Search results for: nerve segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 671

Search results for: nerve segmentation

671 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images

Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez

Abstract:

Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.

Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking

Procedia PDF Downloads 107
670 Close Loop Controlled Current Nerve Locator

Authors: H. A. Alzomor, B. K. Ouda, A. M. Eldeib

Abstract:

Successful regional anesthesia depends upon precise location of the peripheral nerve or nerve plexus. Locating peripheral nerves is preferred to be done using nerve stimulation. In order to generate a nerve impulse by electrical means, a minimum threshold stimulus of current “rheobase” must be applied to the nerve. The technique depends on stimulating muscular twitching at a close distance to the nerve without actually touching it. Success rate of this operation depends on the accuracy of current intensity pulses used for stimulation. In this paper, we will discuss a circuit and algorithm for closed loop control for the current, theoretical analysis and test results and compare them with previous techniques.

Keywords: Close Loop Control (CLC), constant current, nerve locator, rheobase

Procedia PDF Downloads 253
669 A Nanofi Brous PHBV Tube with Schwann Cell as Artificial Nerve Graft Contributing to Rat Sciatic Nerve Regeneration across a 30-Mm Defect Bridge

Authors: Esmaeil Biazar

Abstract:

A nanofibrous PHBV nerve conduit has been used to evaluate its efficiency based on the promotion of nerve regeneration in rats. The designed conduits were investigated by physical, mechanical and microscopic analyses. The conduits were implanted into a 30-mm gap in the sciatic nerves of the rats. Four months after surgery, the regenerated nerves were evaluated by macroscopic assessments and histology. This polymeric conduit had sufficiently high mechanical properties to serve as a nerve guide. The results demonstrated that in the nanofibrous graft with cells, the sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. For the grafts especially the nanofibrous conduits with cells, muscle cells of gastrocnemius on the operated side were uniform in their size and structures. This study proves the feasibility of artificial conduit with Schwann cells for nerve regeneration by bridging a longer defect in a rat model.

Keywords: sciatic regeneration, Schwann cell, artificial conduit, nanofibrous PHBV, histological assessments

Procedia PDF Downloads 323
668 Segmenting 3D Optical Coherence Tomography Images Using a Kalman Filter

Authors: Deniz Guven, Wil Ward, Jinming Duan, Li Bai

Abstract:

Over the past two decades or so, Optical Coherence Tomography (OCT) has been used to diagnose retina and optic nerve diseases. The retinal nerve fibre layer, for example, is a powerful diagnostic marker for detecting and staging glaucoma. With the advances in optical imaging hardware, the adoption of OCT is now commonplace in clinics. More and more OCT images are being generated, and for these OCT images to have clinical applicability, accurate automated OCT image segmentation software is needed. Oct image segmentation is still an active research area, as OCT images are inherently noisy, with the multiplicative speckling noise. Simple edge detection algorithms are unsuitable for detecting retinal layer boundaries in OCT images. Intensity fluctuation, motion artefact, and the presence of blood vessels also decrease further OCT image quality. In this paper, we introduce a new method for segmenting three-dimensional (3D) OCT images. This involves the use of a Kalman filter, which is commonly used in computer vision for object tracking. The Kalman filter is applied to the 3D OCT image volume to track the retinal layer boundaries through the slices within the volume and thus segmenting the 3D image. Specifically, after some pre-processing of the OCT images, points on the retinal layer boundaries in the first image are identified, and curve fitting is applied to them such that the layer boundaries can be represented by the coefficients of the curve equations. These coefficients then form the state space for the Kalman Filter. The filter then produces an optimal estimate of the current state of the system by updating its previous state using the measurements available in the form of a feedback control loop. The results show that the algorithm can be used to segment the retinal layers in OCT images. One of the limitations of the current algorithm is that the curve representation of the retinal layer boundary does not work well when the layer boundary is split into two, e.g., at the optic nerve, the layer boundary split into two. This maybe resolved by using a different approach to representing the boundaries, such as b-splines or level sets. The use of a Kalman filter shows promise to developing accurate and effective 3D OCT segmentation methods.

Keywords: optical coherence tomography, image segmentation, Kalman filter, object tracking

Procedia PDF Downloads 482
667 Optic Nerve Sheath Measurement in Children with Head Trauma

Authors: Sabiha Sahin, Kursad Bora Carman, Coskun Yarar

Abstract:

Introduction: Measuring the diameter of the optic nerve sheath is a noninvasive and easy to use imaging technique to predict intracranial pressure in children and adults. The aim was to measure the diameter of the optic nerve sheath in pediatric head trauma. Methods: The study group consisted of 40 children with healthy and 40 patients with head trauma. Transorbital sonographic measurement of the optic nerve sheath diameter was performed. Conclusion: The mean diameters of the optic nerve sheath of right and left eyes were 0.408 ± 0.064 mm and 0.417 ± 0.065 mm, respectively, in the trauma group. These results were higher in patients than in control group. There was a negative correlation between optic nerve sheath diameters and Glasgow Coma Scales in patients with head trauma (p < 0.05). There was a positive correlation between optic nerve sheath diameters and positive CT findings, systolic blood pressure in patients with head trauma. The clinical status of the patients at admission, blood pH and lactate level were related to the optic nerve sheath diameter. Conclusion: Measuring the diameter of the optic nerve sheath is not an invasive technique and can be easily used to predict increased intracranial pressure and to prevent secondary brain injury.

Keywords: head trauma, intracranial pressure, optic nerve, sonography

Procedia PDF Downloads 159
666 A Polyimide Based Split-Ring Neural Interface Electrode for Neural Signal Recording

Authors: Ning Xue, Srinivas Merugu, Ignacio Delgado Martinez, Tao Sun, John Tsang, Shih-Cheng Yen

Abstract:

We have developed a polyimide based neural interface electrode to record nerve signals from the sciatic nerve of a rat. The neural interface electrode has a split-ring shape, with four protruding gold electrodes for recording, and two reference gold electrodes around the split-ring. The split-ring electrode can be opened up to encircle the sciatic nerve. The four electrodes can be bent to sit on top of the nerve and hold the device in position, while the split-ring frame remains flat. In comparison, while traditional cuff electrodes can only fit certain sizes of the nerve, the developed device can fit a variety of rat sciatic nerve dimensions from 0.6 mm to 1.0 mm, and adapt to the chronic changes in the nerve as the electrode tips are bendable. The electrochemical impedance spectroscopy measurement was conducted. The gold electrode impedance is on the order of 10 kΩ, showing excellent charge injection capacity to record neural signals.

Keywords: impedance, neural interface, split-ring electrode, neural signal recording

Procedia PDF Downloads 377
665 Analysis of Motor Nerve Conduction Velocity (MNCV) of Selected Nerves in Athletics

Authors: Jogbinder Singh Soodan, Ashok Kumar, Gobind Singh

Abstract:

Background: This study aims to describe the motor nerve conduction velocity of selected nerves of both the upper and lower extremities in athletes. Thirty high-level sprinters (100 mts and 200 mts) and thirty high level distance runners (3000 mts) were volunteered to participate in the study. Method: Motor nerve conduction velocities (MNCV) of radial and sural nerves were recorded with the help of computerized equipment, NEUROPERFECT (MEDICAID SYSTEMS, India), with standard techniques of supramaximal percutaneus stimulation. The anthropometric measurements taken were body height (cms), age (yrs) and body weight (kgs). The neurophysiological parameters taken were MNCV of radial nerve (upper extremity) and sural nerve (lower extremity) of both sides (i.e. dominant and non-dominant) of the body. The room temperature was maintained at 37 degree Celsius. Results: Significant differences in motor nerve conduction velocities were found between dominant and non-dominant limbs in each group. The MNCV of radial nerve was obtained was significantly higher in the sprinters than long distance runners. The MNCV of sural nerve recorded was significantly higher in sprinters as compared to distance runners. Conclusion: The motor nerve conduction velocity of radial nerve was found to be higher in sprinters as compared to the distance runners and also, the MNCV for sural nerve was found to be higher in sprinters as compared to distance runners. In case of sprinters, the MNCV of radial and sural nerves were higher in dominant limbs (i.e. arms and legs) of both sides of the body. But, in case of distance runners, the MNCV of radial and sural nerves is higher in non dominant limbs.

Keywords: motor nerve conduction velocity, radial nerve, sural nerve, sprinters

Procedia PDF Downloads 564
664 A Comparative Study of Medical Image Segmentation Methods for Tumor Detection

Authors: Mayssa Bensalah, Atef Boujelben, Mouna Baklouti, Mohamed Abid

Abstract:

Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.

Keywords: features extraction, image segmentation, medical images, tumor detection

Procedia PDF Downloads 168
663 Ulnar Nerve Changes Associated with Carpal Tunnel Syndrome and Effect on Median Ersus Ulnar Comparative Studies

Authors: Emmanuel K. Aziz Saba, Sarah S. El-Tawab

Abstract:

Objectives: Carpal tunnel syndrome (CTS) was found to be associated with high pressure within the Guyon’s canal. The aim of this study was to assess the involvement of sensory and/or motor ulnar nerve fibers in patients with CTS and whether this affects the accuracy of the median versus ulnar sensory and motor comparative tests. Patients and methods: The present study included 145 CTS hands and 71 asymptomatic control hands. Clinical examination was done for all patients. The following tests were done for the patients and control: (1) Sensory conduction studies: median nerve, ulnar nerve, dorsal ulnar cutaneous nerve and median versus ulnar digit (D) four sensory comparative study; (2) Motor conduction studies: median nerve, ulnar nerve and median versus ulnar motor comparative study. Results: There were no statistically significant differences between patients and control group as regards parameters of ulnar motor study and dorsal ulnar cutaneous sensory conduction study. It was found that 17 CTS hands (11.7%) had ulnar sensory abnormalities in 17 different patients. The median versus ulnar sensory and motor comparative studies were abnormal among all these 17 CTS hands. There were statistically significant negative correlations between median motor latency and both ulnar sensory amplitudes recording D5 and D4. There were statistically significant positive correlations between median sensory conduction velocity and both ulnar sensory nerve action potential amplitude recording D5 and D4. Conclusions: There is ulnar sensory nerve abnormality among CTS patients. This abnormality affects the amplitude of ulnar sensory nerve action potential. The presence of abnormalities in ulnar nerve occurs in moderate and severe degrees of CTS. This does not affect the median versus ulnar sensory and motor comparative tests accuracy and validity for use in electrophysiological diagnosis of CTS.

Keywords: carpal tunnel syndrome, ulnar nerve, median nerve, median versus ulnar comparative study, dorsal ulnar cutaneous nerve

Procedia PDF Downloads 567
662 Ulnar Nerve Changes Associated with Carpal Tunnel Syndrome Not Affecting Median versus Ulnar Comparative Studies

Authors: Emmanuel Kamal Aziz Saba, Sarah Sayed El-Tawab

Abstract:

The present study was conducted to assess the involvement of ulnar sensory and/or motor nerve fibers in patients with carpal tunnel syndrome (CTS) and whether this affects the accuracy of the median versus ulnar comparative tests. The present study included 145 CTS hands and 71 asymptomatic control hands. Clinical examination was done. The following tests were done: Sensory conduction studies: median, ulnar and dorsal ulnar cutaneous nerves; and median versus ulnar digit (D) four sensory comparative study; and motor conduction studies: median nerve, ulnar nerve and median versus ulnar motor comparative study. It was found that 17 CTS hands (11.7%) had ulnar sensory abnormalities in 17 different patients. The median versus ulnar sensory and motor comparative studies were abnormal among all these 17 CTS hands. There were significant negative correlations between median motor latency and both ulnar sensory amplitudes recording D5 and D4. In conclusion, there is ulnar sensory nerve abnormality among CTS patients. This abnormality affects the amplitude of ulnar sensory nerve action potential. This does not affect the median versus ulnar sensory and motor comparative tests accuracy for use in CTS.

Keywords: median nerve, motor comparative study, sensory comparative study, ulnar nerve

Procedia PDF Downloads 429
661 Modeling of Radiofrequency Nerve Lesioning in Inhomogeneous Media

Authors: Nour Ismail, Sahar El Kardawy, Bassant Badwy

Abstract:

Radiofrequency (RF) lesioning of nerves have been commonly used to alleviate chronic pain, where RF current preventing transmission of pain signals through the nerve by heating the nerve causing the pain. There are some factors that affect the temperature distribution and the nerve lesion size, one of these factors is the inhomogeneities in the tissue medium. Our objective is to calculate the temperature distribution and the nerve lesion size in a nonhomogenous medium surrounding the RF electrode. A two 3-D finite element models are used to compare the temperature distribution in the homogeneous and nonhomogeneous medium. Also the effect of temperature-dependent electric conductivity on maximum temperature and lesion size is observed. Results show that the presence of a nonhomogeneous medium around the RF electrode has a valuable effect on the temperature distribution and lesion size. The dependency of electric conductivity on tissue temperature increased lesion size.

Keywords: finite element model, nerve lesioning, pain relief, radiofrequency lesion

Procedia PDF Downloads 417
660 Early Detection of Neuropathy in Leprosy-Comparing Clinical Tests with Nerve Conduction Study

Authors: Suchana Marahatta, Sabina Bhattarai, Bishnu Hari Paudel, Dilip Thakur

Abstract:

Background: Every year thousands of patients develop nerve damage and disabilities as a result of leprosy which can be prevented by early detection and treatment. So, early detection and treatment of nerve function impairment is of paramount importance in leprosy. Objectives: To assess the electrophysiological pattern of the peripheral nerves in leprosy patients and to compare it with clinical assessment tools. Materials and Methods: In this comparative cross-sectional study, 74 newly diagnosed leprosy patients without reaction were enrolled. They underwent thorough evaluation for peripheral nerve function impairment using clinical tests [i.e. nerve palpation (NP), monofilament (MF) testing, voluntary muscle testing (VMT)] and nerve conduction study (NCS). Clinical findings were compared with that of NCS using SPSS version 11.5. Results: NCS was impaired in 43.24% of leprosy patient at the baseline. Among them, sensory NCS was impaired in more patients (32.4%) in comparison to motor NCS (20.3%). NP, MF, and VMT were impaired in 58.1%, 25.7%, and 9.4% of the patients, respectively. Maximum concordance of monofilament testing and sensory NCS was found for sural nerve (14.7%). Likewise, the concordance of motor NP and motor NCS was the maximum for ulnar nerve (14.9%). When individual parameters of the NCS were considered, amplitude was found to be the most frequently affected parameter for both sensory and motor NCS. It was impaired in 100% of cases with abnormal NCS findings. Conclusion: Since there was no acceptable concordance between NCS findings and clinical findings, we should consider NCS whenever feasible for early detection of neuropathy in leprosy. The amplitude of both sensory nerve action potential (SNAP) and compound nerve action potential (CAMP) could be important determinants of the abnormal NCS if supported by further studies.

Keywords: leprosy, nerve function impairment, neuropathy, nerve conduction study

Procedia PDF Downloads 319
659 Toward Automatic Chest CT Image Segmentation

Authors: Angely Sim Jia Wun, Sasa Arsovski

Abstract:

Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages.

Keywords: lung segmentation, binary masks, U-Net, medical software tools

Procedia PDF Downloads 98
658 A Product-Specific/Unobservable Approach to Segmentation for a Value Expressive Credit Card Service

Authors: Manfred F. Maute, Olga Naumenko, Raymond T. Kong

Abstract:

Using data from a nationally representative financial panel of Canadian households, this study develops a psychographic segmentation of the customers of a value-expressive credit card service and tests for effects on relational response differences. The variety of segments elicited by agglomerative and k means clustering and the familiar profiles of individual clusters suggest that the face validity of the psychographic segmentation was quite high. Segmentation had a significant effect on customer satisfaction and relationship depth. However, when socio-demographic characteristics like household size and income were accounted for in the psychographic segmentation, the effect on relational response differences was magnified threefold. Implications for the segmentation of financial services markets are considered.

Keywords: customer satisfaction, financial services, psychographics, response differences, segmentation

Procedia PDF Downloads 334
657 Management of Facial Nerve Palsy Following Physiotherapy

Authors: Bassam Band, Simon Freeman, Rohan Munir, Hisham Band

Abstract:

Objective: To determine efficacy of facial physiotherapy provided for patients with facial nerve palsy. Design: Retrospective study Subjects: 54 patients diagnosed with Facial nerve palsy were included in the study after they met the selection criteria including unilateral facial paralysis and start of therapy twelve months after the onset of facial nerve palsy. Interventions: Patients received the treatment offered at a facial physiotherapy clinic consisting of: Trophic electrical stimulation, surface electromyography with biofeedback, neuromuscular re-education and myofascial release. Main measures: The Sunnybrook facial grading scale was used to evaluate the severity of facial paralysis. Results: This study demonstrated the positive impact of physiotherapy for patient with facial nerve palsy with improvement of 24.2% on the Sunnybrook facial grading score from a mean baseline of 34.2% to 58.2%. The greatest improvement looking at different causes was seen in patient who had reconstructive surgery post Acoustic Neuroma at 31.3%. Conclusion: The therapy shows significant improvement for patients with facial nerve palsy even when started 12 months post onset of paralysis across different causes. This highlights the benefit of this non-invasive technique in managing facial nerve paralysis and possibly preventing the need for surgery.

Keywords: facial nerve palsy, treatment, physiotherapy, bells palsy, acoustic neuroma, ramsey-hunt syndrome

Procedia PDF Downloads 535
656 A Comparison between Different Segmentation Techniques Used in Medical Imaging

Authors: Ibtihal D. Mustafa, Mawia A. Hassan

Abstract:

Tumor segmentation from MRI image is important part of medical images experts. This is particularly a challenging task because of the high assorting appearance of tumor tissue among different patients. MRI images are advance of medical imaging because it is give richer information about human soft tissue. There are different segmentation techniques to detect MRI brain tumor. In this paper, different procedure segmentation methods are used to segment brain tumors and compare the result of segmentations by using correlation and structural similarity index (SSIM) to analysis and see the best technique that could be applied to MRI image.

Keywords: MRI, segmentation, correlation, structural similarity

Procedia PDF Downloads 410
655 Multidimensional Sports Spectators Segmentation and Social Media Marketing

Authors: B. Schmid, C. Kexel, E. Djafarova

Abstract:

Understanding consumers is elementary for practitioners in marketing. Consumers of sports events, the sports spectators, are a particularly complex consumer crowd. In order to identify and define their profiles different segmentation approaches can be found in literature, one of them being multidimensional segmentation. Multidimensional segmentation models correspond to the broad range of attitudes, behaviours, motivations and beliefs of sports spectators, other than earlier models. Moreover, in sports there are some well-researched disciplines (e.g. football or North American sports) where consumer profiles and marketing strategies are elaborate and others where no research at all can be found. For example, there is almost no research on athletics spectators. This paper explores the current state of research on sports spectators segmentation. An in-depth literature review provides the framework for a spectators segmentation in athletics. On this basis, additional potential consumer groups and implications for social media marketing will be explored. The findings are the basis for further research.

Keywords: multidimensional segmentation, social media, sports marketing, sports spectators segmentation

Procedia PDF Downloads 307
654 Arabic Handwriting Recognition Using Local Approach

Authors: Mohammed Arif, Abdessalam Kifouche

Abstract:

Optical character recognition (OCR) has a main role in the present time. It's capable to solve many serious problems and simplify human activities. The OCR yields to 70's, since many solutions has been proposed, but unfortunately, it was supportive to nothing but Latin languages. This work proposes a system of recognition of an off-line Arabic handwriting. This system is based on a structural segmentation method and uses support vector machines (SVM) in the classification phase. We have presented a state of art of the characters segmentation methods, after that a view of the OCR area, also we will address the normalization problems we went through. After a comparison between the Arabic handwritten characters & the segmentation methods, we had introduced a contribution through a segmentation algorithm.

Keywords: OCR, segmentation, Arabic characters, PAW, post-processing, SVM

Procedia PDF Downloads 72
653 Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries

Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed

Abstract:

This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast.

Keywords: image segmentation, hierarchical analysis, 2-D histogram, classification

Procedia PDF Downloads 380
652 Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate

Authors: Neetu Manocha

Abstract:

Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR).

Keywords: satellite image, image segmentation, edge detection, error rate, MSE, PSNR, HIST-SI, linking, filtering, imp_HIST-SI

Procedia PDF Downloads 141
651 Multiple Variations of the Nerves of Gluteal Region and Their Clinical Implications, a Case Report

Authors: A. M. Prasad

Abstract:

Knowledge of variations of nerves of gluteal region is important for clinicians administering intramuscular injections, for orthopedic surgeons dealing with the hip surgeries, possibly for physiotherapists managing the painful conditions and paralysis of this region. Herein, we report multiple variations of the nerves of gluteal region. In the current case, the sciatic nerve was absent. The common peroneal and tibial nerves arose from sacral plexus and reached the gluteal region through greater sciatic foramen above and below piriformis respectively. The common peroneal nerve gave a muscular branch to the gluteus maximus. The inferior gluteal nerve and posterior cutaneous nerve of the thigh arose from a common trunk. The common trunk was formed by three roots. Upper and middle roots arose from sacral plexus and entered gluteal region through greater sciatic foramen respectively above and below piriformis. The lower root arose from the pudendal nerve and joined the common trunk. These variations were seen in the right gluteal region of an adult male cadaver aged approximately 70 years. Innervation of gluteus maximus by common peroneal nerve and presence of a common trunk of inferior gluteal nerve and posterior cutaneous nerve of the thigh make this case unique. The variant nerves may be subjected to iatrogenic injuries during surgical approach to the hip. They may also get compressed if there is a hypertrophy of the piriformis syndrome. Hence, the knowledge of these variations is of importance to clinicians, orthopedic surgeons and possibly for physiotherapists.

Keywords: gluteal region, multiple variations, nerve injury, sciatic nerve

Procedia PDF Downloads 346
650 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue

Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni

Abstract:

Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.

Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM

Procedia PDF Downloads 332
649 Peripheral Nerves Cross-Sectional Area for the Diagnosis of Diabetic Polyneuropathy: A Meta-Analysis of Ultrasonographic Measurements

Authors: Saeed Pourhassan, Nastaran Maghbouli

Abstract:

1) Background It has been hypothesized that, in individuals with diabetes mellitus, the peripheral nerve is swollen due to sorbitol over-accumulation. Additionally growing evidence supported electro diagnostic study of diabetes induced neuropathy as a method having some challenges. 2) Objective To examine the performance of sonographic cross-sectional area (CSA) measurements in the diagnosis of diabetic polyneuropathy (DPN). 3) Data Sources Electronic databases, comprising PubMed and EMBASE and Google scholar, were searched for the appropriate studies before Jan 1, 2020. 4) Study Selection Eleven trials comparing different peripheral nerve CSA measurements between participants with and without DPN were included. 5) Data Extraction Study design, participants' demographic characteristics, diagnostic reference of DPN, and evaluated peripheral nerves and methods of CSA measurement. 6) Data Synthesis Among different peripheral nerves, Tibial nerve diagnostic odds ratios pooled from five studies (713 participants) were 4.46 (95% CI, 0.35–8.57) and the largest one with P<0.0001, I²:64%. Median nerve CSA at wrist and mid-arm took second and third place with ORs= 2.82 (1.50-4.15), 2.02(0.26-3.77) respectively. The sensitivities and specificities pooled from two studies for Sural nerve were 0.78 (95% CI, 0.68–0.89), and 0.68 (95% CI, 0.53–0.74). Included studies for other nerves were limited to one study. The largest sensitivity was for Sural nerve and the largest specificity was for Tibial nerve. 7) Conclusions The peripheral nerves CSA measured by ultrasound imaging is useful for the diagnosis of DPN and is most significantly different between patients and participants without DPN at the Tibial nerve. Because the Tibial nerve CSA in healthy participants, at various locations, rarely exceeds 24 mm2, this value can be considered as a cutoff point for diagnosing DPN.

Keywords: diabetes, diagnosis, polyneuropathy, ultrasound

Procedia PDF Downloads 135
648 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision

Authors: Lianzhong Zhang, Chao Huang

Abstract:

Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.

Keywords: SAR, sea-land segmentation, deep learning, transformer

Procedia PDF Downloads 181
647 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset

Authors: Jaiden X. Schraut

Abstract:

Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.

Keywords: chest X-ray, deep learning, image segmentation, image classification

Procedia PDF Downloads 144
646 Digital Retinal Images: Background and Damaged Areas Segmentation

Authors: Eman A. Gani, Loay E. George, Faisel G. Mohammed, Kamal H. Sager

Abstract:

Digital retinal images are more appropriate for automatic screening of diabetic retinopathy systems. Unfortunately, a significant percentage of these images are poor quality that hinders further analysis due to many factors (such as patient movement, inadequate or non-uniform illumination, acquisition angle and retinal pigmentation). The retinal images of poor quality need to be enhanced before the extraction of features and abnormalities. So, the segmentation of retinal image is essential for this purpose, the segmentation is employed to smooth and strengthen image by separating the background and damaged areas from the overall image thus resulting in retinal image enhancement and less processing time. In this paper, methods for segmenting colored retinal image are proposed to improve the quality of retinal image diagnosis. The methods generate two segmentation masks; i.e., background segmentation mask for extracting the background area and poor quality mask for removing the noisy areas from the retinal image. The standard retinal image databases DIARETDB0, DIARETDB1, STARE, DRIVE and some images obtained from ophthalmologists have been used to test the validation of the proposed segmentation technique. Experimental results indicate the introduced methods are effective and can lead to high segmentation accuracy.

Keywords: retinal images, fundus images, diabetic retinopathy, background segmentation, damaged areas segmentation

Procedia PDF Downloads 403
645 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning

Authors: Yanwen Li, Shuguo Xie

Abstract:

In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.

Keywords: gradient image, segmentation and extract, mean-shift algorithm, dictionary iearning

Procedia PDF Downloads 267
644 Effective Texture Features for Segmented Mammogram Images Based on Multi-Region of Interest Segmentation Method

Authors: Ramayanam Suresh, A. Nagaraja Rao, B. Eswara Reddy

Abstract:

Texture features of mammogram images are useful for finding masses or cancer cases in mammography, which have been used by radiologists. Textures are greatly succeeded for segmented images rather than normal images. It is necessary to perform segmentation for exclusive specification of cancer and non-cancer regions separately. Region of interest (ROI) is most commonly used technique for mammogram segmentation. Limitation of this method is that it is unable to explore segmentation for large collection of mammogram images. Therefore, this paper is proposed multi-ROI segmentation for addressing the above limitation. It supports greatly in finding the best texture features of mammogram images. Experimental study demonstrates the effectiveness of proposed work using benchmarked images.

Keywords: texture features, region of interest, multi-ROI segmentation, benchmarked images

Procedia PDF Downloads 311
643 Review of the Software Used for 3D Volumetric Reconstruction of the Liver

Authors: P. Strakos, M. Jaros, T. Karasek, T. Kozubek, P. Vavra, T. Jonszta

Abstract:

In medical imaging, segmentation of different areas of human body like bones, organs, tissues, etc. is an important issue. Image segmentation allows isolating the object of interest for further processing that can lead for example to 3D model reconstruction of whole organs. Difficulty of this procedure varies from trivial for bones to quite difficult for organs like liver. The liver is being considered as one of the most difficult human body organ to segment. It is mainly for its complexity, shape versatility and proximity of other organs and tissues. Due to this facts usually substantial user effort has to be applied to obtain satisfactory results of the image segmentation. Process of image segmentation then deteriorates from automatic or semi-automatic to fairly manual one. In this paper, overview of selected available software applications that can handle semi-automatic image segmentation with further 3D volume reconstruction of human liver is presented. The applications are being evaluated based on the segmentation results of several consecutive DICOM images covering the abdominal area of the human body.

Keywords: image segmentation, semi-automatic, software, 3D volumetric reconstruction

Procedia PDF Downloads 290
642 Vision-Based Hand Segmentation Techniques for Human-Computer Interaction

Authors: M. Jebali, M. Jemni

Abstract:

This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image.

Keywords: HCI, sign language recognition, object tracking, hand segmentation

Procedia PDF Downloads 412