Search results for: motor vehicle growth
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8287

Search results for: motor vehicle growth

8077 Modeling of a Vehicle Wheel System having a Built-in Suspension Structure Consisted of Radially Deployed Colloidal Spokes between Hub and Rim

Authors: Barenten Suciu

Abstract:

In this work, by replacing the traditional solid spokes with colloidal spokes, a vehicle wheel with a built-in suspension structure is proposed. Following the background and description of the wheel system, firstly, a vibration model of the wheel equipped with colloidal spokes is proposed, and based on such model the equivalent damping coefficients and spring constants are identified. Then, a modified model of a quarter-vehicle moving on a rough pavement is proposed in order to estimate the transmissibility of vibration from the road roughness to vehicle body. In the end, the optimal design of the colloidal spokes and the optimum number of colloidal spokes are decided in order to minimize the transmissibility of vibration, i.e., to maximize the ride comfort of the vehicle.

Keywords: built-in suspension, colloidal spoke, intrinsic spring, vibration analysis, wheel

Procedia PDF Downloads 485
8076 Auto Rickshaw Impacts with Pedestrians: A Computational Analysis of Post-Collision Kinematics and Injury Mechanics

Authors: A. J. Al-Graitti, G. A. Khalid, P. Berthelson, A. Mason-Jones, R. Prabhu, M. D. Jones

Abstract:

Motor vehicle related pedestrian road traffic collisions are a major road safety challenge, since they are a leading cause of death and serious injury worldwide, contributing to a third of the global disease burden. The auto rickshaw, which is a common form of urban transport in many developing countries, plays a major transport role, both as a vehicle for hire and for private use. The most common auto rickshaws are quite unlike ‘typical’ four-wheel motor vehicle, being typically characterised by three wheels, a non-tilting sheet-metal body or open frame construction, a canvas roof and side curtains, a small drivers’ cabin, handlebar controls and a passenger space at the rear. Given the propensity, in developing countries, for auto rickshaws to be used in mixed cityscapes, where pedestrians and vehicles share the roadway, the potential for auto rickshaw impacts with pedestrians is relatively high. Whilst auto rickshaws are used in some Western countries, their limited number and spatial separation from pedestrian walkways, as a result of city planning, has not resulted in significant accident statistics. Thus, auto rickshaws have not been subject to the vehicle impact related pedestrian crash kinematic analyses and/or injury mechanics assessment, typically associated with motor vehicle development in Western Europe, North America and Japan. This study presents a parametric analysis of auto rickshaw related pedestrian impacts by computational simulation, using a Finite Element model of an auto rickshaw and an LS-DYNA 50th percentile male Hybrid III Anthropometric Test Device (dummy). Parametric variables include auto rickshaw impact velocity, auto rickshaw impact region (front, centre or offset) and relative pedestrian impact position (front, side and rear). The output data of each impact simulation was correlated against reported injury metrics, Head Injury Criterion (front, side and rear), Neck injury Criterion (front, side and rear), Abbreviated Injury Scale and reported risk level and adds greater understanding to the issue of auto rickshaw related pedestrian injury risk. The parametric analyses suggest that pedestrians are subject to a relatively high risk of injury during impacts with an auto rickshaw at velocities of 20 km/h or greater, which during some of the impact simulations may even risk fatalities. The present study provides valuable evidence for informing a series of recommendations and guidelines for making the auto rickshaw safer during collisions with pedestrians. Whilst it is acknowledged that the present research findings are based in the field of safety engineering and may over represent injury risk, compared to “Real World” accidents, many of the simulated interactions produced injury response values significantly greater than current threshold curves and thus, justify their inclusion in the study. To reduce the injury risk level and increase the safety of the auto rickshaw, there should be a reduction in the velocity of the auto rickshaw and, or, consideration of engineering solutions, such as retro fitting injury mitigation technologies to those auto rickshaw contact regions which are the subject of the greatest risk of producing pedestrian injury.

Keywords: auto rickshaw, finite element analysis, injury risk level, LS-DYNA, pedestrian impact

Procedia PDF Downloads 167
8075 Portable Glove Controlled Video Game for Hand Rehabilitation

Authors: Vinesh Janarthanan, Mohammad H. Rahman

Abstract:

There are numerous neurological conditions that may result in a loss of motor function. Such conditions may include cerebral palsy, Parkinson’s disease, stroke or multiple sclerosis. Due to impaired motor function, specifically in the hand and arm, living independently becomes tremendously more difficult. Rehabilitation programs are the main method to treat these kinds of disabled individuals. However, these programs require longtime commitment from the clinicians/therapists, demand person to person caring, and typically the treatment duration is usually very long. Aside from the treatment received from the therapist, the continuation of neuroplasticity at home is essential to maximizing development and restoring the biological function. To contribute in this area, we have researched and developed a portable and comfortable hand glove for fine motor skills rehabilitation. The glove provides interactive home-based therapy to engage the patient with simple games. The key to this treatment is the repetition of moving the hand and being capable of positioning the hand in various ways.

Keywords: home based, wearable sensors, glove, rehabilitation, motor function, video games

Procedia PDF Downloads 113
8074 Modelling of Induction Motor Including Skew Effect Using MWFA for Performance Improvement

Authors: M. Harir, A. Bendiabdellah, A. Chaouch, N. Benouzza

Abstract:

This paper deals with the modelling and simulation of the squirrel cage induction motor by taking into account all space harmonic components, as well as the introduction of the bars skew, in the calculation of the linear evolution of the magnetomotive force (MMF) between the slots extremities. The model used is based on multiple coupled circuits and the modified winding function approach (MWFA). The effect of skewing is included in the calculation of motors inductances with an axial asymmetry in the rotor. The simulation results in both time and spectral domains show the effectiveness and merits of the model and the error that may be caused if the skew of the bars is neglected.

Keywords: modeling, MWFA, skew effect, squirrel cage induction motor, spectral domain

Procedia PDF Downloads 408
8073 Direct Torque Control of Induction Motor Employing Teaching Learning Based Optimization

Authors: Anam Gopi

Abstract:

The undesired torque and flux ripple may occur in conventional direct torque control (DTC) induction motor drive. DTC can improve the system performance at low speeds by continuously tuning the regulator by adjusting the Kp, Ki values. In this Teaching Learning Based Optimization (TLBO) is proposed to adjust the parameters (Kp, Ki) of the speed controller in order to minimize torque ripple, flux ripple, and stator current distortion. The TLBO based PI controller has resulted is maintaining a constant speed of the motor irrespective of the load torque fluctuations.

Keywords: teaching learning based optimization, direct torque control, PI controller

Procedia PDF Downloads 557
8072 Review and Analysis of Parkinson's Tremor Genesis Using Mathematical Model

Authors: Pawan Kumar Gupta, Sumana Ghosh

Abstract:

Parkinson's Disease (PD) is a long-term neurodegenerative movement disorder of the central nervous system with vast symptoms related to the motor system. The common symptoms of PD are tremor, rigidity, bradykinesia/akinesia, and postural instability, but the clinical symptom includes other motor and non‐motor issues. The motor symptoms of the disease are consequence of death of the neurons in a region of the midbrain known as substantia nigra pars compacta, leading to decreased level of a neurotransmitter known as dopamine. The cause of this neuron death is not clearly known but involves formation of Lewy bodies, an abnormal aggregation or clumping of the protein alpha-synuclein in the neurons. Unfortunately, there is no cure for PD, and the management of this disease is challenging. Therefore, it is critical for a patient to be diagnosed at early stages. A limited choice of drugs is available to improve the symptoms, but those become less and less effective over time. Apart from that, with rapid growth in the field of science and technology, other methods such as multi-area brain stimulation are used to treat patients. In order to develop advanced techniques and to support drug development for treating PD patients, an accurate mathematical model is needed to explain the underlying relationship of dopamine secretion in the brain with the hand tremors. There has been a lot of effort in the past few decades on modeling PD tremors and treatment effects from a computational point of view. These models can effectively save time as well as the cost of drug development for the pharmaceutical industry and be helpful for selecting appropriate treatment mechanisms among all possible options. In this review paper, an effort is made to investigate studies on PD modeling and analysis and to highlight some of the key advances in the field over the past centuries with discussion on the current challenges.

Keywords: Parkinson's disease, deep brain stimulation, tremor, modeling

Procedia PDF Downloads 111
8071 Production of Alcohol from Sweet Potato

Authors: Abhishek S. Shete

Abstract:

There is nothing new in the use of alcohol made from root crops as a motor fuel. Alcohol is an excellent alternative motor fuel for petrol engines. The reason alcohol fuel has not been fully exploited is that, up until now; gasoline has been cheap, available, and easy to produce. However, nowadays, crude oil is getting scarce, and the historic price difference between alcohol and gasoline is getting narrower. Alcohol fuel can be an important part of the solution for Rwanda because there is tremendous scope to use bulk production of sweet potato into alcohol. The total sweet potato production in both seasons is found to be 1.607.296 tones/year. The average productivity of sweet potato in the country irrespective of seasons is found to be 8.9 tones/ha. If all of the available agricultural surplus were converted to ethanol, alcohol would supply less than 5% of motor fuel needs.

Keywords: root crops, sweet potato, surplus, alcohol

Procedia PDF Downloads 392
8070 Design of a Vehicle Door Structure Based on Finite Element Method

Authors: Tawanda Mushiri, Charles Mbohwa

Abstract:

The performance of door assembly is very significant for the vehicle design. In the present paper, the finite element method is used in the development processes of the door assembly. The stiffness, strength, modal characteristic, and anti-extrusion of a newly developed passenger vehicle door assembly are calculated and evaluated by several finite element analysis commercial software. The structural problems discovered by FE analysis have been modified and finally achieved the expected door structure performance target of this new vehicle. The issue in focus is to predict the performance of the door assembly by powerful finite element analysis software, and optimize the structure to meet the design targets. It is observed that this method can be used to forecast the performance of vehicle door efficiently when it’s designed. In order to reduce lead time and cost in the product development of vehicles more development will be made virtually.

Keywords: vehicle door, structure, strength, stiffness, modal characteristic, anti-extrusion, Finite Element Method

Procedia PDF Downloads 394
8069 Clinical Profile of Oral Sensory Abilities in Developmental Dysarthria

Authors: Swapna N., Deepthy Ann Joy

Abstract:

One of the major causes of communication disorders in pediatric population is Motor speech disorders. These disorders which affect the motor aspects of speech articulators can have an adverse effect on the communication abilities of children in their developmental period. The motor aspects are dependent on the sensory abilities of children with motor speech disorders. Hence, oral sensorimotor evaluation is an important component in the assessment of children with motor speech disorders. To our knowledge, the importance of oral motor examination has been well established, yet the sensory assessment of the oral structures has received less focus. One of the most common motor speech disorders seen in children is developmental dysarthria. The present study aimed to assess the orosensory aspects in children with developmental dysarthria (CDD). The control group consisted of 240 children in the age range of four and eight years which was divided into four subgroups (4-4.11, 5-5.11, 6-6.11 and 7-7.11 years). The experimental group consisted of 15 children who were diagnosed with developmental dysarthria secondary to cerebral palsy who belonged in the age range of four and eight years. The oro-sensory aspects such as response to touch, temperature, taste, texture, and orofacial sensitivity were evaluated and profiled. For this purpose, the authors used the ‘Oral Sensorimotor Evaluation Protocol- Children’ which was developed by the authors. The oro-sensory section of the protocol was administered and the clinical profile of oro-sensory abilities of typically developing children and CDD was obtained for each of the sensory abilities. The oro-sensory abilities of speech articulators such as lips, tongue, palate, jaw, and cheeks were assessed in detail and scored. The results indicated that experimental group had poorer scores on oro-sensory aspects such as light static touch, kinetic touch, deep pressure, vibration and double simultaneous touch. However, it was also found that the experimental group performed similar to control group on few aspects like temperature, taste, texture and orofacial sensitivity. Apart from the oro-motor abilities which has received utmost interest, the variation in the oro-sensory abilities of experimental and control group is highlighted and discussed in the present study. This emphasizes the need for assessing the oro-sensory abilities in children with developmental dysarthria in addition to oro-motor abilities.

Keywords: cerebral palsy, developmental dysarthria, orosensory assessment, touch

Procedia PDF Downloads 134
8068 New Suspension Mechanism for a Formula Car using Camber Thrust

Authors: Shinji Kajiwara

Abstract:

The basic ability of a vehicle is the ability to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle is vital in automotive engineering. Stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswind and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle especially with the worrying increase of vehicle collision every day. With better safety performance on a vehicle, every driver will be more confidence driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in four-wheel vehicle especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on performance of both suspension systems.

Keywords: automobile, camber thrust, cornering force, suspension

Procedia PDF Downloads 290
8067 An Algorithm for Preventing the Irregular Operation Modes of the Drive Synchronous Motor Providing the Ore Grinding

Authors: Baghdasaryan Marinka

Abstract:

The current scientific and engineering interest concerning the problems of preventing the emergency manifestations of drive synchronous motors, ensuring the ore grinding technological process has been justified. The analysis of the known works devoted to the abnormal operation modes of synchronous motors and possibilities of protection against them, has shown that their application is inexpedient for preventing the impermissible displays arising in the electrical drive synchronous motors ensuring the ore-grinding process. The main energy and technological factors affecting the technical condition of synchronous motors are evaluated. An algorithm for preventing the irregular operation modes of the electrical drive synchronous motor applied in the ore-grinding technological process has been developed and proposed for further application which gives an opportunity to provide smart solutions, ensuring the safe operation of the drive synchronous motor by a comprehensive consideration of the energy and technological factors.

Keywords: synchronous motor, abnormal operating mode, electric drive, algorithm, energy factor, technological factor

Procedia PDF Downloads 109
8066 A Comprehensive Evaluation of the Bus Rapid Transit Project from Gazipur to Airport at Dhaka Focusing on Environmental Impacts

Authors: Swapna Begum, Higano Yoshiro

Abstract:

Dhaka is the capital city of Bangladesh. It is considered as one of the traffic congested cities in the world. The growth of the population of this city is increasing day by day. The land use pattern and the increased socio-economic characteristics increase the motor vehicle ownership of this city. The rapid unplanned urbanization and poor transportation planning have deteriorated the transport environment of this city. Also, the huge travel demand with non-motorized traffics on streets is accounted for enormous traffic congestion in this city. The land transport sector in Dhaka is mainly dependent on road transport comprised of both motorized and non-motorized modes of travel. This improper modal mix and the un-integrated system have resulted in huge traffic congestion in this city. Moreover, this city has no well-organized public transport system and any Mass Transit System to cope with this ever increasing demand. Traffic congestion causes serious air pollution and adverse impact on the economy by deteriorating the accessibility, level of service, safety, comfort and operational efficiency. Therefore, there is an imperative need to introduce a well-organized, properly scheduled mass transit system like (Bus Rapid Transit) BRT minimizing the existing problems.

Keywords: air pollution, BRT, mass transit, traffic congestion

Procedia PDF Downloads 375
8065 Advanced Electric Motor Design Using Hollow Conductors for Maximizing Power, Density and Degree of Efficiency

Authors: Michael Naderer, Manuel Hartong, Raad Al-Kinani

Abstract:

The use of hollow conductors is known in electric generators of large MW scale. The application of motors of small scale between 50 and 200kW is new. The latest results in the practical application and set up of machines show that the power density can be raised significantly and the common problem of derating of the motors is prevented. Furthermore, new design dimensions can be realised as continuous current densities up to 75A/mm² are achievable. This paper shows the results of the application of hollow conductors for a motor design used for automotive traction machines comparing common coolings with hollow conductor cooling.

Keywords: degree of efficiency, electric motor design, hollow conductors, power density

Procedia PDF Downloads 161
8064 New Series Input Parallel Output LLC DC/DC Converter with the Input Voltage Balancing Capacitor for the Electric System of Electric Vehicles

Authors: Kang Hyun Yi

Abstract:

This paper presents a new parallel output LLC DC/DC converter for electric vehicle. The electric vehicle has two batteries. One is a high voltage battery for the powertrain of the vehicle and the other is a low voltage battery for the vehicle electric system. The low voltage is charged from the high voltage battery and the high voltage input and the high current output DC/DC converter is needed. Therefore, the new LLC converter with the input voltage compensation is proposed for the high voltage input and the low voltage output DC/DC converter. The proposed circuit has two LLC converters with the series input voltage from the battery for the powertrain and the parallel output low battery voltage for the vehicle electric system because the battery voltage for the powertrain and the electric power for the vehicle become high. Also, the input series voltage compensation capacitor is used for balancing the input current in the two LLC converters. The proposed converter has an equal electric stress of the semiconductor parts and the reactive components, high efficiency and good heat dissipation.

Keywords: electric vehicle, LLC DC/DC converter, input voltage balancing, parallel output

Procedia PDF Downloads 1021
8063 SCNet: A Vehicle Color Classification Network Based on Spatial Cluster Loss and Channel Attention Mechanism

Authors: Fei Gao, Xinyang Dong, Yisu Ge, Shufang Lu, Libo Weng

Abstract:

Vehicle color recognition plays an important role in traffic accident investigation. However, due to the influence of illumination, weather, and noise, vehicle color recognition still faces challenges. In this paper, a vehicle color classification network based on spatial cluster loss and channel attention mechanism (SCNet) is proposed for vehicle color recognition. A channel attention module is applied to extract the features of vehicle color representative regions and reduce the weight of nonrepresentative color regions in the channel. The proposed loss function, called spatial clustering loss (SC-loss), consists of two channel-specific components, such as a concentration component and a diversity component. The concentration component forces all feature channels belonging to the same class to be concentrated through the channel cluster. The diversity components impose additional constraints on the channels through the mean distance coefficient, making them mutually exclusive in spatial dimensions. In the comparison experiments, the proposed method can achieve state-of-the-art performance on the public datasets, VCD, and VeRi, which are 96.1% and 96.2%, respectively. In addition, the ablation experiment further proves that SC-loss can effectively improve the accuracy of vehicle color recognition.

Keywords: feature extraction, convolutional neural networks, intelligent transportation, vehicle color recognition

Procedia PDF Downloads 143
8062 Motor Coordination and Body Mass Index in Primary School Children

Authors: Ingrid Ruzbarska, Martin Zvonar, Piotr Oleśniewicz, Julita Markiewicz-Patkowska, Krzysztof Widawski, Daniel Puciato

Abstract:

Obese children will probably become obese adults, consequently exposed to an increased risk of comorbidity and premature mortality. Body weight may be indirectly determined by continuous development of coordination and motor skills. The level of motor skills and abilities is an important factor that promotes physical activity since early childhood. The aim of the study is to thoroughly understand the internal relations between motor coordination abilities and the somatic development of prepubertal children and to determine the effect of excess body weight on motor coordination by comparing the motor ability levels of children with different body mass index (BMI) values. The data were collected from 436 children aged 7–10 years, without health limitations, fully participating in school physical education classes. Body height was measured with portable stadiometers (Harpenden, Holtain Ltd.), and body mass—with a digital scale (HN-286, Omron). Motor coordination was evaluated with the Kiphard-Schilling body coordination test, Körperkoordinationstest für Kinder. The normality test by Shapiro-Wilk was used to verify the data distribution. The correlation analysis revealed a statistically significant negative association between the dynamic balance and BMI, as well as between the motor quotient and BMI (p<0.01) for both boys and girls. The results showed no effect of gender on the difference in the observed trends. The analysis of variance proved statistically significant differences between normal weight children and their overweight or obese counterparts. Coordination abilities probably play an important role in preventing or moderating the negative trajectory leading to childhood overweight and obesity. At this age, the development of coordination abilities should become a key strategy, targeted at long-term prevention of obesity and the promotion of an active lifestyle in adulthood. Motor performance is essential for implementing a healthy lifestyle in childhood already. Physical inactivity apparently results in motor deficits and a sedentary lifestyle in children, which may be accompanied by excess energy intake and overweight.

Keywords: childhood, KTK test, physical education, psychomotor competence

Procedia PDF Downloads 316
8061 Automatic Vehicle Detection Using Circular Synthetic Aperture Radar Image

Authors: Leping Chen, Daoxiang An, Xiaotao Huang

Abstract:

Automatic vehicle detection using synthetic aperture radar (SAR) image has been widely researched, as well as using optical remote sensing images. However, most researches treat the detection as an independent problem, failing to make full use of SAR data information. In circular SAR (CSAR), the two long borders of vehicle will shrink if the imaging surface is set higher than the reference one. Based on above variance, an automatic vehicle detection using CSAR image is proposed to enhance detection ability under complex environment, such as vehicles’ closely packing, which confuses the detector. The detection method uses the multiple images generated by different height plane to obtain an energy-concentrated image for detecting and then uses the maximally stable extremal regions method (MSER) to detect vehicles. A result of vehicles’ detection is given to verify the effectiveness and correctness of proposed method.

Keywords: circular SAR, vehicle detection, automatic, imaging

Procedia PDF Downloads 334
8060 Thermo-Oxidative Degradation of Asphalt Modified with High Density Polyethylene and Engine Oil

Authors: Helder Shelton Abel Manguene, Giovanna Buonocore, Herminio Francisco Muiambo

Abstract:

Paved roads are designed for 10-15 years of life. However, many asphalted roads suffer degradation before reaching their lifetime due to aging caused by load conditions and climatic factors. Oxidation is the main asphalt aging mechanism, which leads to a reduced bond between aggregate particles, increasing the potential for stripping and moisture damage, decreasing fatigue lifetime and reducing resistance to thermal cracking. To improve the performance of asphalt and mitigate these problems, modifiers such as polymers, oils and certain residues have been used. This work aims to study the influence of the addition of high-density polyethylene (HDPE) and engine oil on the thermal stability of asphalt in an oxidizing atmosphere. For the study, compositions containing asphalt, motor oil and HDPE were prepared, varying the concentration of the motor oil by 2.5%, 5%, 7.5% and 10% and keeping the HDPE concentration fixed at 5%. The results show that the pure asphalt sample is degraded in a single step that starts at approximately 311 ºC; All samples of modified asphalt except the one that contains 5% of motor oil have three degradation steps that start below the starting temperature of degradation of pure asphalt (about 250-300 ºC); The temperature of onset of degradation of the modified asphalt is shown to decrease as the concentration of the motor oil increases, suggesting a slight loss of thermal stability of the asphalt as the quantity of the motor oil increases.

Keywords: Asphalt, DTG, engine oil, HDPE, TGA

Procedia PDF Downloads 181
8059 Reinforcement of an Electric Vehicle Battery Pack Using Honeycomb Structures

Authors: Brandon To, Yong S. Park

Abstract:

As more battery electric vehicles are being introduced into the automobile industry, continuous advancements are constantly made in the electric vehicle space. Improvements in lithium-ion battery technology allow electric vehicles to be capable of traveling long distances. The batteries are capable of being charged faster, allowing for a sufficient range in shorter amounts of time. With increased reliance on battery technology and the changes in vehicle power trains, new challenges arise from this. Resulting electric vehicle fires caused by collisions are potentially more dangerous than those of the typical internal combustion engine. To further reduce the battery failures involved with side collisions, this project intends to reinforce an existing battery pack of an electric vehicle with honeycomb structures such that intrusion into the batteries can be minimized with weight restrictions in place. Honeycomb structures of hexagonal geometry are implemented into the side extrusions of the battery pack. With the use of explicit dynamics simulations performed in ANSYS, quantitative results such as deformation, strain, and stress are used to compare the performance of the battery pack with and without the implemented honeycomb structures.

Keywords: battery pack, electric vehicle, honeycomb, side impact

Procedia PDF Downloads 80
8058 Numerical Simulation of Truck Collision with Road Blocker

Authors: Engin Metin Kaplan, Kemal Yaman

Abstract:

In this study, the crash of a medium heavy vehicle onto a designed Road blocker (vehicle barrier) is studied numerically. Structural integrity of the Road blocker is studied by nonlinear dynamic methods under the loading conditions which are defined in the standards. NASTRAN® and LS-DYNA® which are commercial software are used to solve the problem. Outer geometry determination, alignment of the inner part and material properties of the road blocker are studied linearly to yield design parameters. Best design parameters are determined to achieve the most structurally optimized road blocker. Strain and stress values of the vehicle barrier are obtained by solving the partial differential equations.

Keywords: vehicle barrier, truck collision, road blocker, crash analysis

Procedia PDF Downloads 451
8057 Construction of a Desktop Arduino Controlled Propeller Test Stand

Authors: Brian Kozak, Ryan Ferguson, Evan Hockeridge

Abstract:

Aerospace engineering and aeronautical engineering students studying propulsion often learn about propellers and their importance in aviation propulsion. In order to reinforce concepts introduced in the classroom, laboratory projects are used. However, to test a full scale propeller, an engine mounted on a test stand must be used. This engine needs to be enclosed in a test cell for appropriated safety requirements, is expensive to operate, and requires a significant amount of time to change propellers. In order to decrease costs and time requirements, the authors designed and built an electric motor powered desktop Arduino controlled test stand. This test stand is used to enhance student understanding of propeller size and pitch on thrust. The test stand can accommodate propellers up to 25 centimeters in diameter. The code computer allowed for the motor speed to be increased or decreased by 1% per second. Outputs that are measured are thrust, motor rpm, amperes, voltage, and motor temperature. These data are exported as a .CVS file and can be imported into a graphing program for data analysis.

Keywords: Arduino, Laboratory Project, Test stand, Propeller

Procedia PDF Downloads 170
8056 Analysis Of Fine Motor Skills in Chronic Neurodegenerative Models of Huntington’s Disease and Amyotrophic Lateral Sclerosis

Authors: T. Heikkinen, J. Oksman, T. Bragge, A. Nurmi, O. Kontkanen, T. Ahtoniemi

Abstract:

Motor impairment is an inherent phenotypic feature of several chronic neurodegenerative diseases, and pharmacological therapies aimed to counterbalance the motor disability have a great market potential. Animal models of chronic neurodegenerative diseases display a number deteriorating motor phenotype during the disease progression. There is a wide array of behavioral tools to evaluate motor functions in rodents. However, currently existing methods to study motor functions in rodents are often limited to evaluate gross motor functions only at advanced stages of the disease phenotype. The most commonly applied traditional motor assays used in CNS rodent models, lack the sensitivity to capture fine motor impairments or improvements. Fine motor skill characterization in rodents provides a more sensitive tool to capture more subtle motor dysfunctions and therapeutic effects. Importantly, similar approach, kinematic movement analysis, is also used in clinic, and applied both in diagnosis and determination of therapeutic response to pharmacological interventions. The aim of this study was to apply kinematic gait analysis, a novel and automated high precision movement analysis system, to characterize phenotypic deficits in three different chronic neurodegenerative animal models, a transgenic mouse model (SOD1 G93A) for amyotrophic lateral sclerosis (ALS), and R6/2 and Q175KI mouse models for Huntington’s disease (HD). The readouts from walking behavior included gait properties with kinematic data, and body movement trajectories including analysis of various points of interest such as movement and position of landmarks in the torso, tail and joints. Mice (transgenic and wild-type) from each model were analyzed for the fine motor kinematic properties at young ages, prior to the age when gross motor deficits are clearly pronounced. Fine motor kinematic Evaluation was continued in the same animals until clear motor dysfunction with conventional motor assays was evident. Time course analysis revealed clear fine motor skill impairments in each transgenic model earlier than what is seen with conventional gross motor tests. Motor changes were quantitatively analyzed for up to ~80 parameters, and the largest data sets of HD models were further processed with principal component analysis (PCA) to transform the pool of individual parameters into a smaller and focused set of mutually uncorrelated gait parameters showing strong genotype difference. Kinematic fine motor analysis of transgenic animal models described in this presentation show that this method isa sensitive, objective and fully automated tool that allows earlier and more sensitive detection of progressive neuromuscular and CNS disease phenotypes. As a result of the analysis a comprehensive set of fine motor parameters for each model is created, and these parameters provide better understanding of the disease progression and enhanced sensitivity of this assay for therapeutic testing compared to classical motor behavior tests. In SOD1 G93A, R6/2, and Q175KI mice, the alterations in gait were evident already several weeks earlier than with traditional gross motor assays. Kinematic testing can be applied to a wider set of motor readouts beyond gait in order to study whole body movement patterns such as with relation to joints and various body parts longitudinally, providing a sophisticated and translatable method for disseminating motor components in rodent disease models and evaluating therapeutic interventions.

Keywords: Gait analysis, kinematic, motor impairment, inherent feature

Procedia PDF Downloads 331
8055 Simulative Study of the Influence of Degraded Twin-Tube Shock Absorbers on the Lateral Forces of Vehicle Axles

Authors: Tobias Schramm, Günther Prokop

Abstract:

Degraded vehicle shock absorbers represent a risk for road safety. The exact effect of degraded vehicle dampers on road safety is still the subject of research. This work is intended to contribute to estimating the effect of degraded twin-tube dampers of passenger cars on road safety. An axle model was built using a damper model to simulate different degradation levels. To parameterize the model, a realistic parameter space was estimated based on test rig measurements and database analyses, which is intended to represent the vehicle field in Germany. Within the parameter space, simulations of the axle model were carried out, which calculated the transmittable lateral forces of the various axle configurations as a function of vehicle speed, road surface, damper conditions and axle parameters. A degraded damper has the greatest effect on the transmittable lateral forces at high speeds and in poor road conditions. If a vehicle is traveling at a speed of 100 kph on a Class D road, a degraded damper reduces the transmissible lateral forces of an axle by 20 % on average. For individual parameter configurations, this value can rise to 50 %. The axle parameters that most influence the effect of a degraded damper are the vertical stiffness of the tire, the unsprung mass and the stabilizer stiffness of the axle.

Keywords: vehicle dynamics, vehicle simulation, vehicle component degradation, shock absorber model, shock absorber degradation

Procedia PDF Downloads 75
8054 Five-Phase Induction Motor Drive System Driven by Five-Phase Packed U Cell Inverter: Its Modeling and Performance Evaluation

Authors: Mohd Tariq

Abstract:

The three phase system drives produce the problem of more torque pulsations and harmonics. This issue prevents the smooth operation of the drives and it also induces the amount of heat generated thus resulting in an increase in power loss. Higher phase system offers smooth operation of the machines with greater power capacity. Five phase variable-speed induction motor drives are commonly used in various industrial and commercial applications like tractions, electrical vehicles, ship propulsions and conveyor belt drive system. In this work, a comparative analysis of the different modulation schemes applied on the five-level five-phase Packed U Cell (PUC) inverter fed induction motor drives is presented. The performance of the inverter is greatly affected with the modulation schemes applied. The system is modeled, designed, and implemented in MATLAB®/Simulink environment. Experimental validation is done for the prototype of single phase, whereas five phase experimental validation is proposed in the future works.

Keywords: Packed U-Cell (PUC) inverter, five-phase system, pulse width modulation (PWM), induction motor (IM)

Procedia PDF Downloads 150
8053 Open-Loop Vector Control of Induction Motor with Space Vector Pulse Width Modulation Technique

Authors: Karchung, S. Ruangsinchaiwanich

Abstract:

This paper presents open-loop vector control method of induction motor with space vector pulse width modulation (SVPWM) technique. Normally, the closed loop speed control is preferred and is believed to be more accurate. However, it requires a position sensor to track the rotor position which is not desirable to use it for certain workspace applications. This paper exhibits the performance of three-phase induction motor with the simplest control algorithm without the use of a position sensor nor an estimation block to estimate rotor position for sensorless control. The motor stator currents are measured and are transformed to synchronously rotating (d-q-axis) frame by use of Clarke and Park transformation. The actual control happens in this frame where the measured currents are compared with the reference currents. The error signal is fed to a conventional PI controller, and the corrected d-q voltage is generated. The controller outputs are transformed back to three phase voltages and are fed to SVPWM block which generates PWM signal for the voltage source inverter. The open loop vector control model along with SVPWM algorithm is modeled in MATLAB/Simulink software and is experimented and validated in TMS320F28335 DSP board.

Keywords: electric drive, induction motor, open-loop vector control, space vector pulse width modulation technique

Procedia PDF Downloads 121
8052 Piezosurgery in Periodontics and Oral Implantology

Authors: Neelesh Papineni

Abstract:

Aim: Piezosurgery is a relatively new technique for osteotomy and osteoplasty that uses ultrasonic vibration. The conventional method of treating periodontal cases are by conventional surgeries. However, in this advancing field the use of motor-driven instruments is being considered less invasive. Out of these motor-driven instruments, piezo-electric device has been introduced to the field of periodontics and oral implantology. This article discusses about the wide range of application of piezo-electric device in periodontology, its advantages over conventional surgical therapies and other motor-driven instruments. Results: Piezo- electric has shown better results in aspect of osteotomy, osteoplasty, implants, and any procedure which includes conserving the bone. Also piezo-electric does not cause any kind of damage to the surrounding soft tissue and eliminates the risk of bone necrosis which is a risk factor in other motor driven instruments. Conclusion: In this era of modern dentistry , a successful periodontal and implant surgery requires a sound osseous support. This review gives a pictorial representation about the wide range of application of piezo-electric device in periodontology.

Keywords: piezo-electric, osteotomy, osteoplasty, implantology

Procedia PDF Downloads 337
8051 Evaluation of Traffic Noise Level: A Case Study in Residential Area of Ishbiliyah , Kuwait

Authors: Jamal Almatawah, Hamad Matar, Abdulsalam Altemeemi

Abstract:

The World Health Organization (WHO) has recognized environmental noise as harmful pollution that causes adverse psychosocial and physiologic effects on human health. The motor vehicle is considered to be one of the main source of noise pollution. It is a universal phenomenon, and it has grown to the point that it has become a major concern for both the public and policymakers. The aim of this paper, therefore, is to investigate the Traffic noise levels and the contributing factors that affect its level, such as traffic volume, heavy-vehicle Speed and other metrological factors in Ishbiliyah as a sample of a residential area in Kuwait. Three types of roads were selected in Ishbiliyah expressway, major arterial and collector street. The other source of noise that interferes the traffic noise has also been considered in this study. Traffic noise level is measured and analyzed using the Bruel & Kjaer outdoor sound level meter 2250-L (2250 Light). The Count-Cam2 Video Camera has been used to collect the peak and off-peak traffic count. Ambient Weather WM-5 Handheld Weather Station is used for metrological factors such as temperature, humidity and wind speed. Also, the spot speed was obtained using the radar speed: Decatur Genesis model GHD-KPH. All the measurement has been detected at the same time (simultaneously). The results showed that the traffic noise level is over the allowable limit on all types of roads. The average equivalent noise level (LAeq) for the Expressway, Major arterial and Collector Street was 74.3 dB(A), 70.47 dB(A) and 60.84 dB(A), respectively. In addition, a Positive Correlation coefficient between the traffic noise versus traffic volume and between traffic noise versus 85th percentile speed was obtained. However, there was no significant relation and Metrological factors. Abnormal vehicle noise due to poor maintenance or user-enhanced exhaust noise was found to be one of the highest factors that affected the overall traffic noise reading.

Keywords: traffic noise, residential area, pollution, vehicle noise

Procedia PDF Downloads 34
8050 Effect of Traffic Composition on Delay and Saturation Flow at Signal Controlled Intersections

Authors: Arpita Saha, Apoorv Jain, Satish Chandra, Indrajit Ghosh

Abstract:

Level of service at a signal controlled intersection is directly measured from the delay. Similarly, saturation flow rate is a fundamental parameter to measure the intersection capacity. The present study calculates vehicle arrival rate, departure rate, and queue length for every five seconds interval in each cycle. Based on the queue lengths, the total delay of the cycle has been calculated using Simpson’s 1/3rd rule. Saturation flow has been estimated in terms of veh/hr of green/lane for every five seconds interval of the green period until at least three vehicles are left to cross the stop line. Vehicle composition shows an immense effect on total delay and saturation flow rate. The increase in two-wheeler proportion increases the saturation flow rate and reduces the total delay per vehicle significantly. Additionally, an increase in the heavy vehicle proportion reduces the saturation flow rate and increases the total delay for each vehicle.

Keywords: delay, saturation flow, signalised intersection, vehicle composition

Procedia PDF Downloads 436
8049 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network

Procedia PDF Downloads 166
8048 Interior Noise Reduction of Construction Equipment Vehicle

Authors: Pradeep Jawale, Sharad Supare, Sachin Kumar Jain, Nagesh Walke

Abstract:

One can witness the constant development and redevelopment of cities throughout the world. Construction equipment vehicles (CEVs) are commonly used on the construction site. However, noise pollution from construction sites due to the use of CEV has become a major problem for many cities. The construction equipment employed, which includes excavators and bulldozers, is one of the main causes of these elevated noise levels. The construction workers possibly will face a potential risk to their auditory health and well-being due to the noise levels they are exposed to. Different countries have imposed exterior and operator noise limits for construction equipment vehicles, enabling them to control noise pollution from CEVs. In this study, the operator ear level noise of the identified vehicle is higher than the benchmark vehicle by 8 dB(A). It was a tough time for the NVH engineer to beat the interior noise level of the benchmark vehicle. Initially, the noise source identification technique was used to identify the dominant sources for increasing the interior noise of the test vehicle. It was observed that the transfer of structure-borne and air-borne noise to the cabin was the major issue with the vehicle. It was foremost required to address the issue without compromising the overall performance of the vehicle. Surprisingly, the steering pump and radiator fan were identified as the major dominant sources than typical conventional sources like powertrain, intake, and exhaust. Individual sources of noise were analyzed in detail, and optimizations were made to minimize the noise at the source. As a result, the significant noise reduction achieved inside the vehicle and the overall in-cab noise level for the vehicle became a new benchmark in the market.

Keywords: interior noise, noise reduction, CEV, noise source identification

Procedia PDF Downloads 14