Search results for: noise and health
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9643

Search results for: noise and health

9583 Frequency Offset Estimation Schemes Based on ML for OFDM Systems in Non-Gaussian Noise Environments

Authors: Keunhong Chae, Seokho Yoon

Abstract:

In this paper, frequency offset (FO) estimation schemes robust to the non-Gaussian noise environments are proposed for orthogonal frequency division multiplexing (OFDM) systems. First, a maximum-likelihood (ML) estimation scheme in non-Gaussian noise environments is proposed, and then, the complexity of the ML estimation scheme is reduced by employing a reduced set of candidate values. In numerical results, it is demonstrated that the proposed schemes provide a significant performance improvement over the conventional estimation scheme in non-Gaussian noise environments while maintaining the performance similar to the estimation performance in Gaussian noise environments.

Keywords: frequency offset estimation, maximum-likelihood, non-Gaussian noise environment, OFDM, training symbol

Procedia PDF Downloads 323
9582 Thermal Radiation and Noise Safety Assessment of an Offshore Platform Flare Stack as Sudden Emergency Relief Takes Place

Authors: Lai Xuejiang, Huang Li, Yang Yi

Abstract:

To study the potential hazards of the sudden emergency relief of flare stack, the thermal radiation and noise calculation of flare stack is carried out by using Flaresim program 2.0. Thermal radiation and noise analysis should be considered as the sudden emergency relief takes place. According to the Flaresim software simulation results, the thermal radiation and noise meet the requirement.

Keywords: flare stack, thermal radiation, safety assessment, noise

Procedia PDF Downloads 324
9581 A Study on the Improvement of Mobile Device Call Buzz Noise Caused by Audio Frequency Ground Bounce

Authors: Jangje Park, So Young Kim

Abstract:

The market demand for audio quality in mobile devices continues to increase, and audible buzz noise generated in time division communication is a chronic problem that goes against the market demand. In the case of time division type communication, the RF Power Amplifier (RF PA) is driven at the audio frequency cycle, and it makes various influences on the audio signal. In this paper, we measured the ground bounce noise generated by the peak current flowing through the ground network in the RF PA with the audio frequency; it was confirmed that the noise is the cause of the audible buzz noise during a call. In addition, a grounding method of the microphone device that can improve the buzzing noise was proposed. Considering that the level of the audio signal generated by the microphone device is -38dBV based on 94dB Sound Pressure Level (SPL), even ground bounce noise of several hundred uV will fall within the range of audible noise if it is induced by the audio amplifier. Through the grounding method of the microphone device proposed in this paper, it was confirmed that the audible buzz noise power density at the RF PA driving frequency was improved by more than 5dB under the conditions of the Printed Circuit Board (PCB) used in the experiment. A fundamental improvement method was presented regarding the buzzing noise during a mobile phone call.

Keywords: audio frequency, buzz noise, ground bounce, microphone grounding

Procedia PDF Downloads 111
9580 Study the Effect of Leading-Edge Serration at Owl Wing Feathers on Flow-Induced Noise Generation

Authors: Suprabha Islam, Sifat Ullah Tanzil

Abstract:

During past few decades, being amazed by the excellent silent flight of owl, scientists have been trying to demystify the unique features of its wing feathers. Our present study is dedicated to taking our understanding further on this phenomenon. In this present study, a numerical investigation was performed to analyze how the shape of the leading-edge serration at owl wing feathers effects the flow-induced noise generation. For the analysis, an owl inspired single feather wing model was prepared for both with and without serrations at the leading edge. The serration profiles were taken at different positions of the vane length for a single feather. The broadband noise was studied to quantify the local contribution to the total acoustic power generated by the flow, where the results clearly showed the effect of serrations in reducing the noise generation. It was also clearly visible that the shape of the serration has a very strong influence on noise generation. The frequency spectrum of noise was also analyzed and a strong relation was found between the shape of the serration and the noise generation. It showed that the noise suppression is strongly influenced by the height to length ratio of the serration. With the increase in height to length ratio, the noise suppression is enhanced further.

Keywords: aeroacoustics, aerodynamic, biomimetics, serrations

Procedia PDF Downloads 141
9579 Design Optimization of Chevron Nozzles for Jet Noise Reduction

Authors: E. Manikandan, C. Chilambarasan, M. Sulthan Ariff Rahman, S. Kanagaraj, V. R. Sanal Kumar

Abstract:

The noise regulations around the major airports and rocket launching stations due to the environmental concern have made jet noise a crucial problem in the present day aero-acoustics research. The three main acoustic sources in jet nozzles are aerodynamics noise, noise from craft systems and engine and mechanical noise. Note that the majority of engine noise is due to the jet noise coming out from the exhaust nozzle. The previous studies reveal that the potential of chevron nozzles for aircraft engines noise reduction is promising owing to the fact that the jet noise continues to be the dominant noise component, especially during take-off. In this paper parametric analytical studies have been carried out for optimizing the number of chevron lobes, the lobe length and tip shape, and the level of penetration of the chevrons into the flow over a variety of flow conditions for various aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, SST k-ω turbulence model with enhanced wall functions. In the numerical study, a fully implicit finite volume scheme of the compressible, Navier–Stokes equations is employed. We inferred that the geometry optimization of an environmental friendly chevron nozzle with a suitable number of chevron lobes with aerodynamically efficient tip contours for facilitating silent exit flow will enable a commendable sound reduction without much thrust penalty while comparing with the conventional supersonic nozzles with same area ratio.

Keywords: chevron nozzle, jet acoustic level, jet noise suppression, shape optimization of chevron nozzles

Procedia PDF Downloads 288
9578 A New Computational Tool for Noise Prediction of Rotating Surfaces (FACT)

Authors: Ana Vieira, Fernando Lau, João Pedro Mortágua, Luís Cruz, Rui Santos

Abstract:

The air transport impact on environment is more than ever a limitative obstacle to the aeronautical industry continuous growth. Over the last decades, considerable effort has been carried out in order to obtain quieter aircraft solutions, whether by changing the original design or investigating more silent maneuvers. The noise propagated by rotating surfaces is one of the most important sources of annoyance, being present in most aerial vehicles. Bearing this is mind, CEIIA developed a new computational chain for noise prediction with in-house software tools to obtain solutions in relatively short time without using excessive computer resources. This work is based on the new acoustic tool, which aims to predict the rotor noise generated during steady and maneuvering flight, making use of the flexibility of the C language and the advantages of GPU programming in terms of velocity. The acoustic tool is based in the Formulation 1A of Farassat, capable of predicting two important types of noise: the loading and thickness noise. The present work describes the most important features of the acoustic tool, presenting its most relevant results and framework analyses for helicopters and UAV quadrotors.

Keywords: rotor noise, acoustic tool, GPU Programming, UAV noise

Procedia PDF Downloads 372
9577 Characterization of the in 0.53 Ga 0.47 as n+nn+ Photodetectors

Authors: Fatima Zohra Mahi, Luca Varani

Abstract:

We present an analytical model for the calculation of the sensitivity, the spectral current noise and the detectivity for an optically illuminated In0.53Ga0.47As n+nn+ diode. The photocurrent due to the excess carrier is obtained by solving the continuity equation. Moreover, the current noise level is evaluated at room temperature and under a constant voltage applied between the diode terminals. The analytical calculation of the current noise in the n+nn+ structure is developed. The responsivity and the detectivity are discussed as functions of the doping concentrations and the emitter layer thickness in one-dimensional homogeneous n+nn+ structure.

Keywords: detectivity, photodetectors, continuity equation, current noise

Procedia PDF Downloads 612
9576 Coexistence of Two Different Types of Intermittency near the Boundary of Phase Synchronization in the Presence of Noise

Authors: Olga I. Moskalenko, Maksim O. Zhuravlev, Alexey A. Koronovskii, Alexander E. Hramov

Abstract:

Intermittent behavior near the boundary of phase synchronization in the presence of noise is studied. In certain range of the coupling parameter and noise intensity the intermittency of eyelet and ring intermittencies is shown to take place. Main results are illustrated using the example of two unidirectionally coupled Rössler systems. Similar behavior is shown to take place in two hydrodynamical models of Pierce diode coupled unidirectionally.

Keywords: chaotic oscillators, phase synchronization, noise, intermittency of intermittencies

Procedia PDF Downloads 594
9575 Speckle Noise Reduction Using Anisotropic Filter Based on Wavelets

Authors: Kritika Bansal, Akwinder Kaur, Shruti Gujral

Abstract:

In this paper, the approach of denoising is solved by using a new hybrid technique which associates the different denoising methods. Wavelet thresholding and anisotropic diffusion filter are the two different filters in our hybrid techniques. The Wavelet thresholding removes the noise by removing the high frequency components with lesser edge preservation, whereas an anisotropic diffusion filters is based on partial differential equation, (PDE) to remove the speckle noise. This PDE approach is used to preserve the edges and provides better smoothing. So our new method proposes a combination of these two filtering methods which performs better results in terms of peak signal to noise ratio (PSNR), coefficient of correlation (COC) and equivalent no of looks (ENL).

Keywords: denoising, anisotropic diffusion filter, multiplicative noise, speckle, wavelets

Procedia PDF Downloads 486
9574 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series

Authors: Mohammad H. Fattahi

Abstract:

Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. The noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.

Keywords: chaotic behavior, wavelet, noise reduction, river flow

Procedia PDF Downloads 437
9573 Selection of Landscape Plant Species: A Experiment of Noise Reduction by Vibration of Plant Leaves

Authors: Li Mengmeng, Kang Jian

Abstract:

With the rapid development of the city, the noise pollution becomes more and more serious. Noise has seriously affected people's normal life, study and work. In addition, noise has seriously affected the city's ecological environment and the migration of birds. Therefore, it is urgent to control the noise. As one of natural noise-reducing materials, plants have been paid more and more attention. In urban landscape design, it is very important to choose plant species with good noise reduction effect to the sustainable development of urban ecology. The aim of this paper is to find out the characteristics of the plant with good noise reduction effect and apply it in urban landscape design. This study investigated the vibration of leaves of six plant species in a sound field using a Keyence (IG-1000/CCD) Laser Micrometer. The results of the experiments showed that the vibration speed of plant leaves increased obviously after being stimulated by sound source, about 5-10 times. In addition, when driven by the same sound, the speed of all leaves varied with the difference of leaf thickness, leaf size and leaf mass. The speed of all leaves would increase with the increase of leaf size and leaf mass, while those would decrease with the increase of leaf thickness.

Keywords: landscape design, leaf vibration , noise attenuation, plants configuration

Procedia PDF Downloads 196
9572 Estimation of Noise Barriers for Arterial Roads of Delhi

Authors: Sourabh Jain, Parul Madan

Abstract:

Traffic noise pollution has become a challenging problem for all metro cities of India due to rapid urbanization, growing population and rising number of vehicles and transport development. In Delhi the prime source of noise pollution is vehicular traffic. In Delhi it is found that the ambient noise level (Leq) is exceeding the standard permissible value at all the locations. Noise barriers or enclosures are definitely useful in obtaining effective deduction of traffic noise disturbances in urbanized areas. US’s Federal Highway Administration Model (FHWA) and Calculation of Road Traffic Noise (CORTN) of UK are used to develop spread sheets for noise prediction. Spread sheets are also developed for evaluating effectiveness of existing boundary walls abutting houses in mitigating noise, redesigning them as noise barriers. Study was also carried out to examine the changes in noise level due to designed noise barrier by using both models FHWA and CORTN respectively. During the collection of various data it is found that receivers are located far away from road at Rithala and Moolchand sites and hence extra barrier height needed to meet prescribed limits was less as seen from calculations and most of the noise diminishes by propagation effect.On the basis of overall study and data analysis, it is concluded that FHWA and CORTN models under estimate noise levels. FHWA model predicted noise levels with an average percentage error of -7.33 and CORTN predicted with an average percentage error of -8.5. It was observed that at all sites noise levels at receivers were exceeding the standard limit of 55 dB. It was seen from calculations that existing walls are reducing noise levels. Average noise reduction due to walls at Rithala was 7.41 dB and at Panchsheel was 7.20 dB and lower amount of noise reduction was observed at Friend colony which was only 5.88. It was observed from analysis that Friends colony sites need much greater height of barrier. This was because of residential buildings abutting the road. At friends colony great amount of traffic was observed since it is national highway. At this site diminishing of noise due to propagation effect was very less.As FHWA and CORTN models were developed in excel programme, it eliminates laborious calculations of noise. There was no reflection correction in FHWA models as like in CORTN model.

Keywords: IFHWA, CORTN, Noise Sources, Noise Barriers

Procedia PDF Downloads 104
9571 Prediction of Trailing-Edge Noise under Adverse-Pressure Gradient Effect

Authors: Li Chen

Abstract:

For an aerofoil or hydrofoil in high Reynolds number flows, broadband noise is generated efficiently as the result of the turbulence convecting over the trailing edge. This noise can be related to the surface pressure fluctuations, which can be predicted by either CFD or empirical models. However, in reality, the aerofoil or hydrofoil often operates at an angle of attack. Under this situation, the flow is subjected to an Adverse-Pressure-Gradient (APG), and as a result, a flow separation may occur. This study is to assess trailing-edge noise models for such flows. In the present work, the trailing-edge noise from a 2D airfoil at 6 degree of angle of attach is investigated. Under this condition, the flow is experiencing a strong APG, and the flow separation occurs. The flow over the airfoil with a chord of 300 mm, equivalent to a Reynold Number 4x10⁵, is simulated using RANS with the SST k-ɛ turbulent model. The predicted surface pressure fluctuations are compared with the published experimental data and empirical models, and show a good agreement with the experimental data. The effect of the APG on the trailing edge noise is discussed, and the associated trailing edge noise is calculated.

Keywords: aero-acoustics, adverse-pressure gradient, computational fluid dynamics, trailing-edge noise

Procedia PDF Downloads 310
9570 Evaluation of Simulated Noise Levels through the Analysis of Temperature and Rainfall: A Case Study of Nairobi Central Business District

Authors: Emmanuel Yussuf, John Muthama, John Ng'ang'A

Abstract:

There has been increasing noise levels all over the world in the last decade. Many factors contribute to this increase, which is causing health related effects to humans. Developing countries are not left out of the whole picture as they are still growing and advancing their development. Motor vehicles are increasing on urban roads; there is an increase in infrastructure due to the rising population, increasing number of industries to provide goods and so many other activities. All this activities lead to the high noise levels in cities. This study was conducted in Nairobi’s Central Business District (CBD) with the main objective of simulating noise levels in order to understand the noise exposed to the people within the urban area, in relation to weather parameters namely temperature, rainfall and wind field. The study was achieved using the Neighbourhood Proximity Model and Time Series Analysis, with data obtained from proxies/remotely-sensed from satellites, in order to establish the levels of noise exposed to which people of Nairobi CBD are exposed to. The findings showed that there is an increase in temperature (0.1°C per year) and a decrease in precipitation (40 mm per year), which in comparison to the noise levels in the area, are increasing. The study also found out that noise levels exposed to people in Nairobi CBD were roughly between 61 and 63 decibels and has been increasing, a level which is high and likely to cause adverse physical and psychological effects on the human body in which air temperature, precipitation and wind contribute so much in the spread of noise. As a noise reduction measure, the use of sound proof materials in buildings close to busy roads, implementation of strict laws to most emitting sources as well as further research on the study was recommended. The data used for this study ranged from the year 2000 to 2015, rainfall being in millimeters (mm), temperature in degrees Celsius (°C) and the urban form characteristics being in meters (m).

Keywords: simulation, noise exposure, weather, proxy

Procedia PDF Downloads 348
9569 The Prediction of Reflection Noise and Its Reduction by Shaped Noise Barriers

Authors: I. L. Kim, J. Y. Lee, A. K. Tekile

Abstract:

In consequence of the very high urbanization rate of Korea, the number of traffic noise damages in areas congested with population and facilities is steadily increasing. The current environmental noise levels data in major cities of the country show that the noise levels exceed the standards set for both day and night times. This research was about comparative analysis in search for optimal soundproof panel shape and design factor that can minimize sound reflection noise. In addition to the normal flat-type panel shape, the reflection noise reduction of swelling-type, combined swelling and curved-type, and screen-type were evaluated. The noise source model Nord 2000, which often provides abundant information compared to models for the similar purpose, was used in the study to determine the overall noise level. Based on vehicle categorization in Korea, the noise levels for varying frequency from different heights of the sound source (directivity heights of Harmonize model) have been calculated for simulation. Each simulation has been made using the ray-tracing method. The noise level has also been calculated using the noise prediction program called SoundPlan 7.2, for comparison. The noise level prediction was made at 15m (R1), 30 m (R2) and at middle of the road, 2m (R3) receiving the point. By designing the noise barriers by shape and running the prediction program by inserting the noise source on the 2nd lane to the noise barrier side, among the 6 lanes considered, the reflection noise slightly decreased or increased in all noise barriers. At R1, especially in the cases of the screen-type noise barriers, there was no reduction effect predicted in all conditions. However, the swelling-type showed a decrease of 0.7~1.2 dB at R1, performing the best reduction effect among the tested noise barriers. Compared to other forms of noise barriers, the swelling-type was thought to be the most suitable for reducing the reflection noise; however, since a slight increase was predicted at R2, further research based on a more sophisticated categorization of related design factors is necessary. Moreover, as swellings are difficult to produce and the size of the modules are smaller than other panels, it is challenging to install swelling-type noise barriers. If these problems are solved, its applicable region will not be limited to other types of noise barriers. Hence, when a swelling-type noise barrier is installed at a downtown region where the amount of traffic is increasing every day, it will both secure visibility through the transparent walls and diminish any noise pollution due to the reflection. Moreover, when decorated with shapes and design, noise barriers will achieve a visual attraction than a flat-type one and thus will alleviate any psychological hardships related to noise, other than the unique physical soundproofing functions of the soundproof panels.

Keywords: reflection noise, shaped noise barriers, sound proof panel, traffic noise

Procedia PDF Downloads 488
9568 Comparison of Methods for Detecting and Quantifying Amplitude Modulation of Wind Farm Noise

Authors: Phuc D. Nguyen, Kristy L. Hansen, Branko Zajamsek

Abstract:

The existence of special characteristics of wind farm noise such as amplitude modulation (AM) contributes significantly to annoyance, which could ultimately result in sleep disturbance and other adverse health effects for residents living near wind farms. In order to detect and quantify this phenomenon, several methods have been developed which can be separated into three types: time-domain, frequency-domain and hybrid methods. However, due to a lack of systematic validation of these methods, it is still difficult to select the best method for identifying AM. Furthermore, previous comparisons between AM methods have been predominantly qualitative or based on synthesised signals, which are not representative of the actual noise. In this study, a comparison between methods for detecting and quantifying AM has been carried out. The results are based on analysis of real noise data which were measured at a wind farm in South Australia. In order to evaluate the performance of these methods in terms of detecting AM, an approach has been developed to select the most successful method of AM detection. This approach uses a receiver operating characteristic (ROC) curve which is based on detection of AM in audio files by experts.

Keywords: amplitude modulation, wind farm noise, ROC curve

Procedia PDF Downloads 117
9567 Numerical Investigation on the Interior Wind Noise of a Passenger Car

Authors: Liu Ying-jie, Lu Wen-bo, Peng Cheng-jian

Abstract:

With the development of the automotive technology and electric vehicle, the contribution of the wind noise on the interior noise becomes the main source of noise. The main transfer path which the exterior excitation is transmitted through is the greenhouse panels and side windows. Simulating the wind noise transmitted into the vehicle accurately in the early development stage can be very challenging. The basic methodologies of this study were based on the Lighthill analogy; the exterior flow field around a passenger car was computed using unsteady Computational Fluid Dynamics (CFD) firstly and then a Finite Element Method (FEM) was used to compute the interior acoustic response. The major findings of this study include: 1) The Sound Pressure Level (SPL) response at driver’s ear locations is mainly induced by the turbulence pressure fluctuation; 2) Peaks were found over the full frequency range. It is found that the methodology used in this study could predict the interior wind noise induced by the exterior aerodynamic excitation in industry.

Keywords: wind noise, computational fluid dynamics, finite element method, passenger car

Procedia PDF Downloads 131
9566 Hearing Conservation Program for Vector Control Workers: Short-Term Outcomes from a Cluster-Randomized Controlled Trial

Authors: Rama Krishna Supramanian, Marzuki Isahak, Noran Naqiah Hairi

Abstract:

Noise-induced hearing loss (NIHL) is one of the highest recorded occupational diseases, despite being preventable. Hearing Conservation Program (HCP) is designed to protect workers hearing and prevent them from developing hearing impairment due to occupational noise exposures. However, there is still a lack of evidence regarding the effectiveness of this program. The purpose of this study was to determine the effectiveness of a Hearing Conservation Program (HCP) in preventing or reducing audiometric threshold changes among vector control workers. This study adopts a cluster randomized controlled trial study design, with district health offices as the unit of randomization. Nine district health offices were randomly selected and 183 vector control workers were randomized to intervention or control group. The intervention included a safety and health policy, noise exposure assessment, noise control, distribution of appropriate hearing protection devices, training and education program and audiometric testing. The control group only underwent audiometric testing. Audiometric threshold changes observed in the intervention group showed improvement in the hearing threshold level for all frequencies except 500 Hz and 8000 Hz for the left ear. The hearing threshold changes range from 1.4 dB to 5.2 dB with largest improvement at higher frequencies mainly 4000 Hz and 6000 Hz. Meanwhile for the right ear, the mean hearing threshold level remained similar at 4000 Hz and 6000 Hz after 3 months of intervention. The Hearing Conservation Program (HCP) is effective in preserving the hearing of vector control workers involved in fogging activity as well as increasing their knowledge, attitude and practice towards noise-induced hearing loss (NIHL).

Keywords: adult, hearing conservation program, noise-induced hearing loss, vector control worker

Procedia PDF Downloads 126
9565 A 1.8 GHz to 43 GHz Low Noise Amplifier with 4 dB Noise Figure in 0.1 µm Galium Arsenide Technology

Authors: Mantas Sakalas, Paulius Sakalas

Abstract:

This paper presents an analysis and design of a ultrawideband 1.8GHz to 43GHz Low Noise Amplifier (LNA) in 0.1 μm Galium Arsenide (GaAs) pseudomorphic High Electron Mobility Transistor (pHEMT) technology. The feedback based bandwidth extension techniques is analyzed and based on the outcome, a two stage LNA is designed. The impedance fine tuning is implemented by using Transmission Line (TL) structures. The measured performance shows a good agreement with simulation results and an outstanding wideband noise matching. The measured small signal gain was 12 dB, whereas a 3 dB gain flatness in range from 1.8 - 43 GHz was reached. The noise figure was below 4 dB almost all over the entire frequency band of 1.8GHz to 43GHz, the output power at 1 dB compression point was 6 dBm and the DC power consumption was 95 mW. To the best knowledge of the authors the designed LNA outperforms the State of the Art (SotA) reported LNA designs in terms of combined parameters of noise figure within the addressed ultra-wide 3 dB bandwidth, linearity and DC power consumption.

Keywords: feedback amplifiers, GaAs pHEMT, monolithic microwave integrated circuit, LNA, noise matching

Procedia PDF Downloads 191
9564 Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response Under Sinusoidal Signal and White Noise Excitation

Authors: R. J. Chang

Abstract:

A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise is analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation.

Keywords: cyclostationary, duffing system, Gaussian linearization, sinusoidal, white noise

Procedia PDF Downloads 461
9563 Image Denoising Using Spatial Adaptive Mask Filter for Medical Images

Authors: R. Sumalatha, M. V. Subramanyam

Abstract:

In medical image processing the quality of the image is degraded in the presence of noise. Especially in ultra sound imaging and Magnetic resonance imaging the data was corrupted by signal dependent noise known as salt and pepper noise. Removal of noise from the medical images is a critical issue for researchers. In this paper, a new type of technique Adaptive Spatial Mask Filter (ASMF) has been proposed. The proposed filter is used to increase the quality of MRI and ultra sound images. Experimental results show that the proposed filter outperforms the implementation of mean, median, adaptive median filters in terms of MSE and PSNR.

Keywords: salt and pepper noise, ASMF, PSNR, MSE

Procedia PDF Downloads 411
9562 Reduction of Impulsive Noise in OFDM System using Adaptive Algorithm

Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh

Abstract:

The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.

Keywords: OFDM, impulsive noise, SSRLS, BER

Procedia PDF Downloads 429
9561 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement

Authors: Pogula Rakesh, T. Kishore Kumar

Abstract:

Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids, and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB, and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR), and SNR loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.

Keywords: adaptive filter, adaptive noise canceller, mean squared error, noise reduction, NLMS, RLS, SNR, SNR loss

Procedia PDF Downloads 448
9560 Chaotic Sequence Noise Reduction and Chaotic Recognition Rate Improvement Based on Improved Local Geometric Projection

Authors: Rubin Dan, Xingcai Wang, Ziyang Chen

Abstract:

A chaotic time series noise reduction method based on the fusion of the local projection method, wavelet transform, and particle swarm algorithm (referred to as the LW-PSO method) is proposed to address the problem of false recognition due to noise in the recognition process of chaotic time series containing noise. The method first uses phase space reconstruction to recover the original dynamical system characteristics and removes the noise subspace by selecting the neighborhood radius; then it uses wavelet transform to remove D1-D3 high-frequency components to maximize the retention of signal information while least-squares optimization is performed by the particle swarm algorithm. The Lorenz system containing 30% Gaussian white noise is simulated and verified, and the phase space, SNR value, RMSE value, and K value of the 0-1 test method before and after noise reduction of the Schreiber method, local projection method, wavelet transform method, and LW-PSO method are compared and analyzed, which proves that the LW-PSO method has a better noise reduction effect compared with the other three common methods. The method is also applied to the classical system to evaluate the noise reduction effect of the four methods and the original system identification effect, which further verifies the superiority of the LW-PSO method. Finally, it is applied to the Chengdu rainfall chaotic sequence for research, and the results prove that the LW-PSO method can effectively reduce the noise and improve the chaos recognition rate.

Keywords: Schreiber noise reduction, wavelet transform, particle swarm optimization, 0-1 test method, chaotic sequence denoising

Procedia PDF Downloads 164
9559 CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet

Authors: Amir Moslemi, Amir movafeghi, Shahab Moradi

Abstract:

One of the most important challenging factors in medical images is nominated as noise.Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjected to low quality due to the noise. The quality of CT images is dependent on the absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on the purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete wavelet transform(DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result in good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim).

Keywords: computed tomography (CT), noise reduction, curve-let, contour-let, signal to noise peak-peak ratio (PSNR), structure similarity (Ssim), absorbed dose to patient (ADP)

Procedia PDF Downloads 416
9558 The Effect of Damping Treatment for Noise Control on Offshore Platforms Using Statistical Energy Analysis

Authors: Ji Xi, Cheng Song Chin, Ehsan Mesbahi

Abstract:

Structure-borne noise is an important aspect of offshore platform sound field. It can be generated either directly by vibrating machineries induced mechanical force, indirectly by the excitation of structure or excitation by incident airborne noise. Therefore, limiting of the transmission of vibration energy throughout the offshore platform is the key to control the structure-borne noise. This is usually done by introducing damping treatment to the steel structures. Two types of damping treatment using on-board are presented. By conducting a statistical energy analysis (SEA) simulation on a jack-up rig, the noise level in the source room, the neighboring rooms, and remote living quarter cabins are compared before and after the damping treatments been applied. The results demonstrated that, in the source neighboring room and living quarter area, there is a significant noise reduction with the damping treatment applied, whereas in the source room where air-borne sound predominates that of structure-borne sound, the impact is not obvious. The subsequent optimization design of damping treatment in the offshore platform can be made which enable acoustic professionals to implement noise control during the design stage for offshore crews’ hearing protection and habitant comfortability.

Keywords: statistical energy analysis, damping treatment, noise control, offshore platform

Procedia PDF Downloads 533
9557 Association between Noise Levels, Particulate Matter Concentrations and Traffic Intensities in a Near-Highway Urban Area

Authors: Mohammad Javad Afroughi, Vahid Hosseini, Jason S. Olfert

Abstract:

Both traffic-generated particles and noise have been associated with the development of cardiovascular diseases, especially in near-highway environments. Although noise and particulate matters (PM) have different mechanisms of dispersion, sharing the same emission source in urban areas (road traffics) can result in a similar degree of variability in their levels. This study investigated the temporal variation of and correlation between noise levels, PM concentrations and traffic intensities near a major highway in Tehran, Iran. Tehran particulate concentration is highly influenced by road traffic. Additionally, Tehran ultrafine particles (UFP, PM<0.1 µm) are mostly emitted from combustion processes of motor vehicles. This gives a high possibility of a strong association between traffic-related noise and UFP in near-highway environments of this megacity. Hourly average of equivalent continuous sound pressure level (Leq), total number concentration of UFPs, mass concentration of PM2.5 and PM10, as well as traffic count and speed were simultaneously measured over a period of three days in winter. Additionally, meteorological data including temperature, relative humidity, wind speed and direction were collected in a weather station, located 3 km from the monitoring site. Noise levels showed relatively low temporal variability in near-highway environments compared to PM concentrations. Hourly average of Leq ranged from 63.8 to 69.9 dB(A) (mean ~ 68 dB(A)), while hourly concentration of particles varied from 30,800 to 108,800 cm-3 for UFP (mean ~ 64,500 cm-3), 41 to 75 µg m-3 for PM2.5 (mean ~ 53 µg m-3), and 62 to 112 µg m-3 for PM10 (mean ~ 88 µg m-3). The Pearson correlation coefficient revealed strong relationship between noise and UFP (r ~ 0.61) overall. Under downwind conditions, UFP number concentration showed the strongest association with noise level (r ~ 0.63). The coefficient decreased to a lesser degree under upwind conditions (r ~ 0.24) due to the significant role of wind and humidity in UFP dynamics. Furthermore, PM2.5 and PM10 correlated moderately with noise (r ~ 0.52 and 0.44 respectively). In general, traffic counts were more strongly associated with noise and PM compared to traffic speeds. It was concluded that noise level combined with meteorological data can be used as a proxy to estimate PM concentrations (specifically UFP number concentration) in near-highway environments of Tehran. However, it is important to measure joint variability of noise and particles to study their health effects in epidemiological studies.

Keywords: noise, particulate matter, PM10, PM2.5, ultrafine particle

Procedia PDF Downloads 164
9556 Numerical Simulations of Acoustic Imaging in Hydrodynamic Tunnel with Model Adaptation and Boundary Layer Noise Reduction

Authors: Sylvain Amailland, Jean-Hugh Thomas, Charles Pézerat, Romuald Boucheron, Jean-Claude Pascal

Abstract:

The noise requirements for naval and research vessels have seen an increasing demand for quieter ships in order to fulfil current regulations and to reduce the effects on marine life. Hence, new methods dedicated to the characterization of propeller noise, which is the main source of noise in the far-field, are needed. The study of cavitating propellers in closed-section is interesting for analyzing hydrodynamic performance but could involve significant difficulties for hydroacoustic study, especially due to reverberation and boundary layer noise in the tunnel. The aim of this paper is to present a numerical methodology for the identification of hydroacoustic sources on marine propellers using hydrophone arrays in a large hydrodynamic tunnel. The main difficulties are linked to the reverberation of the tunnel and the boundary layer noise that strongly reduce the signal-to-noise ratio. In this paper it is proposed to estimate the reflection coefficients using an inverse method and some reference transfer functions measured in the tunnel. This approach allows to reduce the uncertainties of the propagation model used in the inverse problem. In order to reduce the boundary layer noise, a cleaning algorithm taking advantage of the low rank and sparse structure of the cross-spectrum matrices of the acoustic and the boundary layer noise is presented. This approach allows to recover the acoustic signal even well under the boundary layer noise. The improvement brought by this method is visible on acoustic maps resulting from beamforming and DAMAS algorithms.

Keywords: acoustic imaging, boundary layer noise denoising, inverse problems, model adaptation

Procedia PDF Downloads 299
9555 Assessment of Urban Environmental Noise in Urban Habitat: A Spatial Temporal Study

Authors: Neha Pranav Kolhe, Harithapriya Vijaye, Arushi Kamle

Abstract:

The economic growth engines are urban regions. As the economy expands, so does the need for peace and quiet, and noise pollution is one of the important social and environmental issue. Health and wellbeing are at risk from environmental noise pollution. Because of urbanisation, population growth, and the consequent rise in the usage of increasingly potent, diverse, and highly mobile sources of noise, it is now more severe and pervasive than ever before, and it will only become worse. Additionally, it will expand as long as there is an increase in air, train, and highway traffic, which continue to be the main contributors of noise pollution. The current study will be conducted in two zones of class I city of central India (population range: 1 million–4 million). Total 56 measuring points were chosen to assess noise pollution. The first objective evaluates the noise pollution in various urban habitats determined as formal and informal settlement. It identifies the comparison of noise pollution within the settlements using T- Test analysis. The second objective assess the noise pollution in silent zones (as stated in Central Pollution Control Board) in a hierarchical way. It also assesses the noise pollution in the settlements and compares with prescribed permissible limits using class I sound level equipment. As appropriate indices, equivalent noise level on the (A) frequency weighting network, minimum sound pressure level and maximum sound pressure level were computed. The survey is conducted for a period of 1 week. Arc GIS is used to plot and map the temporal and spatial variability in urban settings. It is discovered that noise levels at most stations, particularly at heavily trafficked crossroads and subway stations, were significantly different and higher than acceptable limits and squares. The study highlights the vulnerable areas that should be considered while city planning. The study demands area level planning while preparing a development plan. It also demands attention to noise pollution from the perspective of residential and silent zones. The city planning in urban areas neglects the noise pollution assessment at city level. This contributes to that, irrespective of noise pollution guidelines, the ground reality is far away from its applicability. The result produces incompatible land use on a neighbourhood scale with respect to noise pollution. The study's final results will be useful to policymakers, architects and administrators in developing countries. This will be useful for noise pollution in urban habitat governance by efficient decision making and policy formulation to increase the profitability of these systems.

Keywords: noise pollution, formal settlements, informal settlements, built environment, silent zone, residential area

Procedia PDF Downloads 91
9554 Investigation of Flow Effects of Soundwaves Incident on an Airfoil

Authors: Thirsa Sherry, Utkarsh Shrivastav, Kannan B. T., Iynthezhuton K.

Abstract:

The field of aerodynamics and aeroacoustics remains one of the most poignant and well-researched fields of today. The current paper aims to investigate the predominant problem concerning the effects of noise of varying frequencies and waveforms on airflow surrounding an airfoil. Using a single speaker beneath the airfoil at different positions, we wish to simulate the effects of sound directly impinging on an airfoil and study its direct effects on airflow. We wish to study the same using smoke visualization methods with incense as our smoke-generating material in a variable-speed subsonic wind tunnel. Using frequencies and wavelengths similar to those of common engine noise, we wish to simulate real-world conditions of engine noise interfering with airflow and document the arising trends. These results will allow us to look into the real-world effects of noise on airflow and how to minimize them and expand on the possible relation between waveforms and noise. The parameters used in the study include frequency, Reynolds number, waveforms, angle of attack, and the effects on airflow when varying these parameters.

Keywords: engine noise, aeroacoustics, acoustic excitation, low speed

Procedia PDF Downloads 68