dietary Intake and Nutritional Inadequacy Leading to Malnutrition among Children Residing in Shelter Home, Rural Tamil Nadu, India

Authors: Niraimathi Kesavan, Sangeeta Sharma, Deepa Jagan, Sridhar Sukumar, Mohan Ramachandran, Vidhubala Elangovan

Abstract:

Background: Childhood is a dynamic period for growth and development. Optimum nutrition during this period forms a strong foundation for growth, development, resistance to infections, long-term good health, cognition, educational achievements, and work productivity in a later phase of life. Underprivileged children living in a resource constraint settings like shelter homes are at high risk of malnutrition due to poor quality diet and nutritional inadequacy. In low-income countries, underprivileged children are vulnerable to being deprived of nutritious food, which stands as a major challenge in the health sector. The present aims to assess the dietary intake, nutritional status, and nutritional inadequacy and their association with malnutrition among children residing in shelter homes in rural Tamil Nadu. Methods: The study was a descriptive survey conducted among all the children aged between 8-18 years residing in two selected shelter homes (Anbu illam, a home for female children, and Amaidhi illam, a home for male children), rural Tirunelveli, Tamil Nadu, India. A total of 57 children were recruited, including 18 boys and 39 girls, for the study. Dietary intake was measured using seven days 24 hours recall. The average nutrient intake was considered for further analysis. Results: Of the 57 children, about 60% (n=35) were undernutrition. The mean daily energy intake was 1298 (SD 180) kcal for boys and 952 (SD155) kcal for girls. The total calorie intake was 55-60% below the estimated average requirement (EAR) for adolescent boys and girls in the age group 13-15 years and 16-18 years. Carbohydrates were the major source of energy (boys 53% and girls 51%), followed by fat (boys 31.5% and girls 34.5%) and protein (boys 14% and girls 12.9%). Dairy intake (<200ml/day) was less than the recommendation (500ml/day). Micro-nutrient-rich foods such as fruits, vegetables, and green leafy vegetables in the diet were <200g/day, which was far less than the recommended dietary guidelines of 400g- 600g/day for the age group of 7-18 years. Nearly 26% of girls reported experiencing menstrual problems. The majority (76.9%) of the children exhibited nutrient deficiency-related signs and symptoms. Conclusion: The total energy, minerals, and micro-nutrient intake were inadequate and below the Recommended Dietary Allowance for children and adolescents. The diet predominantly consists of refined cereals, rice, semolina, and vermicelli. Consumption of whole grains, milk, fruits, vegetables, and leafy vegetables was far below the recommended dietary guidelines. Dietary inadequacies among these children pose a serious concern for their overall health status and its consequences in the later phase of life.

Keywords: adolescents, children, dietary intake, malnutrition, nutritional inadequacy, shelter home

Procedia PDF Downloads 56
507 Change of Substrate in Solid State Fermentation Can Produce Proteases and Phytases with Extremely Distinct Biochemical Characteristics and Promising Applications for Animal Nutrition

Authors: Paula K. Novelli, Margarida M. Barros, Luciana F. Flueri

Abstract:

Utilization of agricultural by-products, wheat ban and soybean bran, as substrate for solid state fermentation (SSF) was studied, aiming the achievement of different enzymes from Aspergillus sp. with distinct biological characteristics and its application and improvement on animal nutrition. Aspergillus niger and Aspergillus oryzea were studied as they showed very high yield of phytase and protease production, respectively. Phytase activity was measure using p-nitrophenilphosphate as substrate and a standard curve of p-nitrophenol, as the enzymatic activity unit was the quantity of enzyme necessary to release one μmol of p-nitrophenol. Protease activity was measure using azocasein as substrate. Activity for phytase and protease substantially increased when the different biochemical characteristics were considered in the study. Optimum pH and stability of the phytase produced by A. niger with wheat bran as substrate was between 4.0 - 5.0 and optimum temperature of activity was 37oC. Phytase fermented in soybean bran showed constant values at all pHs studied, for optimal and stability, but low production. Phytase with both substrates showed stable activity for temperatures higher than 80oC. Protease from A. niger showed very distinct behavior of optimum pH, acid for wheat bran and basic for soybean bran, respectively and optimal values of temperature and stability at 50oC. Phytase produced by A. oryzae in wheat bran had optimum pH and temperature of 9 and 37oC, respectively, but it was very unstable. On the other hand, proteases were stable at high temperatures, all pH’s studied and showed very high yield when fermented in wheat bran, however when it was fermented in soybean bran the production was very low. Subsequently the upscale production of phytase from A. niger and proteases from A. oryzae were applied as an enzyme additive in fish fed for digestibility studies. Phytases and proteases were produced with stable enzyme activity of 7,000 U.g-1 and 2,500 U.g-1, respectively. When those enzymes were applied in a plant protein based fish diet for digestibility studies, they increased protein, mineral, energy and lipids availability, showing that these new enzymes can improve animal production and performance. In conclusion, the substrate, as well as, the microorganism species can affect the biochemical character of the enzyme produced. Moreover, the production of these enzymes by SSF can be up to 90% cheaper than commercial ones produced with the same fungi species but submerged fermentation. Add to that these cheap enzymes can be easily applied as animal diet additives to improve production and performance.

Keywords: agricultural by-products, animal nutrition, enzymes production, solid state fermentation

Procedia PDF Downloads 299
506 Biorefinery as Extension to Sugar Mills: Sustainability and Social Upliftment in the Green Economy

Authors: Asfaw Gezae Daful, Mohsen Alimandagari, Kathleen Haigh, Somayeh Farzad, Eugene Van Rensburg, Johann F. Görgens

Abstract:

The sugar industry has to 're-invent' itself to ensure long-term economic survival and opportunities for job creation and enhanced community-level impacts, given increasing pressure from fluctuating and low global sugar prices, increasing energy prices and sustainability demands. We propose biorefineries for re-vitalisation of the sugar industry using low value lignocellulosic biomass (sugarcane bagasse, leaves, and tops) annexed to existing sugar mills, producing a spectrum of high value platform chemicals along with biofuel, bioenergy, and electricity. Opportunity is presented for greener products, to mitigate climate change and overcome economic challenges. Xylose from labile hemicellulose remains largely underutilized and the conversion to value-add products a major challenge. Insight is required on pretreatment and/or extraction to optimize production of cellulosic ethanol together with lactic acid, furfural or biopolymers from sugarcane bagasse, leaves, and tops. Experimental conditions for alkaline and pressurized hot water extraction dilute acid and steam explosion pretreatment of sugarcane bagasse and harvest residues were investigated to serve as a basis for developing various process scenarios under a sugarcane biorefinery scheme. Dilute acid and steam explosion pretreatment were optimized for maximum hemicellulose recovery, combined sugar yield and solids digestibility. An optimal range of conditions for alkaline and liquid hot water extraction of hemicellulosic biopolymers, as well as conditions for acceptable enzymatic digestibility of the solid residue, after such extraction was established. Using data from the above, a series of energy efficient biorefinery scenarios are under development and modeled using Aspen Plus® software, to simulate potential factories to better understand the biorefinery processes and estimate the CAPEX and OPEX, environmental impacts, and overall viability. Rigorous and detailed sustainability assessment methodology was formulated to address all pillars of sustainability. This work is ongoing and to date, models have been developed for some of the processes which can ultimately be combined into biorefinery scenarios. This will allow systematic comparison of a series of biorefinery scenarios to assess the potential to reduce negative impacts on and maximize the benefits of social, economic, and environmental factors on a lifecycle basis.

Keywords: biomass, biorefinery, green economy, sustainability

Procedia PDF Downloads 481
505 A Study of Fecal Sludge Management in Auroville and Its Surrounding Villages in Tamilnadu, India

Authors: Preethi Grace Theva Neethi Dhas

Abstract:

A healthy human gut microbiome has commensal and symbiotic functions in digestion and is a decisive factor for human health. The soil microbiome is a crucial component in the ecosystem of soils and their health and resilience. Changes in soil microbiome are linked to human health. Ever since the industrial era, the human and the soil microbiome have been going through drastic changes. The soil microbiome has changed due to industrialization and extensive agricultural practices, whereas humans have less contact with soil and increased intake of highly processed foods, leading to changes in the human gut microbiome. Regenerating the soil becomes crucial in maintaining a healthy ecosystem. The nutrients, once obtained from the soil, need to be given back to the soil. Soil degradation needs to be addressed in effective ways, like adding organic nutrients back to the soil. Manure from animals and humans needs to be returned to the soil, which can complete the nutrient cycle in the soil. On the other hand, fecal sludge management (FSM) is a growing concern in many parts of the developing world. Hence, it becomes crucial to treat and reuse fecal sludge in a safe manner, i.e., low in risk to human health. Co-composting fecal sludge with organic wastes is a practice that allows the safe management of fecal sludge and the safe application of nutrients to the soil. This paper will discuss the possible impact of co-composting fecal sludge with coconut choir waste on the soil, water, and ecosystem at large. Impact parameters like nitrogen, phosphorus, and fecal coliforms will be analyzed. The overall impact of fecal sludge application on the soil will be researched and presented in this study.

Keywords: fecal sludge management, nutrient cycle, soil health, composting

Procedia PDF Downloads 30
504 Crop Productivity, Nutrient Uptake and Apparent Balance for Rice Based Cropping Systems under Improved Crop Varieties and Nutrient Management Practices in Previous Enclaves of Bangladesh

Authors: Md. Samim Hossain Molla, Md. Mazharul Anwar, Md. Akkas Ali, Mian Sayeed Hassan

Abstract:

Being detached about 68 years from the mainland, the previous enclaves’ (Chhitmohal) farmers were engaged only in subsistence farming with low agricultural productivity and restricted access to inputs technology. To increase crop productivity for attaining food security by addressing soil status, the experiments were undertaken in 2017 and 2018 in three previous enclaves of Northern Bangladesh i.e. Dasiarchhara of Kurigram district; Dahalakhagrabari of Panchagarh district and Banskata of Lalmonirhat district under On-Farm Research Division, Bangladesh Agricultural Research Institute, Rangpur. The Mustard (var. BARI Sarisha-14)-Boro rice (var. BRRI dhan58)-T. Aman rice (var. BRRI dhan49) cropping pattern using soil test based (STB) fertilizer with cowdung (T1) or recommended fertilizer dose (T2) were tested against existing cropping pattern Fallow-Boro rice (var. BRRI dhan28)-T. Aman rice (var. Swarna) using farmers’ practices fertilizer dose (T3) in six disperse replications at each location maintaining Randomized Complete Block design. Almost all crops yields were relatively higher in T1 followed by T2. Farmers existing pattern with local varieties and imbalance fertilizer (T3) use may be decreased the crop yield. The rice equivalent yield of T1 was 109, 103 and 95% higher than T3 and the gross margin was 164, 153 and 133% higher in T1 than T3 at Dasiarchhara, Dahalakhagrabari and Banskata, respectively. The Benefit Cost Ratio for T1, T2 and T3 were 1.99, 1.78 and 1.28 in Dasiarchhara; 1.93, 1.81 and 1.27 in Dahalakhagrabari and 1.78, 1.71 and 1.25 in Banskata, respectively. There was a remarkable decrease in mineral N, P and K in the topsoil (0–15 cm) of T3 and T2 treatments at Dasiarchhara and Dahalakhagrabari, and a generally less marked decline under the same treatments at Banskata. The same practices (T1) exhibited the greatest nutrients uptake by the test crops. The apparent balance of N, P and K was negative in most cases, where it was less negative in T1 treatment. However, from the experimentation, it is revealed that balanced fertilization (STB) and inclusion of National Agricultural Research Institutes developed improved crops varieties in cropping pattern may increase the crop productivity, farm efficiency and farmer’s income in a remarkable level.

Keywords: cropping pattern, fertilizer management, nutrient balance, previous enclaves

Procedia PDF Downloads 113
503 Application of Free Living Nitrogen Fixing Bacteria to Increase Productivity of Potato in Field

Authors: Govinda Pathak

Abstract:

In modern agriculture, the sustainable enhancement of crop productivity while minimizing environmental impacts remains a paramount challenge. Plant Growth Promoting Rhizobacteria (PGPR) have emerged as a promising solution to address this challenge. The rhizosphere, the dynamic interface between plant roots and soil, hosts intricate microbial interactions crucial for plant health and nutrient acquisition. PGPR, a subset of rhizospheric microorganisms, exhibit multifaceted beneficial effects on plants. Their abilities to stimulate growth, confer stress tolerance, enhance nutrient availability, and suppress pathogens make them invaluable contributors to sustainable agriculture. This work examines the pivotal role of free living nitrogen fixer in optimizing agricultural practices. We delve into the intricate mechanisms underlying PGPR-mediated plant-microbe interactions, encompassing quorum sensing, root exudate modulation, and signaling molecule exchange. Furthermore, we explore the diverse strategies employed by PGPR to enhance plant resilience against abiotic stresses such as drought, salinity, and metal toxicity. Additionally, we highlight the role of PGPR in augmenting nutrient acquisition and soil fertility through mechanisms such as nitrogen fixation, phosphorus solubilization, and mineral mobilization. Furthermore, we discuss the potential of PGPR in minimizing the reliance on chemical fertilizers and pesticides, thereby contributing to environmentally friendly agriculture. However, harnessing the full potential of PGPR requires a comprehensive understanding of their interactions with host plants and the surrounding microbial community. We also address challenges associated with PGPR application, including formulation, compatibility, and field efficacy. As the quest for sustainable agriculture intensifies, harnessing the remarkable attributes of PGPR offers a holistic approach to propel agricultural productivity while maintaining ecological balance. This work underscores the promising prospect of free living nitrogen fixer as a panacea for addressing critical agricultural challenges regarding chemical urea in an era of sustainable and resilient food production.

Keywords: PGPR, nitrogen fixer, quorum sensing, Rhizobacteria, pesticides

Procedia PDF Downloads 27
502 Geochemical Composition of Deep and Highly Weathered Soils Leyte and Samar Islands Philippines

Authors: Snowie Jane Galgo, Victor Asio

Abstract:

Geochemical composition of soils provides vital information about their origin and development. Highly weathered soils are widespread in the islands of Leyte and Samar but limited data have been published in terms of their nature, characteristics and nutrient status. This study evaluated the total elemental composition, properties and nutrient status of eight (8) deep and highly weathered soils in various parts of Leyte and Samar. Sampling was done down to 3 to 4 meters deep. Total amounts of Al₂O₃, As₂O₃, CaO, CdO, Cr₂O₃, CuO, Fe₂O₃, K₂O, MgO, MnO, Na₂O, NiO, P₂O₅, PbO, SO₃, SiO₂, TiO₂, ZnO and ZrO₂ were analyzed using an X-ray analytical microscope for eight soil profiles. Most of the deep and highly weathered soils have probably developed from homogenous parent materials based on the regular distribution with depth of TiO₂ and ZrO₂. Two of the soils indicated high variability with depth of TiO₂ and ZrO₂ suggesting that these soils developed from heterogeneous parent material. Most soils have K₂O and CaO values below those of MgO and Na₂O. This suggests more losses of K₂O and CaO have occurred since they are more mobile in the weathering environment. Most of the soils contain low amounts of other elements such as CuO, ZnO, PbO, NiO, CrO and SO₂. Basic elements such as K₂O and CaO are more mobile in the weathering environment than MgO and Na₂O resulting in higher losses of the former than the latter. Other elements also show small amounts in all soil profile. Thus, this study is very useful for sustainable crop production and environmental conservation in the study area specifically for highly weathered soils which are widespread in the Philippines.

Keywords: depth function, geochemical composition, highly weathered soils, total elemental composition

Procedia PDF Downloads 230
501 Colonization of Non-Planted Mangrove Species in the “Rehabilitation of Aquaculture Ponds to Mangroves” Projects in China

Authors: Yanmei Xiong, Baowen Liao, Kun Xin, Zhongmao Jiang, Hao Guo, Yujun Chen, Mei Li

Abstract:

Conversion of mangroves to aquaculture ponds represented as one major reason for mangrove loss in Asian countries in the 20th century. Recently the Chinese government has set a goal to increase 48,650 ha (more than the current mangrove area) of mangroves before the year of 2025 and “rehabilitation of aquaculture ponds to mangroves” projects are considered to be the major pathway to increase the mangrove area of China. It remains unclear whether natural colonization is feasible and what are the main influencing factors for mangrove restoration in these projects. In this study, a total of 17 rehabilitation sites in Dongzhai Bay, Hainan, China were surveyed for vegetation, soil and surface elevation five years after the rehabilitation project was initiated. Colonization of non-planted mangrove species was found at all sites and non-planted species dominated over planted species at 14 sites. Mangrove plants could only be found within the elevation range of -20 cm to 65 cm relative to the mean sea level. Soil carbon and nitrogen contents of the top 20 cm were generally low, ranging between 0.2%–1.4% and 0.03%–0.09%, respectively, and at each site, soil carbon and nitrogen were significantly lower at elevations with mangrove plants than lower elevations without mangrove plants. Seven sites located at the upper stream of river estuaries, where soil salinity was relatively lower, and nutrient was relatively higher, was dominated by non-planted Sonneratia caseolaris. Seven sites located at the down-stream of river estuaries or in the inner part of the bay, where soil salinity and nutrient were intermediate, were dominated by non-planted alien Sonneratia apetala. Another three sites located at the outer part of the bay, where soil salinity was higher and nutrient was lower, were dominated by planted species (Rhizophora stylosa, Kandelia obovata, Aegiceras corniculatum and Bruguiera sexangula) with non-planted S. apetala and Avicennia marina also found. The results suggest that natural colonization of mangroves is feasible in pond rehabilitation projects given the rehabilitation of tidal activities and appropriate elevations. Surface elevation is the major determinate for the success of mangrove rehabilitation, and soil salinity and nutrients are important in shaping vegetation structure. The colonization and dominance of alien species (Sonneratia apetala in this case) in some rehabilitation sites poses invasion risks and thus cautions should be taken when introducing alien mangrove species.

Keywords: coastal wetlands, ecological restoration, mangroves, natural colonization, shrimp pond rehabilitation, wetland restoration

Procedia PDF Downloads 105
500 Development and Validation of a Semi-Quantitative Food Frequency Questionnaire for Use in Urban and Rural Communities of Rwanda

Authors: Phenias Nsabimana, Jérôme W. Some, Hilda Vasanthakaalam, Stefaan De Henauw, Souheila Abbeddou

Abstract:

Tools for the dietary assessment in adults are limited in low- and middle-income settings. The objective of this study was to develop and validate a semi-quantitative food frequency questionnaire (FFQ) against the multiple pass-24 h recall tool for use in urban and rural Rwanda. A total of 212 adults (154 females and 58 males), 18-49 aged, including 105 urban and 107 rural residents, from the four regions of Rwanda, were recruited in the present study. A multiple-pass 24- H recall technique was used to collect dietary data in both urban and rural areas in four different rounds, on different days (one weekday and one weekend day), separated by a period of three months, from November 2020 to October 2021. The details of all the foods and beverages consumed over the 24h period of the day prior to the interview day were collected during face-to-face interviews. A list of foods, beverages, and commonly consumed recipes was developed by the study researchers and ten research assistants from the different regions of Rwanda. Non-standard recipes were collected when the information was available. A single semi-quantitative FFQ was also developed in the same group discussion prior to the beginning of the data collection. The FFQ was collected at the beginning and the end of the data collection period. Data were collected digitally. The amount of energy and macro-nutrients contributed by each food, recipe, and beverage will be computed based on nutrient composition reported in food composition tables and weight consumed. Median energy and nutrient contents of different food intakes from FFQ and 24-hour recalls and median differences (24-hour recall –FFQ) will be calculated. Kappa, Spearman, Wilcoxon, and Bland-Altman plot statistics will be conducted to evaluate the correlation between estimated nutrient and energy intake found by the two methods. Differences will be tested for their significance and all analyses will be done with STATA 11. Data collection was completed in November 2021. Data cleaning is ongoing and the data analysis is expected to be completed by July 2022. A developed and validated semi-quantitative FFQ will be available for use in dietary assessment. The developed FFQ will help researchers to collect reliable data that will support policy makers to plan for proper dietary change intervention in Rwanda.

Keywords: food frequency questionnaire, reproducibility, 24-H recall questionnaire, validation

Procedia PDF Downloads 112
499 Sustainable Development: Soil Conservation with Cultivation of Cassava (Manihot esculenta) Based on Local Wisdom

Authors: Adiyasa Muda Zannatan

Abstract:

Cassava (Manihot esculenta) is a plant originating from Brazil. Cassava plants categorized as sixth major food in the world after wheat, rice, corn and potatoes. It has been cultivated on hilly land for 97 years since 1918 at Cireundeu village, West Java Province, Indonesia. Cireundeu traditional village located in the mountain valleys and has a hilly slope up to 38%. Cassava is used as the primary food in that area. Uniquely, Cassava productivity is stable and continues until now. The assessment of soil quality is taking soil samples in the area and analysis the soil in laboratory. The result of analysis that soil in the area is not degraded because it has optimum nutrient, organic matter, and high value of cation exchange capacity in soil even though it has been cultivated in scarp with high slope. Commonly, soil on scarp with high slope has a high rate erosion and poor nutrient. It proved that cassava is able to be an alternative technique of soil conservation in the areas that have a high slope. Beside that, cassava can be utilized as a plant food, feed, fertilizer, and energy. With the utilization of Cassava, the target of Sustainable Development Goals (SDG's) will be achieved with consideration three important components include economy, social, and environment. In economy, Cassava can to be the commercial product like processed food, feed, and alternative energy. In social, it will increase social welfare and will be hereditary. And for environment, Cassava prevents soil from erosion and keeps soil quality.

Keywords: Cassava, local wisdom, conservation, soil quality, sustainable

Procedia PDF Downloads 261
498 A Nutrient Formulation Affects Brain Myelination in Infants: An Investigative Randomized Controlled Trial

Authors: N. Schneider, M. Bruchhage, M. Hartweg, G. Mutungi, J. O Regan, S. Deoni

Abstract:

Observational neuroimaging studies suggest differences between breast-fed and formula-fed infants in developmental myelination, a key brain process for learning and cognitive development. However, the possible effects of a nutrient formulation on myelin development in healthy term infants in an intervention study have not been investigated. Objective was, therefore, to investigate the efficacy of a nutrient formulation with higher levels of myelin-relevant nutrients as compared to a control formulation with lower levels of the same nutrients on brain myelination and cognitive development in the first 6 months of life. The study is an ongoing randomized, controlled, double-blind, two-center, parallel-group clinical trial with a nonrandomized, non-blinded arm of exclusively breastfed infants. The current findings result from a staged statistical analysis at 6 months; the recruitment and intervention period has been completed for all participants. Follow-up visits at 12, 18 and 24 months are still ongoing. N= 81 enrolled full term, neurotypical infants of both sexes were randomized into either the investigational (N= 42) or the control group (N= 39), and N= 108 children in the breast-fed arm served as a natural reference group. The effect of a blend of docosahexaenoic acid, arachidonic acid, iron, vitamin B12, folic acid as well as sphingomyelin from a uniquely proceed whey protein concentrate enriched in alpha-lactalbumin and phospholipids in an infant nutrition product matrix was investigated. The main outcomes for the staged statistical analyses at 6 months included brain myelination measures derived from MRI. Additional outcomes were brain volume, cognitive development and safety. The full analyses set at 6 months comprised N= 66 infants. Higher levels of myelin-relevant nutrients compared to lower levels resulted in significant differences in myelin structure, volume, and rate of myelination as early as 3 and 6 months of life. The cross-sectional change of means between groups for whole-brain myelin volume was 8.4% for investigational versus control formulation (3.5% versus the breastfeeding reference) group at 3 months and increased to 36.4% for investigational versus control formulation (14.1% versus breastfeeding reference) at 6 months. No statistically significant differences were detected for early cognition scores. Safety findings were largely similar across groups. This is the first pediatric nutritional neuroimaging study demonstrating the efficacy of a myelin nutrient blend on developmental myelination in well-nourished term infants. Myelination is a critical process in learning and development. The effects were demonstrated across the brain, particularly in temporal and parietal regions, known to be functionally involved in sensory, motor and language skills. These first results add to the field of nutritional neuroscience by demonstrating early life nutrition benefits for brain architecture which may be foundational for later cognitive and behavioral outcomes. ClinicalTrials.gov Identifier: NCT03111927 (Infant Nutrition and Brain Development - Full-Text View - ClinicalTrials.gov).

Keywords: brain development, infant nutrition, MRI, myelination

Procedia PDF Downloads 160
497 Development of an in vitro Fermentation Chicken Ileum Microbiota Model

Authors: Bello Gonzalez, Setten Van M., Brouwer M.

Abstract:

The chicken small intestine represents a dynamic and complex organ in which the enzymatic digestion and absorption of nutrients take place. The development of an in vitro fermentation chicken small intestinal model could be used as an alternative to explore the interaction between the microbiota and nutrient metabolism and to enhance the efficacy of targeting interventions to improve animal health. In the present study we have developed an in vitro fermentation chicken ileum microbiota model for unrevealing the complex interaction of ileum microbial community under physiological conditions. A two-vessel continuous fermentation process simulating in real-time the physiological conditions of the ileum content (pH, temperature, microaerophilic/anoxic conditions, and peristaltic movements) has been standardized as a proof of concept. As inoculum, we use a pool of ileum microbial community obtained from chicken broilers at the age of day 14. The development and validation of the model provide insight into the initial characterization of the ileum microbial community and its dynamics over time-related to nutrient assimilation and fermentation. Samples can be collected at different time points and can be used to determine the microbial compositional structure, dynamics, and diversity over time. The results of studies using this in vitro model will serve as the foundation for the development of a whole small intestine in vitro fermentation chicken gastrointestinal model to complement our already established in vitro fermentation chicken caeca model. The insight gained from this model could provide us with some information about the nutritional strategies to restore and maintain chicken gut homeostasis. Moreover, the in vitro fermentation model will also allow us to study relationships between gut microbiota composition and its dynamics over time associated with nutrients, antimicrobial compounds, and disease modelling.

Keywords: broilers, in vitro model, ileum microbiota, fermentation

Procedia PDF Downloads 7
496 Finding Optimal Operation Condition in a Biological Nutrient Removal Process with Balancing Effluent Quality, Economic Cost and GHG Emissions

Authors: Seungchul Lee, Minjeong Kim, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo

Abstract:

It is hard to maintain the effluent quality of the wastewater treatment plants (WWTPs) under with fixed types of operational control because of continuously changed influent flow rate and pollutant load. The aims of this study is development of multi-loop multi-objective control (ML-MOC) strategy in plant-wide scope targeting four objectives: 1) maximization of nutrient removal efficiency, 2) minimization of operational cost, 3) maximization of CH4 production in anaerobic digestion (AD) for CH4 reuse as a heat source and energy source, and 4) minimization of N2O gas emission to cope with global warming. First, benchmark simulation mode is modified to describe N2O dynamic in biological process, namely benchmark simulation model for greenhouse gases (BSM2G). Then, three types of single-loop proportional-integral (PI) controllers for DO controller, NO3 controller, and CH4 controller are implemented. Their optimal set-points of the controllers are found by using multi-objective genetic algorithm (MOGA). Finally, multi loop-MOC in BSM2G is implemented and evaluated in BSM2G. Compared with the reference case, the ML-MOC with the optimal set-points showed best control performances than references with improved performances of 34%, 5% and 79% of effluent quality, CH4 productivity, and N2O emission respectively, with the decrease of 65% in operational cost.

Keywords: Benchmark simulation model for greenhouse gas, multi-loop multi-objective controller, multi-objective genetic algorithm, wastewater treatment plant

Procedia PDF Downloads 472
495 Growth and Nutrient Utilization of Some Citrus Peels and Vitamin Premix as Additives in Clarias Gariepinus Diets

Authors: Eunice Oluwayemisi Adeparusi, Mary Adedolapo Ijadeyila

Abstract:

The study was carried out at the Federal University of Technology, Akure, Nigeria, West Africa. Seven set of diets were prepared comprising of two sets. The first set consisted of a combination of three diets from a combination of two different citrus peels from Orange (Citrus sinesis), Tangerine (Citrus tangerina / Citrus reticulata) and Tangelo (Citrus tangelo a hybrid of Citrus reticulata and Citrus maxima) at 50:50 while the other three consisted f50:50. Diet with 100% vitamin premix served as the control. Air-dried citrus peels were added in a 40% crude protein diet for the juveniles (4.49±0.05g) Clarias gariepinus. The experiment was carried out for a period of 56 days in triplicate trials. Fish were randomly distributed into twenty-one tanks at ten fish per tanks. The feed was extruded and fed to satiation twice daily. The result shows that fish fed Tangelo and Tangerine (TGL-TGR) had the best growth response in terms of final weight, specific growth rate, feed conversion ratio and feed utilization efficiency when compared with other diets. The FCR of fish in the diet ranges from 0.93-1.62. Fish fed the mixture of Orange peel and Vitamin-mineral premix (ORG-VIT) and those on Tangelo and Vitamin-mineral premix (TGL-VIT) had higher survival rate. There were significant differences (P<0.05) in the mean final weight, weight gain and specific growth rate. The result shows that citrus peels enhance the growth performance and feed utilization of the juvenile of African mud catfish, thereby reducing the cost of fish production.

Keywords: African mud catfish, growth, citrus peels, vitamin-mineral premix, nutrient utilization, additives

Procedia PDF Downloads 48
494 Investigating the Role of Lactiplantibacillus Plantarum vs. Spontaneous Fermentation in Improving Nutritional and Consumer Safety of the Fermented White Cabbage Sprouts

Authors: Anam Layla, Qamar Abbas Syed, Tahir Zahoor, Muhammad Shahid

Abstract:

Brassicaceae sprouts are promising candidates for functional food because of their unique phytochemistry and high nutrient density compared to their seeds and matured vegetables. Despite being admired for their health-promoting properties, white cabbage sprouts have been least explored for their nutritional significance and behavior to lactic acid fermentation. This study aimed to investigate the role of lactic acid fermentation i.e., inoculum vs. spontaneous, in reducing intrinsic toxicants load and improving nutrients delivering potential of the white cabbage sprouts. White cabbage sprouts with a 5 – 7 cm average size were processed as raw, blanched, Lactiplantibacillus plantarum inoculated fermentation and spontaneous fermentation. Plant material was dehydrated at 40˚C and evaluated for microbiological quality, macronutrients, minerals, and anti-nutrient contents. The results indicate L. plantarum inoculum fermentation of blanched cabbage sprouts (IF-BCS) to increase lactic acid bacteria count of the sprouts from 0.97 to 8.47 log CFU/g. Compared with the raw cabbage sprouts (RCS), inoculum fermented-raw cabbage sprouts (IF-RCS), and spontaneous fermented-raw cabbage sprouts (SF-RCS), the highest content of Ca (447 mg/ 100g d.w.), Mg (204 mg/100g d.w.), Fe (9.3 mg/100g d.w.), Zn (5 mg/100g d.w.) and Cu (0.5 mg/100g d.w.) were recorded in IF-BCS. L. plantarum led fermentation of BCS demonstrated a reduction in phytates, tannins, and oxalates contents at a rate of 42%, 66%, and 53%, respectively, while standalone lactic acid fermentation of the raw sprouts reduced the burden of anti-nutrients in a range between 32 to 56%. The results suggest L. plantarum led lactic acid fermentation coupled with sprouts blanching is the most promising way to improve the nutritional quality and safety of the white cabbage sprouts.

Keywords: lactic acid fermentation, anti-nutrients, mineral content, nutritional quality

Procedia PDF Downloads 27
493 Evaluation of Different Cropping Systems under Organic, Inorganic and Integrated Production Systems

Authors: Sidramappa Gaddnakeri, Lokanath Malligawad

Abstract:

Any kind of research on production technology of individual crop / commodity /breed has not brought sustainability or stability in crop production. The sustainability of the system over years depends on the maintenance of the soil health. Organic production system includes use of organic manures, biofertilizers, green manuring for nutrient supply and biopesticides for plant protection helps to sustain the productivity even under adverse climatic condition. The study was initiated to evaluate the performance of different cropping systems under organic, inorganic and integrated production systems at The Institute of Organic Farming, University of Agricultural Sciences, Dharwad (Karnataka-India) under ICAR Network Project on Organic Farming. The trial was conducted for four years (2013-14 to 2016-17) on fixed site. Five cropping systems viz., sequence cropping of cowpea – safflower, greengram– rabi sorghum, maize-bengalgram, sole cropping of pigeonpea and intercropping of groundnut + cotton were evaluated under six nutrient management practices. The nutrient management practices are NM1 (100% Organic farming (Organic manures equivalent to 100% N (Cereals/cotton) or 100% P2O5 (Legumes), NM2 (75% Organic farming (Organic manures equivalent to 75% N (Cereals/cotton) or 100% P2O5 (Legumes) + Cow urine and Vermi-wash application), NM3 (Integrated farming (50% Organic + 50% Inorganic nutrients, NM4 (Integrated farming (75% Organic + 25% Inorganic nutrients, NM5 (100% Inorganic farming (Recommended dose of inorganic fertilizers)) and NM6 (Recommended dose of inorganic fertilizers + Recommended rate of farm yard manure (FYM). Among the cropping systems evaluated for different production systems indicated that the Groundnut + Hybrid cotton (2:1) intercropping system found more remunerative as compared to Sole pigeonpea cropping system, Greengram-Sorghum sequence cropping system, Maize-Chickpea sequence cropping system and Cowpea-Safflower sequence cropping system irrespective of the production systems. Production practices involving application of recommended rates of fertilizers + recommended rates of organic manures (Farmyard manure) produced higher net monetary returns and higher B:C ratio as compared to integrated production system involving application of 50 % organics + 50 % inorganic and application of 75 % organics + 25 % inorganic and organic production system only Both the two organic production systems viz., 100 % Organic production system (Organic manures equivalent to 100 % N (Cereals/cotton) or 100 % P2O5 (Legumes) and 75 % Organic production system (Organic manures equivalent to 75 % N (Cereals) or 100 % P2O5 (Legumes) + Cow urine and Vermi-wash application) are found to be on par. Further, integrated production system involving application of organic manures and inorganic fertilizers found more beneficial over organic production systems.

Keywords: cropping systems, production systems, cowpea, safflower, greengram, pigeonpea, groundnut, cotton

Procedia PDF Downloads 164
492 Growth Response and Nutrient Utilization of African Mud Catfish Clarias gariepinus (Burchell, 1822) Fingerlings Fed Processed Macroalgae and Macroalgae-Based Formulated Feeds

Authors: A. O Amosu, A. M Hammed, G. W. Maneveldt, D. V. Robertson-Andersson

Abstract:

In aquaculture, feed utilization is an important factor affecting growth of the target species, and thus the success of the aquaculture operation. Growth of C. gariepinus fingerlings (weight 1.60 ± 0.05 g; length 4.50 ± 0.07cm) was monitored in a closed door hatchery for a period of 21 days in an experiment consisting of 4 treatments stocked at 20 fish/10 litre tanks, fed in triplicate twice daily (08:30, 17:30) at 4% body weight with weight changes recorded every 3 days. Treatments were: 1) FeedX; 2) 35% crude protein diet + non enriched Ulva spp (11.18% crude protein) (CD + NEU); 3) 35% crude protein diet + enriched Ulva spp (11.98% crude protein)(CD +EU) and 4) control diet of 35% crude protein (CD). The production of Ulva spp. biomass was cultivated for a period of 3 months. The result shows that the fish fed macroalgal enriched diet had good growth, though no significant difference (p > 0.05) was recorded amongst the weight gain, %weight gain, specific growth rates and nitrogen metabolism of diets CD + NEU, CD + EU and CD. Significant differences (p < 0.05), were, however, found in the food conversion ratio (FCR) and gross food conversion ratio (gFCR) among the fingerlings across all the different experimental diets. The best FCRs were recorded for control diet (0.79 ± 2.39) and the Ulva enriched (1.75 ± 1.34) diets. The results suggest that the fingerlings were able to utilize Ulva supplemented with control diet better than the FeedX. We have shown that Ulva supplemented diets are good substitutes for formulated and commercial feeds, with potential to be successful fish feed in aquaculture systems.

Keywords: aquaculture, clarias gariepinus, growth, macroalgae, nutrient, ulva

Procedia PDF Downloads 669
491 Azolla Pinnata as Promising Source for Animal Feed in India: An Experimental Study to Evaluate the Nutrient Enhancement Result of Feed

Authors: Roshni Raha, Karthikeyan S.

Abstract:

The world's largest livestock population resides in India. Existing strategies must be modified to increase the production of livestock and their by-products in order to meet the demands of the growing human population. Even though India leads the world in both milk production and the number of cows, average production is not very healthy and productive. This may be due to the animals' poor nutrition caused by a chronic under-availability of high-quality fodder and feed. This article explores Azolla pinnata to be a promising source to produce high-quality unconventional feed and fodder for effective livestock production and good quality breeding in India. This article is an exploratory study using a literature survey and experimentation analysis. In the realm of agri-biotechnology, azolla sp gained attention for helping farmers achieve sustainability, having minimal land requirements, and serving as a feed element that doesn't compete with human food sources. It has high methionine content, which is a good source of protein. It can be easily digested as the lignin content is low. It has high antioxidants and vitamins like beta carotene, vitamin A, and vitamin B12. Using this concept, the paper aims to investigate and develop a model of using azolla plants as a novel, high-potential feed source to combat the problems of low production and poor quality of animals in India. A representative sample of animal feed is collected where azolla is added. The sample is ground into a fine powder using mortar. PITC (phenylisothiocyanate) is added to derivatize the amino acids. The sample is analyzed using HPLC (High-Performance Liquid Chromatography) to measure the amino acids and monitor the protein content of the sample feed. The amino acid measurements from HPLC are converted to milligrams per gram of protein using the method of amino acid profiling via a set of calculations. The amino acid profile data is then obtained to validate the proximate results of nutrient enhancement of the composition of azolla in the sample. Based on the proximate composition of azolla meal, the enhancement results shown were higher compared to the standard values of normal fodder supplements indicating the feed to be much richer and denser in nutrient supply. Thus azolla fed sample proved to be a promising source for animal fodder. This would in turn lead to higher production and a good breed of animals that would help to meet the economic demands of the growing Indian population. Azolla plants have no side effects and can be considered as safe and effective to be immersed in the animal feed. One area of future research could begin with the upstream scaling strategy of azolla plants in India. This could involve introducing several bioreactor types for its commercial production. Since azolla sp has been proved in this paper as a promising source for high quality animal feed and fodder, large scale production of azolla plants will help to make the process much quicker, more efficient and easily accessible. Labor expenses will also be reduced by employing bioreactors for large-scale manufacturing.

Keywords: azolla, fodder, nutrient, protein

Procedia PDF Downloads 28
490 Mean Nutrient Intake and Nutrient Adequacy Ratio in India: Occurrence of Hidden Hunger in Indians

Authors: Abha Gupta, Deepak K. Mishra

Abstract:

The focus of food security studies in India has been on the adequacy of calories and its linkage with poverty level. India currently being undergoing a massive demographic and epidemiological transition has demonstrated a decline in average physical activity with improved mechanization and urbanization. Food consumption pattern is also changing with decreasing intake of coarse cereals and a marginal increase in the consumption of fruits, vegetables and meat products resulting into a nutrition transition in the country. However, deficiency of essential micronutrients such as vitamins and minerals is rampant despite their growing importance in fighting back with lifestyle and other modern diseases. The calorie driven studies can hardly tackle the complex problem of malnutrition. This paper fills these research lacuna and analyses mean intake of different major and micro-nutrients among different socio-economic groups and adequacy of these nutrients from recommended dietary allowance. For the purpose, a cross-sectional survey covering 304 households selected through proportional stratified random sampling was conducted in six villages of Aligarh district of the state of Uttar Pradesh, India. Data on quantity consumed of 74 food items grouped into 10 food categories with a recall period of seven days was collected from the households and converted into energy, protein, fat, carbohydrate, calcium, iron, thiamine, riboflavin, niacin and vitamin C using standard guidelines of National Institute of Nutrition. These converted nutrients were compared with recommended norms given by National Nutrition Monitoring Bureau. Per capita nutrient adequacy was calculated by dividing mean nutrient intake by the household size and then by comparing it with recommended norm. Findings demonstrate that source of both macro and micro-nutrients are mainly cereals followed by milk, edible oil and sugar items. Share of meat in providing essential nutrients is very low due to vegetarian diet. Vegetables, pulses, nuts, fruits and dry fruits are a poor source for most of the nutrients. Further analysis evinces that intake of most of the nutrients is higher than the recommended norm. Riboflavin is the only vitamin whose intake is less than the standard norm. Poor group, labour, small farmers, Muslims, scheduled caste demonstrate comparatively lower intake of all nutrients than their counterpart groups, though, they get enough macro and micro-nutrients significantly higher than the norm. One of the major reasons for higher intake of most of the nutrients across all socio-economic groups is higher consumption of monotonous diet based on cereals and milk. Most of the nutrients get their major share from cereals particularly wheat and milk intake. It can be concluded from the analysis that although there is adequate intake of most of the nutrients in the diet of rural population yet their source is mainly cereals and milk products depicting a monotonous diet. Hence, more efforts are needed to diversify the diet by giving more focus to the production of other food items particularly fruits, vegetables and pulse products. Awareness among the population, more accessibility and incorporating food items other than cereals in government social safety programmes are other measures to improve food security in India.

Keywords: hidden hunger, India, nutrients, recommended norm

Procedia PDF Downloads 284
489 Soil-Less Misting System: A Technology for Hybrid Seed Production in Tomato (Lycopersicon esculentum Mill.).

Authors: K. D. Rajatha, S. Rajendra Prasad, N. Nethra

Abstract:

Aeroponics is one of the advanced techniques to cultivate plants without soil with minimal water and nutrient consumption. This is the technology which could bring the vertical growth in agriculture. It is an eco-friendly approach widely used for commercial cultivation of vegetables to obtain the supreme quality and yield. In this context, to harvest potentiality of the technology, an experiment was designed to evaluate the suitability of the aeroponics method over the conventional method for hybrid seed production of tomato. The experiment was carried out under Completely Randomized Design with Factorial (FCRD) concept with three replications during the year 2017-18 at UAS, GKVK Bengaluru. Nutrients and pH were standardized; among the six different nutrient solutions, the crop performance was better in Hoagland’s solution with pH between 5.5-7. The results of the present study revealed that between TAG1F and TAG2F parental lines, TAG1F performed better in both the methods of seed production. Among the methods, aeroponics showed better performance for the quality parameters except for plant spread, due to better availability of nutrients and aeration, huge root biomass in aeroponics. Aeroponics method showed significantly higher plant length (124.9 cm), plant growth rate (0.669), seedling survival rate (100%), early flowering (27.5 days), highest fruit weight (121.5 g), 100 seed weight (0.373 g) and total seed yield plant⁻¹ (11.68 g) compared to the conventional method. By providing the best environment for plant growth, the genetically best possible plant could be grown, thus complete potentiality of the plant could be harvested. Hence, aeroponics could be a promising tool for quality and healthy hybrid seed production throughout the year within protected cultivation.

Keywords: aeroponics, Hoagland’s solution, hybrid seed production, Lycopersicon esculentum

Procedia PDF Downloads 77